trazo de carreteras

Share Embed


Descripción

Applied Mathematics and Computation 190 (2007) 866–881 www.elsevier.com/locate/amc

Segmented Tau approximation for a parametric nonlinear neutral differential equation Luis F. Cordero a

a,*

, Rene´ Escalante

b,1

Depto. de Matema´tica y Estadı´stica, Facultad de Ciencias Econo´micas y Sociales, Universidad de Carabobo, Maracay, Venezuela Depto. de Co´mputo Cientı´fico y Estadı´stica, Divisio´n de Ciencias Fı´sicas y Matema´ticas, Universidad Simo´n Bolı´var, Ap. 89000, Caracas 1080-A, Venezuela

b

Abstract The segmented formulation of the Tau method is used to approximate the solutions of the parametric nonlinear neutral differential equation y 0 ðtÞ ¼ ryðtÞða þ byðt  sÞ þ cy 0 ðt  sÞÞ; yðtÞ ¼ WðtÞ;

t P 0;

t 6 0;

which represents, for different values of the parameters r, a, b, c and s, a family of functional differential equations with some of its members arising in areas as different as the number theory, mathematical biology, and population dynamics. For this equation no closed form of analytical solution is available. The numerical results obtained are consistent with the theoretical and practical results reported elsewhere.  2007 Elsevier Inc. All rights reserved. Keywords: Delay differential equations; Functional differential equations; Neutral differential equations; Polynomial approximations; Step by step Tau method approximation

1. Introduction In this paper the segmented Lanczos-Tau method is used to find numerical solutions of the nonlinear functional differential problem of neutral type y 0 ðtÞ ¼ ryðtÞða þ byðt  sÞ þ cy 0 ðt  sÞÞ; yðtÞ ¼ WðtÞ;

t P 0;

t 6 0;

*

ð1Þ

Corresponding author. E-mail addresses: [email protected] (L.F. Cordero), [email protected] (R. Escalante). 1 This author was partially supported by the Centro de Estadı´stica y Software Matema´tico (CESMa) and the Decanato de Investigacio´n y Desarrollo (DID) at USB, project DI-CB-020-05. 0096-3003/$ - see front matter  2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.01.081

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

867

where r 6¼ 0; b 6¼ 0; s > 0 and W is a continuous function in ½s; 0. Eq. (1) has as particular cases some known neutral and delay differential equations. For example, if in this equation we take • r > 0; b ¼ 1, and replace c by c ðc > 0Þ, we obtain the neutral delay logistic equation y 0 ðtÞ ¼ ryðtÞða  yðt  sÞ  cy 0 ðt  sÞÞ;

t P 0;

which arises in a food-limited population model [1,2]. • r ¼ 1; c ¼ 0, and replace b by b ðb > 0Þ, we obtain the delay logistic equation y 0 ðtÞ ¼ ða  byðt  sÞÞyðtÞ;

t P 0;

which arises in population dynamics [2,3]. Let us notice that if in this last equation we take b ¼ 1; s ¼ 1 and do xðtÞ ¼ a1 yðtÞ  1, we obtain the delay differential equation x0 ðtÞ ¼ axðt  1Þ½1 þ xðtÞ;

