Uniqueness of Stoneley waves in pre-stressed incompressible elastic media

July 19, 2017 | Autor: Pham Vinh | Categoría: Mechanical Engineering, Civil Engineering, Applied Mathematics, Wave propagation
Share Embed


Descripción

International Journal of Non-Linear Mechanics 47 (2012) 128–134

Contents lists available at ScienceDirect

International Journal of Non-Linear Mechanics journal homepage: www.elsevier.com/locate/nlm

Uniqueness of Stoneley waves in pre-stressed incompressible elastic media Pham Chi Vinh , Pham Thi Ha Giang Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, 334, Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam

a r t i c l e i n f o

a b s t r a c t

Available online 1 April 2011

The main aim of this paper is to prove, for the general case, the uniqueness of Stoneley waves propagating along the bonded interface of two pre-stressed incompressible elastic half-spaces. In order to do that the authors have used the complex function method. By this approach, it is shown that the secular equation of Stoneley waves in pre-stressed incompressible elastic half-spaces has at most one solution in the complex plane. This says that if a Stoneley wave exists, then it is unique. & 2011 Elsevier Ltd. All rights reserved.

Keywords: Stoneley waves Pre-stressed incompressible elastic halfspaces The uniqueness Secular equation Holomorphic function

1. Introduction Interfacial waves traveling along the welded plane boundary of two different isotropic elastic half-spaces were first investigated by Stoneley [1] in 1924. He derived the secular equation of the wave, and showed by means of examples that such interfacial waves do not always exist. Subsequent studies by Sezawa and Kanai [2] and Scholte [3,4] focused on the range of existence of Stoneley waves. Scholte [4] found the equations expressing the boundaries of the existence domain that were in complete agreement with the corresponding curves numerically obtained by Sezawa and Kanai [2] for the case of Poisson solids. Their studies showed that the restriction on material constants that permit the existence of Stoneley waves are rather severe. However, Sezawa and Kanai and Scholte did not prove the uniqueness of Stoneley waves. This question was settled by Barnett et al. [5] for two general anisotropic half-spaces with a welded interface. The propagation of Stoneley waves in anisotropic media was also studied by Stroh [6] and Lim et al. [7]. Much of the early attentions to Stoneley waves was directed toward geophysical applications. Latter studies have indicated that interfacial waves may prove to be useful probes for the nondestructive evaluations (see [8,9]). Nowadays pre-stressed materials have been widely used. The non-destructive evaluation of prestresses of structures before and during loading (in the course of use) is necessary and important, and the Stoneley wave is a convenient tool for this task. However, few investigations have been done for the subject of propagation of Stoneley waves at the interface between two welded pre-stressed half-spaces. In papers [10,11] Chadwick and Jarvis considered Stoneley waves propagating in an arbitrary direction parallel to the interface and restricted attention to two half-spaces of the same incompressible neo-Hookean material subject to different homogeneous pure  Corresponding author. Tel.: þ 84 4 5532164; fax: þ 84 4 8588817.

E-mail address: [email protected] (P.C. Vinh). 0020-7462/$ - see front matter & 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijnonlinmec.2011.03.014

strains, and the principal axes of strain in the two half-spaces aligned. Dasgupta [12] investigated the effect of initial stress on the range of existence of Stoneley waves in neo-Hookean incompressible materials. Dunwoody [13] has investigated certain aspects of the interfacial wave problem for pre-stressed compressible elastic half-spaces. In paper [14] Dowaikh and Ogden examined the propagation of Stoneley waves along the bonded interface of two incompressible isotropic elastic half-spaces subject to pure homogeneous strains with one principal axis of strain normal to the interface and others having a common orientation. The wave was assumed to propagate along a principal axis. By detailed analysis of the dispersion equation, the authors have derived general sufficient conditions for the existence of a Stoneley wave and, in the case of biaxial deformations, necessary and sufficient conditions for the existence of a unique interfacial wave. However, the question of uniqueness for the general case has been left, and it has not yet had an answer so far, to the best of the authors’ knowledge. The main purpose of this paper is to settle this question. The tool that is employed to do that is complex function theory. Using this tool it is shown that the secular equation of Stoneley waves propagating along the bonded interface of two pre-stressed incompressible elastic half-spaces has at most one solution in the complex plane. This means that if a Stoneley exists, then it is unique.

2. The complex function method In this section we present the complex function method by using it to establish the uniqueness of Stoneley waves for a special case when the corresponding strain-energy functions are of neo-Hookean type [15]: W¼

m 2

2

2

2

ðl1 þ l2 þ l3 3Þ,

W ¼

m 2

2

2

2

ðl1 þ l2 þ l3 3Þ 

ð1Þ

where m, lk ðk ¼ 1,2,3Þ and m , lk ðk ¼ 1,2,3Þ are the Lame constants, the principal stretches of deformation of the half-spaces B

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134

and B , respectively. Chadwick and Jarvis [10,11] and Dowaikh and Ogden [14] have examined the existence of Stoneley waves for this case, but the question of uniqueness is still open so far. Note that in this paper we use the notations presented in the paper [14], and same quantities related to B and B have the same symbol but are systematically distinguished by an asterisk if pertaining to B . For this case the secular equation of Stoneley waves is of the form (see [14, Eq. (4.59)]) 2