tP0

that arises in the study of population dynamics [3] and the prime number distributions [4]. Since for Eq. (1) no closed form of analytical solution is available (and in particular for none of the equations of the examples above mentioned), we obtain polynomial approximations to its solutions by applying a spectral technique, the step by step Tau method with the adopted approach in the papers [3,5,6]. These seem to show that the segmented Tau method is a natural and promising strategy in the numerical solution of neutral and delay differential equations. Lanczos’ work [7] provides the background of the Tau method, likewise papers by Ortiz [8,9] provide the background of the recursive form of the Tau method and the step by step Tau method (or SST method to abbreviate). In [5] a brief sketch of the recursive formulation of the Tau method and the SST method is given. For a review of some basic concepts concerning neutral and delay differential equations we refer to [10,11]. In the Tau method, a perturbator polynomial is introduced into the differential equation and from the perturbed equation an exact polynomial solution is obtained (Tau solution). This solution is a approximation to the solution of the original differential equation. In the segmented version of the Tau method (the SST method), the interval under consideration is divided into subintervals and the Tau method is applied separately in each subinterval. The Tau solution obtained in one interval is used as an input in the next interval. In [5,6] the differential equation in each one of the subintervals is shifted to a corresponding equation in the interval [0, 1] (we apply this strategy here). This way, a sequence of differential equations defined in [0, 1] is established with the Tau solution for each equation providing information to its successor. Lanczos in [12] established that the use of a perturbator polynomial defined in terms of the Legendre polynomials, leads to obtain accurate estimations at the end points of the interval in which the original problem is given. This is the key fact to construct the step by step formulation of the Tau method in which the error is minimized at the matching point of the successive steps [9]. In light of this fact, in this paper we will define the perturbator polynomial in terms of the Legendre polynomials. This paper is organized as follows: in Section 2, we find the piecewise polynomial approximation of the involved neutral problem using the Lanczos-Tau method, and we solve the outlined parametric nonlinear neutral differential problem using the recursive formulation of the Tau method. In Section 3, we present preliminary numerical experimentation to illustrate the advantages of the proposed strategy. To conclude, in Section 4, we present some final remarks. 2. Solving the parametric neutral equation using the segmented formulation We will use the following notation. The symbol I will denote the unit interval [0, 1] and, for each integer k, k P 1, the interval ½ks; ðk þ 1Þs will be denoted by I k . Motivated by recent work [3,5,6] we consider the application of the segmented Tau method approach to problem (1). In particular, we apply the strategy used in [5,6] according to which the differential in each Ik is shifted to a corresponding equation in I and each new problem obtained this way is solved separately, but taking into account the information from the previous equation.

868

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

Starting with the shift of the continuous function W given in ½s; 0 to I, which is a polynomial function (otherwise, we will consider a polynomial approximation of W), the method generates a polynomial defined in I that approximates the solution of (1) in I0. With this last polynomial a polynomial defined in I is generated that approximates the solution of (1) in I1. We proceed in similar fashion into subsequent intervals I k ; k P 2. To match the polynomial approximations obtained, there are conditions imposed at endpoints of their domain. Thus, Eq. (1) is defined over ½0; 1Þ in a piecewise manner. It is clear that if t 2 ½s; 1Þ, then t 2 I k , for some k P 1. Hence, t ¼ sðx þ kÞ, with x 2 I. Then, we can define y k ðxÞ ¼ yðsðx þ kÞÞ ¼ yðtÞ; x 2 I; k P 0; y 1 ðxÞ ¼ wðsðx  1ÞÞ; x 2 I; where w is the same function W given in (1) when this is a polynomial, or a polynomial approximation in ½s; 0 of W if it is not a polynomial. Thus, (1) leads to the sequence of differential equations y 0k ðxÞ  rðas þ bsy k1 ðxÞ þ cy 0k1 ðxÞÞy k ðxÞ ¼ 0; y 1 ðxÞ ¼ wðsðx  1ÞÞ; x 2 I

x 2 I; k P 0;

ð2Þ

and to match the solutions, at the endpoints of the intervals, we impose the conditions y k ð0Þ ¼ y k1 ð1Þ;

ð3Þ

k P 0:

Let n be a fixed integer greater or equal than the degree of w (n is the desired degree for the approximating polynomials that we seek). For each k P 0, let us consider the following perturbed form of Eq. (2): Y 0k ðxÞ  rðas þ bsY k1 ðxÞ þ cY 0k1 ðxÞÞY k ðxÞ ¼ H ðkÞ n ðxÞ;

x 2 I;