3

2

2

3

2



g ðZ þ Z þ 3Z1Þ þ g ðZ þ Z þ3Z 1Þ þ 2gg ð1ZÞð1Z Þ þ gg ðZ þ Z Þð1 þ ZÞð1 þ Z Þ ¼ 0 where sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi arc2 Z¼ ,

g

Z ¼

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a r c2 , 

ð2Þ

a ¼ ml21

g

g ¼ ml22 , a ¼ m l2 g ¼ m l2 1 , 2

ð3Þ

c is the velocity of Stoneley waves that is subject to 0 o c ominfct ,ct g

ð4Þ

ct (ct )

is the speed of transverse wave in the half-space B (B ) defined as ct2 ¼ a=r,

ct2 ¼ a =r

ð5Þ

r (r ) is the mass density of the half-space B (B ). Without loss of generality we can suppose that ct rct . We now introduce the notations x ¼ ct2 =c2 (the dimensionless squared slowness of Stoneley waves), b ¼ ct2 =ct2 ð0 ob r 1Þ. From (4) it follows that x41

ð6Þ

and in terms of x the quantities Z, Z defined by ð3Þ1,2 become sffiffiffiffiffi rffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffi rffiffiffi x1 xb a a    , d¼ Z¼d , d ¼ ð7Þ , Z ¼d x x g g 

Introducing ð7Þ1,2 into (2), the secular equation of Stoneley waves now is of the form in terms of x ð 4 1 ZbÞ: pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi xb x1 ð8Þ f ðxÞ  q1 ðxÞ pffiffiffi þq2 ðxÞ pffiffiffi þ q3 ðxÞ x1 xb þ q4 ðxÞ ¼ 0 x x where 2

2

2

2

2

2

2

2

129

Denote L ¼ L1 [ L2 with L1 ¼ ½0,b, L2 ¼ ½b,1, S ¼ fz A C, z= 2Lg, Nðz0 Þ ¼ fz A S : 0 o jzz0 j o eg, e is a sufficient small positive number, z0 is some point of the complex plane C. If a function fðzÞ is holomorphic in O  C we write fðzÞ A HðOÞ. From (10) it is not difficult to show that the function f(z) has the properties: (f1) (f2) (f3) (f4) (f5)

f ðzÞ A HðSÞ. f(z) is bounded in N(1). f ðzÞ ¼ Oðz1=2 Þ as z-0. f ðzÞ ¼ OðA1 z þA0 Þ as jzj-1 (A0 ,A1 are constant). f(z) is continuous on L from the left and from the right (see [16]) with the boundary values f þ ðtÞ (the right boundary value of f(z)), f  ðtÞ (the left boundary value of f(z)) defined as follows: ( 7 f1 ðtÞ, t A L1 f 7 ðtÞ ¼ ð11Þ f27 ðtÞ, t A L2 where fk ðtÞ ¼ fkþ ðtÞ,

k ¼ 1,2

ð12Þ

the bar indicates the complex conjugate, and pffiffiffiffiffiffiffiffiffi pffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi f1þ ðtÞ ¼ q4 ðtÞq3 ðtÞ 1t bt þ i½q1 ðtÞ 1t þq2 ðtÞ bt = t , t A L1 # pffiffiffiffiffiffiffiffiffi " pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi tb 1t f2þ ðtÞ ¼ q4 ðtÞ þq2 ðtÞ pffiffi þ i q1 ðtÞ pffiffi þ q3 ðtÞ 1t tb , t t t A L2

ð13Þ ðtÞ fkþffiffiffiffiffiffiffi p

ðfk ðtÞÞ is the right (left) boundary value of f(z) on Note that Lk and i ¼ 1. In order to prove Proposition 1 we will establish the following propositions: Proposition 2. Eq. (10) is equivalent to equation P(z)¼0 in the region S [ f0g [ f1g, where P(z) is a first-order polynomial of z whose coefficients do not vanish simultaneously, i.e.: PðzÞ ¼ A^ 1 z þ A^ 0 ,

2 2 A^ 0 þ A^ 1 a0

ð14Þ

q1 ðxÞ ¼ ed½eð3 þ d Þ þðd 1Þxed½ed þ d b 



Proposition 3. Equation P(z)¼0 has at most one solution in the complex plane C.

q2 ðxÞ ¼ d ½ð3 þ d Þ þ eðd 1Þxd ½ed þ d b q3 ðxÞ ¼ 4edd



ð9Þ

2

2

2

2

q4 ðxÞ ¼ ½e2 ðd 1Þ þðd 1Þ þ eðd þ d þ 2Þx 2

2

2

2

½e2 d þ d b þeðd þ bd Þ,



g g

Now, in the complex plane C we consider the equation: pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi zb z1 ð10Þ f ðzÞ  q1 ðzÞ pffiffiffi þq2 ðzÞ pffiffiffi þ q3 ðzÞ z1 zb þ q4 ðzÞ ¼ 0 z z pffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi where the functions qk ðzÞ are defined by (9), z, z1, zb are chosen as the principal branches of the corresponding square roots. Note that Eq. (10) coincides with Eq. (8) for the real values of z bigger than 1, we can thus call it the complex form of the real equation (8). We will prove the following proposition: Proposition 1. In the complex plane C, Eq. (10) has at most one solution. From Proposition 1, we have immediately: Theorem 1. For pre-stressed incompressible elastic half-spaces of neo-Hookean material, if a Stoneley wave exists, then it is unique.

Proposition 1 is implied directly from Propositions 2, 3, and the fact that Eq. (10) has no solution in interval (0, 1) due to the discontinuity of f(z) on this interval. Proof of Propositions 2, 3. Now we introduce function g(t) (t A L) as follows: 8 þ f1 ðtÞ > > > > f  ðtÞ , t A L1 < 1 ð15Þ gðtÞ ¼ f2þ ðtÞ > > >  , t A L2 > : f ðtÞ 2 From (13) and (15) it is obvious that f þ ðtÞ ¼ gðtÞf  ðtÞ,

tAL

Consider the function GðzÞ defined as Z 1 loggðtÞ dt GðzÞ ¼ 2pi L tz It is not difficult to verify that (g1 ) GðzÞ A HðSÞ, (g2 ) Gð1Þ ¼ 0,

ð16Þ

ð17Þ

130

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134

(g3 ) GðzÞ ¼ ð1=2Þlogz þ O0 ðzÞ, z A Nð0Þ, GðzÞ ¼ O1 ðzÞ, z A Nð1Þ, where O0 ðzÞ ðO1 ðzÞÞ bounded in Nð0Þ ðNð1ÞÞ and takes a defined value at z¼ 0 (z ¼1). It is noted that (g3 ) comes from the fact (see [16]): loggð0Þ ¼ ip,

loggð1Þ ¼ 0

ð18Þ

Introduce a new function FðzÞ defined by

FðzÞ ¼ expGðzÞ

ð19Þ

It is implied from ðg1 Þ2ðg3 Þ that: (f1 ) (f2 ) (f3 ) (f4 )

FðzÞ A HðSÞ, FðzÞ a 0 8z A S, FðzÞ ¼ Oð1Þ as jzj-1, FðzÞ ¼ z1=2 expO0 ðzÞ for z A Nð0Þ, FðzÞ ¼ expO1 ðzÞ, z A Nð1Þ.

From the Plemelj formula [16], the function FðzÞ is seen directly to satisfy the boundary condition: þ



F ðtÞ ¼ gðtÞF ðtÞ, t A L

ð20Þ

We now consider the function Y(z) defined by YðzÞ ¼ f ðzÞ=FðzÞ

ð21Þ

From (f1)–(f4), (16), ðf1 Þ–ðf4 Þ and (20), (21), it follows that: (y1) YðzÞ A HðSÞ, (y2) YðzÞ ¼ OðA1 z þ A0 Þ as jzj-1, (y3) Y(z) is bounded in N(0) [due to (f3) and the first of (f4 )] and in N(1), (y4) Y þ ðtÞ ¼ Y  ðtÞ, t A L. Properties (y1) and (y4) of the function Y(z) show that Y(z) is holomorphic in entire complex plane C, with the possible exception of points: z¼0 and 1. By (y3) these points are removable singularity points and it may be assumed that the function Y(z) is holomorphic in the entire complex plane C (see [17]). Thus, by the generalized Liouville theorem [17] and taking account into (y2) we have YðzÞ ¼ PðzÞ

In this section we will prove the uniqueness of Stoneley waves for the general case by employing the complex function method presented in the previous section. The general case means the case of two general incompressible isotropic elastic half-spaces subjected to any initial homogeneous deformations. The principal axes of strain are aligned in the considered plane of motion with one axis normal to the interface. For the general case, the secular equation of Stoneley waves is of the form (see [14, Eq. (3.14)]) pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2b þ2gXÞ gðaXÞ þ gðaXÞg2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  þ ð2b þ 2g X  Þ g ða X  Þ þ g ða X  Þg2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2½g gðaXÞ½g  g ða X  Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½ g ðaXÞ þ gða X  Þ 2bX þ 2 gðaXÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð25Þ  2b X  þ 2 g ða X  Þ ¼ 0 

where a, b, g, a , b , g are (constant) material parameters defined by the formulas (2.6) and (2.7) in [14], X ¼ rc2 , X  ¼ r c2 , c is the velocity of Stoneley waves subjected to 0 oc o minfct ,ct g,

ct ¼ a=r,

ct ¼ a =r

ð26Þ

As above, we can assume, without loss of generality, that ct rct , then 0 ob r 1, where b ¼ ct2 =ct2 . Note that a, g, a , g are strictly positive (see [14, (2.10a, b)]). We introduce the following notations:

g b g b , n ¼ , m  ¼  , n ¼  a a a a a ct2 d ¼  , x ¼ 2 ðx 4 1Þ a c



ð27Þ

Then, in terms of these notations Eq. (25) can be written as follows: " pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi xb x1 x1 q1 ðxÞ pffiffiffi þq2 ðxÞ pffiffiffi þq3 ðxÞ x1 xb þ q4 ðxÞ þ q5 ðxÞ pffiffiffi x x x vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !2 v !2 u pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi#u pffiffiffiffiffiffiffiffiffi u xb u xb pffiffiffiffiffiffiffi x1 pffiffiffiffiffi pffiffiffi þ m et pffiffiffi þ m e ¼ 0 þ q6 ðxÞ pffiffiffi t x x x

ð22Þ

where P(z) is a polynomial of order 1 in terms of z: PðzÞ ¼ A^ 1 z þ A^ 0 . From (21) and (22) we have f ðzÞ ¼ FðzÞPðzÞ