ð4Þ

where Y k1 ðxÞ, k P 1, is the polynomial solution of the previous differential equation. Here, Y 1 ðxÞ ¼ wðsðx  1ÞÞ for all x 2 I, and the perturbation term H ðkÞ n ðxÞ is defined in terms of the shifted Legendre polynomial in I, P n ðxÞ, as ! gk X ðkÞ i ðkÞ H n ðxÞ ¼ si x P n ðxÞ i¼0

with gk ð0 6 gk 6 nÞ denoting the degree of Y k1 ðxÞ (gk will have the same meaning in the rest of the paper). We note here that one of the motives for the choice of this particular form of H ðkÞ n ðxÞ is to obtain (if possible) the polynomials Y k ðxÞ ðk P 0Þ to be of degree n. Remark 1. Eq. (4) is considered only while Y k1 ðxÞ does not have the constant value ab1 in I. When Y k1 ðxÞ ¼ ab1 , for all x 2 I, Eq. (4) is not solved anymore. This is because in this case, if we do y k1 ðxÞ ¼ ab1 in (2), then it is easy to establish that the exact polynomial solution of (2) is y k ðxÞ ¼ ab1 , for all x 2 I. If we apply the same procedure successively, it is followed that for all j P k  1, the exact polynomial solution of (2) is y j ðxÞ ¼ ab1 ; x 2 I: ðnÞ

ðnÞ

We denote by C 0 ; C 1 ; . . . ; C nðnÞ the coefficients of the shifted Legendre polynomial P n ðxÞ. Using properties of polynomials multiplication to the expression ! ! gk n X X ðkÞ i ðnÞ v ðkÞ si x Cv x H n ðxÞ ¼ i¼0

v¼0

we have H ðkÞ n ðxÞ

¼

gk i X X i¼0

v¼0

! ðnÞ sðkÞ v C iv

i

x þ

ng Xk

gk X

i¼1

v¼0

! ðnÞ sðkÞ v C gk þiv

x

gk þi

Next, for each k P 0, we define the linear differential operator DðkÞ ðÞ :¼

d ðÞ  rðas þ bsY k1 ðxÞ þ cY 0k1 ðxÞÞðÞ dx

þ

gk X

ni X

i¼1

v¼ngk

! ðnÞ sðkÞ nv C iþv

xnþi :

ð5Þ

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

869

thus, with this definition and from (5), for each k P 0: the perturbed equation (4) becomes DðkÞ Y k ðxÞ ¼

gk i X X i¼0

! ðnÞ sðkÞ v C iv

xi þ

v¼0

ng Xk

gk X

i¼1

v¼0

! ðnÞ sðkÞ v C gk þiv

xgk þi þ

gk X

ni X

i¼1

v¼ngk

! ðnÞ sðkÞ nv C iþv

xnþi ;

x 2 I:

ð6Þ

In the following, we will suppose that the polynomials that we seek are of the form: Y k ðxÞ ¼

n X

ðkÞ

aj x j ;

k P 1

j¼0

and to be in concordance with (3), they are subject to the conditions Y k ð0Þ ¼ Y k1 ð1Þ;

ð7Þ

k P 0:

We now follow the recursive formulation presented by Ortiz [8]. We define a set of canonical polynomials ðkÞ m fQðkÞ by means of the relation DðkÞ QðkÞ m ðxÞg associated with D m ðxÞ ¼ x ; m P 0. Due to Remark 1, we assume that Y k1 ðxÞ does not have the constant value ab1 in I. By applying the operator DðkÞ to xm, we have   d m ðx Þ  r as þ bsY k1 ðxÞ þ cY 0k1 ðxÞ ðxm Þ dx ! gk gX k 1 X ðk1Þ j ðk1Þ j m1  r as þ bs aj x þ c ðj þ 1Þajþ1 x xm : ¼ mx

DðkÞ xm ¼

j¼0

ð8Þ

j¼0

Here we will distinguish two cases (depending of the degree of Y k1 ðxÞ): gk ¼ 0 and gk 6¼ 0: • For gk ¼ 0, from (8) and the linearity of DðkÞ , it is followed that: h i ðk1Þ m DðkÞ xm ¼ mxm1  rs a þ ba0 x h i ðkÞ ðk1Þ ¼ mDðkÞ Qm1 ðxÞ  rs a þ ba0 DðkÞ QðkÞ m ðxÞ   h i ðkÞ ðk1Þ ðxÞ ¼ DðkÞ mQm1 ðxÞ  rs a þ ba0 QðkÞ m thus, h i ðkÞ ðk1Þ xm ¼ mQm1 ðxÞ  rs a þ ba0 QðkÞ m ðxÞ ðk1Þ

and since a0

¼ Y k1 ðxÞ 6¼ ab1 , we obtain the following recursive definition of the canonical polynomials:

QðkÞ m ðxÞ ¼ 

1 rs½a þ

ðkÞ

ðk1Þ ba0 

ðxm  mQm1 ðxÞÞ;

m P 0:

By induction on m this last relation reduces to QðkÞ m ðxÞ ¼ 

m X

m! ðk1Þ

rs½a þ ba0



1 ðk1Þ

j¼0

j!ðrs½a þ ba0

Þmj

xj ;

m P 0:

ð9Þ

870

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

• For gk 6¼ 0, from (8) and the linearity of DðkÞ , it is followed that: h i ðk1Þ ðk1Þ m þ ca1 DðkÞ xm ¼ mxm1  r as þ bsa0 x 

gX k 1

h i ðk1Þ ðk1Þ r bsaj þ cðj þ 1Þajþ1 xjþm  rbsaðk1Þ xgk þm gk

j¼1 ðkÞ

ðk1Þ

ðk1Þ

¼ mDðkÞ Qm1 ðxÞ  r½as þ bsa0 þ ca1 DðkÞ QðkÞ m ðxÞ gX 1 h i k ðk1Þ ðk1Þ ðkÞ  r bsaj þ cðj þ 1Þajþ1 DðkÞ Qjþm ðxÞ  rbsaðk1Þ DðkÞ QðkÞ gk þm ðxÞ gk j¼1 ðkÞ

ðk1Þ

¼ DðkÞ mQm1 ðxÞ  r½as þ bsa0 

gX k 1

ðk1Þ

þ ca1

QðkÞ m ðxÞ !

ðk1Þ r½bsaj

ðk1Þ ðkÞ 1Þajþ1 Qjþm ðxÞ

þ cðj þ



rbsaðk1Þ QðkÞ gk þm ðxÞ gk

j¼1

thus, ðkÞ

ðk1Þ

xm ¼ mQm1 ðxÞ  r½as þ bsa0 

gX k 1

ðk1Þ

r½bsaj

ðk1Þ

þ ca1 ðk1Þ

QðkÞ m ðxÞ

ðkÞ

þ cðj þ 1Þajþ1 Qjþm ðxÞ  rbsaðk1Þ QðkÞ gk þm ðxÞ: gk

j¼1

From this last expression we obtain the following recursive definition of the canonical polynomials: QðkÞ gk þm ðxÞ ¼  þ

1

ðkÞ

ðk1Þ

rbsagk gX k 1

ðk1Þ

xm  mQm1 ðxÞ þ r½as þ bsa0

ðk1Þ

þ ca1

QðkÞ m ðxÞ

!

ðk1Þ r½bsaj

þ cðj þ

ðk1Þ ðkÞ 1Þajþ1 Qjþm ðxÞ

;

ð10Þ

m P 0:

j¼1 ðkÞ

ðkÞ

ðkÞ

Note that the first gk canonical polynomials Q0 ðxÞ; Q1 ðxÞ; . . . ; Qgk 1 ðxÞ remain undefined. If we denote  1ðk1Þ by cðkÞ and if for all s P 0 rbsag k 8 ðkÞ ; j ¼ s  1; sc > < ðk1Þ ðk1Þ ðkÞ þ ca1 ; j ¼ s; aj;s ¼ rcðkÞ ½as þ bsa0 > : ðkÞ ðk1Þ ðk1Þ rc ½bsajs þ cðj  s þ 1Þajsþ1 ; j ¼ s þ 1 ð1Þ s þ gk  1; then the recursive expression (10) becomes ðkÞ m QðkÞ gk þm ðxÞ ¼ c x þ

gkX þm1

ðkÞ

ðkÞ

aj;m Qj ðxÞ;