ð23Þ

Since FðzÞ a0 8z A S (by ðf2 Þ), and FðzÞ-1 as z-0, Fð1Þ a 0 (by ðf4 Þ), from (23) it is implied that Eq. (10) is equivalent to equation P(z)¼ 0 in the region S [ f0g [ f1g. Coefficients A^ 0 and A^ 1 cannot vanish simultaneously, because if A^ 0 ¼ A^ 1 ¼ 0-PðzÞ  0, then f ðzÞ  0 according to (23). But this contradicts the statement (f3). 2 2 Proposition 2 is proved. From the fact A^ 0 þ A^ 1 a 0, we have immediately Proposition 3. & 



Remark 1. For the biaxial deformations (l1 ¼ l2 , l1 ¼ l2 ), the secular equation of Stoneley waves is Eq. (2) (see [14]) in which sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rc2 r c 2  Z ¼ 1 , Z ¼ 1  ð24Þ

a

3. The uniqueness of Stoneley waves for the general case

a

i.e. in terms of x the secular equation of Stoneley waves is of the  form (8), where qk ðxÞ are defined by (9) in which d ¼ d ¼ 1. Proposition 1 therefore hold for this case. Thus, for biaxial   deformations (l1 ¼ l2 , l1 ¼ l2 ), if a Stoneley wave exists, it must be unique. This fact has also been proved by Dowaikh and Ogden [14] by another way.

ð28Þ where pffiffiffiffiffi pffiffiffiffiffi q1 ðxÞ ¼ 2d m½dðm þ nÞm xd2 m pffiffiffiffiffiffiffi pffiffiffiffiffiffiffi q2 ðxÞ ¼ 2 m ðm þn dmÞxb m ,

pffiffiffiffiffiffiffiffiffiffiffi q3 ðxÞ ¼ 2d mm

q4 ðxÞ ¼ ½d2 mð1mÞ þm ð1m Þ þ 2dmm xðd2 m þbm Þ pffiffiffiffiffiffiffi q5 ðxÞ ¼ d m x,

pffiffiffiffiffi q6 ðxÞ ¼ d mx,

e ¼ 1 þ m2n,

e ¼ 1 þ m 2n ð29Þ

Note that when the two half-spaces are made of neo-Hookean material (2n ¼ 1 þ m, 2n ¼ 1þ m -e ¼ e ¼ 0, see [14]), the lefthand side of Eq. (28) differs from the left-hand side of Eq. (8) by a 4  positive factor d , where d defined by ð7Þ4 . In the complex plane C Eq. (28) takes the form f ðzÞ  f1 ðzÞ þ f2 ðzÞf3 ðzÞf3 ðzÞ ¼ 0

ð30Þ

where pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffi zb z1 f1 ðzÞ ¼ q1 ðzÞ pffiffiffi þ q2 ðzÞ pffiffiffi þ q3 ðzÞ z1 zb þ q4 ðzÞ z z pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi zb z1 f2 ðzÞ ¼ q5 ðzÞ pffiffiffi þ q6 ðzÞ pffiffiffi , z z

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !2 u pffiffiffiffiffiffiffiffiffi u z1 pffiffiffiffiffi pffiffiffi þ m e f3 ðzÞ ¼ t z

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134

ffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !2 u pffiffiffiffiffiffiffiffiffi u ffiffiffiffiffiffi ffi p zb pffiffiffi þ m e f3 ðzÞ ¼ t ð31Þ z pffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi where z, z1, zb are chosen as the principal branches of the corresponding square roots, the functions qk ðzÞ are defined by (29). Note that Eq. (30) coincides with Eq. (28) for the real values of z bigger than 1. We will prove the following proposition:

131

y0 B1

0

Proposition 4. In the complex plane C, Eq. (30) has at most one solution.

A

x0

a

From Proposition 4, we have immediately: Theorem 2. For pre-stressed incompressible elastic half-spaces, if a Stoneley wave exists, then it is unique. In order to prove Proposition 4, first we need to know the set L of discontinuity points of the function f(z) and their right and left boundary values f þ ðtÞ and f  ðtÞ on L, and the values of the ratio f þ ðtÞ=f  ðtÞ at the ends of L. Thus, we have to know those of the functions f1 ðzÞ, f2 ðzÞ, f3 ðzÞ, f3 ðzÞ due to (30).

B2 Fig. 2. The image S0 of mapping Z ¼

pffiffiffiffiffiffiffiffiffi pffiffiffi z1= z, z A S, S0 ¼ fZ ¼ x0 þ iy0 : x0 Z 0g.

v1 B1

3.1. The set of discontinuity points of f1 ðzÞ, f2 ðzÞ It is clear that: Lemma 1. (i) The functions f1(z) are discontinuous on the set 7 7 L ¼ L1 [ L2 , L1 ¼ ½0,b, L2 ¼ ½b,1, and f11 , f12 are given by (12) and (13) in which qk ðtÞ defined by (29). (ii) The set of discontinuity points of f2 ðzÞ is also L ¼ L1 [ L2 , and: pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi tb 7i 1t 7 7 f21 ¼ pffiffi ½q5 ðtÞ 1t þ q6 ðtÞ bt , f22 ¼ q6 ðtÞ pffiffi 7 iq5 ðtÞ pffiffi t t t ð32Þ

0

A

a1/2

u1

B2

(iii) The following equalities hold: þ f11 ð0Þ  f11 ð0Þ

¼

þ f21 ð0Þ ¼ 1,  f21 ð0Þ

þ f12 ð1Þ f þ ð1Þ ¼ 22   ð1Þ ¼ þ 1 f12 ð1Þ f22

ð33Þ

þ  By fkm (fkm ) we denote the right (left) boundary values of fk ðzÞ on Lm.

3.2. The set of discontinuity points of f3(z) pffiffiffiffiffiffiffiffiffi pffiffiffi 3.2.1. The image of ZðzÞ ¼ z1= z By S we denote the set obtained by removing from the complex C the interval L ¼ ½0, p 1ffiffiffiffiffiffiffiffiffi (see Fig. 1), by S0 we denote the pffiffiffi image of the function ZðzÞ ¼ z1= z, z A S, and ½a,b þ (½a,b ), a,b being real numbers, is the set of points z A ½a,b : z ¼ t þi0 þ , t A ½a,b (z A ½a,b : z ¼ t þi0 , t A ½a,b). Then, it is clear that S0 ¼ fZ ¼ x0 þiy0 : x0 Z0g, see Fig. 2, in which: the point Q ð1,0Þ is converted to the point A, the point 0 þ (0 ) is converted to B1 (B2), L þ (L ) is mapped onto AB1 (AB2).

y

Fig. 3. The image S1 (non-shaded region) of mapping x1 ðZÞ ¼

pffiffiffiffiffiffiffiffiffiffiffi Z þ a, a Z 0, Z A S0 .

pffiffiffiffiffiffiffiffiffiffiffi 3.2.2. The image of x1 ðZÞ ¼ Z þa,a Z0 As S0 ¼ fZ ¼ x0 þiy0 : x0 Z 0g, according to Section 3.2.1, it is not pffiffiffiffiffiffiffiffiffiffiffi difficult to verify that the image of the function x1 ðZÞ ¼ Z þ a, a Z0, denoted by S1 , is the ‘‘non-shaded region’’ in Fig. 3. Here, AB1 A S0 (AB2 A S0 ) is mapped onto AB1 A S1 (AB2 A S1 ), and AB1 A S1 , AB2 A S1 are expressed by qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 8 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > < u1 ðtÞ ¼ ð a2 þ t2 þ aÞ=2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð34Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > : v1 ðtÞ ¼ 7 ð a2 þ t2 aÞ=2, t Z 0

x1 ¼ u1 þiv1 , the sign ‘‘ þ’’ (‘‘  ’’) is corresponding to AB1 (AB2). It is readily seen that the set of discontinuity points of the function x1 ðZðzÞÞ is the interval L¼[0,1], and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! v rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! u u u1 u1 1 1 þ t t 2 a þ 1 þ a þ i a2 þ 1a , x1 ðtÞ ¼ 2 t 2 t þ x 1 ðtÞ ¼ x1 ðtÞ

ð35Þ

From (35) it is readily seen that

0

1 Q

Fig. 1. The complex plane C with the cut L¼ [0 1].

x

x1þ ð0Þ ¼ eip=2 , x 1 ð0Þ

x1þ ð1Þ ¼ þ1 x 1 ð1Þ

ð36Þ

pffiffiffiffiffiffiffiffiffiffi 3.2.3. The image of x2 ðZÞ ¼ Za, 0 oa o1 Similarly, it is not difficult to show that the image of the function pffiffiffiffiffiffiffiffiffiffi x2 ðZÞ ¼ Za, 0 o a o 1, denoted by S2, is the ‘‘non-shaded region’’

132

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134

in Fig. 4. Here, ½0,a þ A S0 (½0,a A S0 ) is mapped onto 0A1 A S2 (0A2 A S2 ), and AB1 A S0 (AB2 A S0 ) is mapped onto A1 B1 A S2 (A2 B2 A S2 ), and A1 B1 A S2 , A2 B2 A S2 are expressed by qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 8 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > < u2 ðtÞ ¼ ð a2 þ t2 aÞ=2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð37Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi > : v2 ðtÞ ¼ 7 ð a2 þ t2 þ aÞ=2, t Z0

v3

x2 ¼ u2 þiv2 , the sign ‘‘þ’’ (‘‘’’) is corresponding to A1 B1 (A2 B2 ). It is readily seen that the function x2 ðZðzÞÞ is discontinuous on the interval

0

B1 A u3

a1/2

L ¼ L1 [ L2 , L1 ¼ ½0,1, L2 ¼ ½1,1=ð1a2 Þ (see Fig. 5), and vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !ffi u rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! u rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi u1 u1 1 1 þ t t 2 2 a þ 1a þ i a þ 1 þ a x21 ðtÞ ¼ 2 t 2 t pffiffiffi þ x22 ðtÞ ¼ it, 0 rt r a,

B2

þ x 2k ðtÞ ¼ x2k ðtÞ, k ¼ 1,2

ð38Þ Fig. 6. The image of mapping x3 ðZÞ (non-shaded region): x3 ðZÞ ¼ aZ 0, p 40, Z A S0 .