ð11Þ

m P 0:

j¼m1 ðkÞ For each m P 0, we define bðkÞ m;m ¼ 1 and bm;s , for s ¼ m  1; m  2; . . . ; 0, in terms of the following decreasing recursive forms: w1 X ðkÞ bðkÞ agk þsþj;wþs bðkÞ s ¼ m  1 ð1Þ 0; m;s ¼ m;wþsj ; j¼0

where w ¼ minfm  s; gk þ 1g. With this, we can establish the following proposition. ðkÞ

Proposition 1. For each m P 0, if Qgk þm ðxÞ is given by (11), then ! min fm2;g gX jþ1 m k 1 X X k 1g X ðkÞ ðkÞ ðkÞ ðkÞ s ðkÞ ðkÞ Qgk þm ðxÞ ¼ c bm;s x þ aj;s bm;s Qj ðxÞ þ s¼0

j¼0

s¼0

j¼m1

m X s¼0

! ðkÞ aj;s bðkÞ m;s

ðkÞ

Qj ðxÞ; m P 0:

ð12Þ

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

Proof. It follows by induction on m.

871

h ðkÞ

We point out that the practical utility of (12) lies in that it defines any canonical polynomial Qj ðxÞ, j P gk , only in terms of the first gk canonical polynomials. The exact polynomial solution of the perturbed equation (6), for each k P 0, is set to be ! ! ! gk ng gk gk i ni X X X Xk X X ðkÞ ðkÞ ðnÞ ðkÞ ðkÞ ðnÞ ðkÞ ðnÞ ðkÞ Y k ðxÞ ¼ sv C iv Qi ðxÞ þ sv C gk þiv Qgk þi ðxÞ þ snv C iþv Qnþi ðxÞ; i¼0

i¼1

v¼0

v¼0

i¼1

v¼ngk

x 2 I:

ð13Þ

Note that applying the operator DðkÞ to both sides of (13), Eq. (6) is retrieved. For any k P 0, two possibilities exist (i) gk ¼ 0. (ii) gk P 1. ðkÞ

Case (i). The unknown s0 was introduced in order to account for the initial condition imposed at x ¼ 0 given in (7). Thus, we have Theorem 2. If gk ¼ 0, the exact polynomial solution of the perturbed equation (6), comes given by Y k ðxÞ ¼ 

ðk1Þ

rs½a þ ba0



!

ðnÞ

n n X X

ðkÞ

s0

C j j! ðk1Þ

j¼i

i¼0

i!ðrs½a þ ba0

xi ;

Þji

x 2 I;

ð14Þ

where ðkÞ s0

¼ rs½a þ

ðk1Þ ba0 Y k1 ð1Þ

!1

ðnÞ

n X

C j j!

j¼0

ðrs½a þ ba0

ðk1Þ

Þj

:

Proof. By taking gk ¼ 0 in (13) and after using (9) in the expression that is obtained, we have n X ðkÞ

Y k ðxÞ ¼ s0

i¼0

0 1 ðnÞ n i X X C i i! B C ðnÞ ðkÞ i C i Qi ðxÞ ¼  h @  h iij xj A ðk1Þ ðk1Þ rs a þ ba0 i¼0 j¼0 j! rs a þ ba 0 ðkÞ s0

Pn Pi Pn Pn and since i¼0 ð j¼0 Aij xj Þ ¼ i¼0 ð j¼i Aji Þxi (where Aij denotes the ijth element in an array), (14) follows. ðkÞ Finally, due to (7), we obtain s0 by setting x ¼ 0 in (14) and solving for this unknown the equation Y k ð0Þ ¼ Y k1 ð1Þ: h ðkÞ

Case (ii). The gk þ 1 unknowns sj were introduced in order to account for the initial condition imposed at ðkÞ ðkÞ x ¼ 0 given in (7) in addition to the gk undefined canonical polynomials. Due to this, s0 ; s1 ; . . . ; sðkÞ gk are calculated, solving the linear system with gk þ 1 equations Y k ð0Þ ¼ Y k1 ð1Þ coefficient of Q0 ðxÞ ¼ 0 coefficient of Q1 ðxÞ ¼ 0 .. . coefficient of Qgk 1 ðxÞ ¼ 0: Thus, we can establish the following theorem.