From (38) it is obvious that þ x21 ð0Þ  x21 ð0Þ

þ x21 ð1=ð1a2 ÞÞ ¼ þ1  x21 ð1=ð1a2 ÞÞ

¼ eip=2 ,

ð39Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3.2.4. The image of x3 ðZÞ ¼ Z þa þip, a Z 0, p ispaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi real number It is clear that the image of the function x3 ðZÞ ¼ Z þa þip, a Z0, p being any real number is S1. Here, AB1 ðAB2 Þ A S0 is mapped onto

v2

B1

a1/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a2 þ p2 þ a =2, u3A ¼

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  a2 þp2 a =2 v3A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  v3A ¼  a2 þ p2 a =2

if p o 0

if p Z0

ð40Þ

The function x3 ðZðzÞÞ is discontinuous on the interval L¼[0,1], and if p Z0:

0 rt r 1

ð41Þ

8 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ffi v u 0v u 0v > rffiffiffiffiffiffiffiffiffiffi!2 rffiffiffiffiffiffiffiffiffiffi!2 1 u u > u >u u > 1@u 1 1 1 u u > ta2 þ p > 1 þ aA þ it @ta2 þ p 1 aA > > t2 t 2 t > > > > > > > > 1 > > rt r1 > < 1þ p2  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x3 ðtÞ ¼ v vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ffi v u 0u u 0u > rffiffiffiffiffiffiffiffiffiffi!2 rffiffiffiffiffiffiffiffiffiffi!2 1 > u u > > u1@u 1 1 u1@u > t t 2 2 A A > t a þ p a þ p 1 þ a it 1 a > > t 2 t > 2 > > > > > > > 1 > > > : 0r t o 1 þ p2

ð42Þ

u2

0 A2

B2

Fig. 4. The image S2 (non-shaded region) of mapping x2 ðZÞ ¼ o 1, Z A S0 .

pffiffiffiffiffiffiffiffiffiffi Za, 0 o a

for p o 0:

y

0

AB1 ðAB2 Þ A S1 (see Fig. 6), where A ¼ ðu3A ,v3A Þ, and:

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 v u 0v u 0v rffiffiffiffiffiffiffiffiffiffiffi!ffi2 rffiffiffiffiffiffiffiffiffiffiffi!ffi2 1 u u u u u u u 1 1 1 @u 1 þ t t 2 2 @ A t t 1 þ a þ i 1 aA x3 ðtÞ ¼ a þ pþ a þ pþ 2 t 2 t

A1

−a1/2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z þ a þ ip,

1 Q

1/(1−a2) R

x

8 vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ffi v u 0v u 0v > rffiffiffiffiffiffiffiffiffiffi!2 rffiffiffiffiffiffiffiffiffiffi!2 1 u u > u > >u 1@u 1 1@u 1 u u > t t 2 2 A A > a þ pþ a þ pþ 1 þ a þ it 1 a > > t2 t 2 t > > > > > > > > 1 > > > < 0 r t o 1 þ p2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi x3 ðtÞ ¼ v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ffi v u 0v u 0v >u rffiffiffiffiffiffiffiffiffiffi!2 rffiffiffiffiffiffiffiffiffiffi!2 1 u u > u > > 1@u 1 1 u1@u >u t t 2 þ pþ 2 þ pþ A A > t t a a þ a i a 1 1 > > 2 t 2 t > > > > > > > > 1 > > > : 1 þ p2 r t r 1,

ð43Þ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0v ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1ffi u rffiffiffiffiffiffiffiffiffiffi!2 1 u 0v u rffiffiffiffiffiffiffiffiffiffi!2 u u u u1@u 1 u1@u 1  t 2 t 2 1 aA x3 ðtÞ ¼ t a þ p 1 þaAit a þ p 2 t 2 t Fig. 5. The complex plane C with the cut L ¼ ½01=ð1a2 Þ, 0o ao 1.

0 rt r 1

ð44Þ

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134 þ

x3þ ð1Þ ¼ þ1 x 3 ð1Þ

ð45Þ

f3 ðzÞ ¼ f31 ðzÞf32 ðzÞ

f32 ðzÞ ¼

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi pffiffiffiffi ZðzÞ þ m e

Lemma 3 . If e o 0, then the set of discontinuity points of the function f3 ðzÞ is [0, b], and the boundary values f3 þ ðtÞ, f3 ðtÞ are þ  calculated by using (41)–(44) in which x3 ðtÞ, x3 ðtÞ, a, 1/t are þ  respectively replaced by x3 ðtÞ, x3 ðtÞ, a , b=t and

ð48Þ

for the second possibility, f3þ ðtÞ, f3 ðtÞ are calculated by using (38) and f3þ ð0Þ ¼ 1, f3 ð0Þ

f3þ ð1=ð1a2 ÞÞ ¼1 f3 ð1=ð1a2 ÞÞ

ð49Þ

Case 2: eo 0: If eo 0, then f3(z) takes the form (46) where qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffi ð50Þ f31 ðzÞ ¼ ZðzÞ þ m þi jej, f32 ðzÞ ¼ ZðzÞ þ mi jej The function f31 ðzÞ (f32 ðzÞ) is therefore the function x3 ðZðzÞÞ with pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffi pffiffiffiffiffiffi a ¼ m 4 0, p ¼ jej (a ¼ m, p ¼  jej). From the results of Section 3.2.4, one can see that: Lemma 3. If eo 0, then the set of discontinuity points of the function f3(z) is [0, 1], and the boundary values f3þ ðtÞ, f3 ðtÞ are calculated by using (41)–(44) and f3þ ð0Þ f3 ð0Þ

¼ 1,

f3þ ð1Þ f3 ð1Þ

¼1

f3 þ ðb=ð1a2 ÞÞ ¼1 f3 ðb=ð1a2 ÞÞ

ð47Þ

Lemma 2. If eZ 0, then the set of discontinuity points of the pffiffiffi pffiffiffiffiffi function f3(z) is either [0, 1] or ½0,1=ð1a2 Þ (0 o a ¼ e m o 1), þ and for the first possibility, the boundary values f3 ðtÞ, f3 ðtÞ are calculated by using (35) and f3þ ð1Þ ¼1 f3 ð1Þ

ð52Þ

f3 þ ð0Þ ¼ 1, f3 ð0Þ

It is readily seen that f31(z) is the function x1 ðZðzÞÞ with pffiffiffiffiffi pffiffiffi a ¼ m þ e 40 (noting that m 4 0, see, for example (2.10a, b) pffiffiffiffiffi pffiffiffi in [14]). If m e Z0 then f32(z) is the function x1 ðZðzÞÞ with pffiffiffiffiffi pffiffiffi a ¼ m e Z 0, otherwise it is the function x2 ðZðzÞÞ with pffiffiffi pffiffiffiffiffi pffiffiffiffiffiffi a ¼ e m, 0 o a o1. Note that, since ag þ b 4 0 (see [14, pffiffiffi pffiffiffiffiffi (2.10c)]), it follows that a ¼ e m o 1. As the set of discontinuity points of the functions x1 ðZðzÞÞ and x2 ðZðzÞÞ are respectively the intervals [0, 1] and ½0,1=ð1a2 Þ as shown above in Sections 3.2.2 and 3.2.3, we have the following conclusion:

f3þ ð0Þ ¼ 1, f3 ð0Þ

f3 þ ðbÞ ¼1 f3 ðbÞ

ð46Þ

where qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffi pffiffiffiffi ZðzÞ þ m þ e,

f3 þ ð0Þ ¼ 1, f3 ð0Þ

for the second possibility, f3 þ ðtÞ, f3 ðtÞ are calculated by using (38) in þ  þ  which x2k ðtÞ, x2k ðtÞ, a, 1=t are respectively replaced by x2k ðtÞ, x2k ðtÞ, a , b/t and:

3.2.5. The set of discontinuity points of f3(z) Case 1: eZ 0: If eZ 0, from (31) it follows:

f31 ðzÞ ¼



are calculated by using (35) in which x1 ðtÞ, x1 ðtÞ, a, 1/t are þ  respectively replaced by x1 ðtÞ, x1 ðtÞ, a , b/t and

From (41)–(44) we have

x3þ ð0Þ ¼ eip=2 , x 3 ð0Þ

133

f3 þ ð0Þ ¼ 1, f3 ð0Þ

f3 þ ðbÞ ¼1 f3 ðbÞ

ð53Þ

ð54Þ

pffiffiffiffiffiffiffi pffiffiffiffiffi Remark 2 . (i) If either e o0 or e Z 0 and m  e Z 0, then  f3 ðzÞ is discontinuous on [0, b], otherwise (i.e. e Z 0 and pffiffiffiffiffiffiffi pffiffiffiffiffi it is discontinuous on ½0,1=ð1a2 Þ m  e o 0) pffiffiffiffiffi pffiffiffiffiffiffiffi (0 oa ¼ e  m o1). (ii) When f3 ðzÞ is discontinuous on [0, b], we have the evaluations (52) at the end of this interval, when it is discontinuous on ½0,1=ð1a2 Þ, the evaluations (53) hold. 3.2.7. The set of discontinuity points of f(z) From Lemmas 1–3, 2 ,3 , (30) and taking into account the fact 0 o br 1 we have Proposition 5. (i) The set L of discontinuity points of f(z) is one of the three following intervals: [0, 1], ½0,1=ð1a2 Þ, ½0,b=ð1a2 Þ, pffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffiffiffi where 0 o a ¼ e m o 1, 0 oa ¼ e  m o1.  For the first possibility: f3þ ð1Þ f þ ð0Þ ¼ 1, ¼1  f ð0Þ f3 ð1Þ

ð55Þ

 For the second possibility: f þ ð0Þ ¼ 1, f  ð0Þ

f3þ ð1=ð1a2 ÞÞ ¼1 f3 ð1=ð1a2 ÞÞ

ð56Þ

 For the last possibility: f þ ð0Þ ¼ 1, f  ð0Þ

f3þ ðb=ð1a2 ÞÞ ¼1 f3 ðb=ð1a2 ÞÞ

ð57Þ

ð51Þ

Remark 2. From Lemmas 2 and 3 it follows that: pffiffiffiffiffi pffiffiffi (i) If either e o0 or e Z 0 and m e Z 0, then f3 ðzÞ is discontinpffiffiffiffiffi pffiffiffi uous on [0, 1], otherwise (i.e. e Z 0 and m e o0) it is pffiffiffi pffiffiffiffiffi 2 discontinuous on ½0,1=ð1a Þ (0 o a ¼ e m o 1). (ii) When f3 ðzÞ is discontinuous on [0, 1], we have the evaluations (48) at the ends of this interval, when it is discontinuous on ½0, 1=ð1a2 Þ, the evaluations (49) hold. f3 ðzÞ