872

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

Theorem 3. If gk P 1, the exact polynomial solution of the perturbed equation (6), comes given by " ng !# ng gk ng v Xk ðkÞ ðnÞ Xk ðkÞ ðnÞ Xk X X ðkÞ ðnÞ ðkÞ Y k ðxÞ ¼ cðkÞ s0 bj;i C gk þj þ sðkÞ bj;i C gk þjv þ bngk þj;i C nþjv xi v j¼i

i¼0

þ

"

n X

cðkÞ

gk X

v X

sðkÞ v

v¼iþgk n

i¼ngk þ1

j¼i

v¼1

j¼1

!# ðnÞ

bðkÞ ngk þj;i C nþjv

xi ;

x 2 I;

ð15Þ

j¼iþgk n

ðkÞ

where the sj ’s are obtained according to the following: • When, 2gk 6 n  1, the linear system of equations is solved ng Xk

! ðkÞ ðnÞ bj;0 C gk þj

ðkÞ s0

þ

gk ng Xk X

j¼0

v¼1

ðkÞ ðnÞ bj;0 C gk þjv

v X

þ

j¼0

! ðkÞ ðnÞ bngk þj;0 C nþjv

sðkÞ v ¼

j¼1

Y k1 ð1Þ cðkÞ

For each i ¼ 0 ð1Þ gk  1 : " ðnÞ Ci

þ

þ

ðkÞ C gðnÞ ai;0 k

i X

j iþ1 X X

þ

ðnÞ C iv

þ

ðkÞ C ðnÞ gk v ai;0

v¼1 ng Xk

iþ1 X

j¼iþ2

s¼0

þ

þ

j iþ1 X X

þ

v iþ1 X X j¼1

! ðkÞ ai;s bðkÞ j;s

þ

sðkÞ v þ

ðnÞ

C gk þjv þ ai;s bðkÞ j;s

ðnÞ C nþjv

ðkÞ C gðnÞ a k v i;0

ng Xk

iþ1 X

j¼iþ2

s¼0

ðkÞ

s0

þ

j iþ1 X X

þ

v iþ1 X X j¼1

! ðkÞ

! ðkÞ ai;s bðkÞ j;s

s¼0

j¼1

"

gk X

# ðnÞ C gk þj

s¼0

v¼iþ1

!

! ðkÞ ai;s bðkÞ j;s

!

ðkÞ ai;s bðkÞ ngk þj;s

s¼0

#

ðnÞ C gk þjv

ðkÞ

iþ1 X

ng Xk j¼iþ2

s¼0

j¼1

ðnÞ C gk þj

s¼0

j¼1

"

! ðkÞ ai;s bðkÞ j;s

ðnÞ

C gk þjv

!

ðkÞ ai;s bðkÞ ngk þj;s

ðnÞ

C nþjv

s¼0

#

ðnÞ

C gk þjv sðkÞ ai;s bðkÞ j;s v ¼ 0

• When, 2gk > n  1, the linear system of equations is solved ng Xk

! ðkÞ ðnÞ bj;0 C gk þj

ðkÞ s0

þ

gk ng Xk X

j¼0

v¼1

ðkÞ ðnÞ bj;0 C gk þjv

v X

þ

j¼0

! ðkÞ ðnÞ bngk þj;0 C nþjv

sðkÞ v ¼

j¼1

Y k1 ð1Þ cðkÞ

For each i ¼ 0 ð1Þ n  gk  2 : " ðnÞ Ci

þ

þ

ðkÞ C gðnÞ ai;0 k

i X

j iþ1 X X

þ

j¼1

" ðnÞ C iv

þ

þ

þ

iþ1 X

j¼iþ2

s¼0

j iþ1 X X

ðkÞ C ðnÞ gk v ai;0

j¼1

s¼0

þ

þ

ðkÞ ai;s bðkÞ j;s

ng Xk j¼iþ2

v iþ1 X X j¼1

!