3.2.6. The set of discontinuity points of For f3 ðzÞ we have the results similar to Lemmas 2 and 3 for f3(z), in which m, n, e, a, f3(z) are replaced by m , n , e , a , f3 ðzÞ. In particular, we have: Lemma 2 . If e Z0, then the set of discontinuity points of the pffiffiffiffiffi pffiffiffiffiffiffiffi function f3 ðzÞ is either [0, b] or ½0,b=ð1a2 Þ (0 o a ¼ e  m þ o1), and for the first possibility, the boundary values f3 ðtÞ, f3 ðtÞ

(ii) The boundary values f þ ðtÞ and f  ðtÞ are calculated by the formulas mentioned in Lemmas1–3, 2 , 3 . 3.3. The proof of Proposition 4 From (29)–(31) and Proposition 5, it is not difficult to see that: Proposition 6. The function f(z) has the properties: (f1) f ðzÞ A HðSÞ, S ¼ fz A C, z= 2Lg, L is one of the three intervals: [0, 1], pffiffiffi pffiffiffiffiffi pffiffiffiffiffi ½0,1=ð1a2 Þ, ½0, b=ð1a2 Þ, 0 oa ¼ e m o1, 0 o a ¼ e  pffiffiffiffiffiffiffi m o 1. (f2) f(z) is bounded in N(1), Nð1=ð1a2 ÞÞ and Nðb=ð1a2 ÞÞ. (f3) f ðzÞ ¼ Oðz1=2 Þ as z-0. (f4) f ðzÞ ¼ OðA1 z þA0 Þ as jzj-1 (A0 ,A1 are constant). (f5) f(z) is continuous on L from the right and from the left with the boundary values f þ ðtÞ, f  ðtÞ that are calculated by the formulas mentioned in Lemmas1–3, 2 , 3 .

134

P.C. Vinh, P. Thi Ha Giang / International Journal of Non-Linear Mechanics 47 (2012) 128–134

Following the same procedure carried out in Section 2 we arrive at the following propositions:

References

Proposition 7. Eq. (30) is equivalent to equation P(z)¼0 in the region S [ ftwo ends of Lg, where P(z) is a first-order polynomial of z whose coefficients do not vanish simultaneously, i.e:

[1] R. Stoneley, Elastic waves at the surface of separation of two solids, Proc. R. Soc. London A (1924) 416–428. [2] K. Sezawa, K. Kanai, The range of possible existence of Stoneley waves, and some related problems, Bull. Earthq. Res. Inst. Tokyo Univ. 17 (1939) 1–8. [3] J.G. Scholte, On the Stoneley wave equation, Proc. Kon. Acad. Sci. Amsterdam 45 (1942) 159–164. [4] J.G. Scholte, The range of existence of Rayleigh and Stoneley waves, Mon. Not. R. Astron. Soc. Geophys. Suppl. 5 (1947) 120–126. [5] D.M. Barnett, J. Lothe, S.D. Gavazza, M.J.P. Musgrave, Consideration of the existence of interfacial (Stoneley) waves in bonded anisotropic elastic halfspaces. Proc. R. Soc. London A 412 (1985) 153–166. [6] A.N. Stroh, Steady state problems in anisotropic elasticity, J. Math. Phys. 41 (1962) 77–103. [7] T.C. Lim, M.J.P. Musgrave, Nature 225 (1970) 372. [8] D.A. Lee, D.M. Corbly, IEEE Trans. Sonics Ultrason. 24 (1977) 206–212. [9] S. Rokhlin, M. Hefet, M. Rosen, J. Appl. Phys. 51 (1980) 3579–3582. [10] P. Chadwick, D.A. Jarvis, Interfacial waves in a pre-strain neo-Hookean body I. Biaxial state of strain, Q. J. Mech. Appl. Math. 32 (1979) 387–399. [11] P. Chadwick, D.A. Jarvis, Interfacial waves in a pre-strain neo-Hookean body II. Triaxial state of strain, Q. J. Mech. Appl. Math. 32 (1979) 401–418. [12] A. Dasgupta, Effect of high initial stress on the propagation of Stoneley waves at the interface of two isotropic elastic incompressible media, Indian J. Pure Appl. Math. 12 (1981) 919–926. [13] J. Dunwoody, Elastic interfacial standing waves, in: M.F. McCarthy, M.A. Hayes (Eds.), Elastic Waves PropagationNorth-Holland, Amsterdam, 1989, pp. 107–112. [14] M.A. Dowaikh, R.W. Ogden, Interfacial waves and deformations in prestressed elastic media, Proc. R. Soc. London A 433 (1991) 313–328. [15] R.W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984. [16] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff-Groningen, 1953. [17] N.I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Netherlands, 1963.

PðzÞ ¼ A^ 1 z þ A^ 0 ,

2 2 A^ 0 þ A^ 1 a0

ð58Þ

Proposition 8. Equation P(z)¼0 has at most one solution in the complex plane C. Proposition 4 is deduced immediately from Propositions 7 and 8, and the fact that Eq. (30) has no solution in the set of internal points of L due to the discontinuity of f(z) in this set. The proof of Proposition 4 is completed.

4. Conclusions In this paper, the uniqueness question of Stoneley waves propagating along the bonded interface of two pre-stressed incompressible elastic half-spaces has been settled for the general case. To this end the authors have employed the complex function method, and showed that in the complex plane the secular equation of Stoneley waves in pre-stressed incompressible elastic half-spaces has at most one solution. This yields immediately that if a Stoneley wave exists, then it is unique.

Acknowledgment The work was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant no. 107.02-2010.07.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.