ðnÞ C gk þjv

ðkÞ ai;s bðkÞ ngk þj;s

s¼0

#

sðkÞ v

þ

gk X

ðnÞ

ai;s bðkÞ C gk þjv þ j;s

ng Xk

iþ1 X

j¼iþ2

s¼0

iþ1 X

! ðkÞ ai;s bðkÞ j;s

# ðnÞ C gk þj

ðnÞ C nþjv

þ

j iþ1 X X j¼1

ðkÞ C gðnÞ a k v i;0

þ

v iþ1 X X j¼1

! ðkÞ

ðkÞ

s0

s¼0

!

"

v¼iþ1

! ðkÞ

ðnÞ C gk þj

s¼0

v¼1 ng Xk

! ðkÞ ai;s bðkÞ j;s

ðnÞ

#

! ðkÞ ai;s bðkÞ j;s

s¼0 ðkÞ ai;s bðkÞ ngk þj;s

s¼0

ai;s bðkÞ C gk þjv sðkÞ j;s v ¼ 0

ðnÞ

C gk þjv

! ðnÞ

C nþjv

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

For i ¼ n  gk  1: " ðnÞ Ci

þ

ðkÞ C gðnÞ ai;0 k

þ

ngk j X X j¼1

þ þ

ng Xk

j X

j¼1

s¼0

ng Xk

j X

j¼1

s¼0

!

ðkÞ

! ðkÞ ai;s bðkÞ j;s

s¼0

#

ðnÞ C gk þj

#

ðnÞ

ai;s bðkÞ C gk þjv sðkÞ j;s v þ ! ðkÞ

gk X

ðkÞ s0

þ

i X

" ðnÞ C iv

þ

v¼1

"

ng v Xk X j¼1

ðkÞ

C gðnÞ a þ k v i;0

v¼iþ1

#

þ

ðkÞ C gðnÞ a k v i;0

v X

ng Xk

j¼1

s¼0

!

ðkÞ

873

! ðkÞ ai;s bðkÞ ngk þj;s

ðnÞ

C nþjv

s¼0 ðnÞ

ai;s bðkÞ ngk þj;s C nþjv

ðnÞ

C gk þjv sðkÞ ai;s bðkÞ j;s v ¼ 0

For each i ¼ n  gk ð1Þ gk  1: " ! # " ! ngk iþg ng j j k n X X X Xk X ðnÞ ðkÞ ðkÞ ðnÞ ðkÞ ðnÞ ðkÞ ðkÞ ðkÞ ðnÞ ðnÞ ðkÞ ðnÞ C i þ C gk ai;0 þ ai;s bj;s C gk þj s0 þ C iv þ C gk v ai;0 þ ai;s bj;s C gk þjv j¼1

þ

þ

þ þ

v X

ng k þj X

j¼1

s¼0

s¼0

ðkÞ ai;s bðkÞ ngk þj;s

iþgX k nþ1

ng k þj X

j¼1

s¼0

iþgX k nþ1

ng k þj X

j¼1

s¼0

v X

iþ1 X

j¼iþgk nþ2

s¼0

!

# ðnÞ C nþjv

sðkÞ v

þ

! ðkÞ ai;s bðkÞ ngk þj;s

v¼1

"

ðnÞ ðkÞ C ni1 ai;0

ðkÞ siþgk nþ1

gk X

þ

v¼iþgk nþ2 ðnÞ

ðkÞ

a þ C nþjv þ C gðnÞ k v i;0 !

ðnÞ C ij

þ

j¼iþgk nþ1

!

ðkÞ

þ

#

ðnÞ C 2nþjgk i1

ðkÞ ai;s bðkÞ ngk þj;s

j¼1 min fi;iþg Xk nþ1g

#

min fi;vg X

j X

j¼1

s¼0

"ng j Xk X j¼1

s¼0

ng Xk

ðkÞ ai;s bðkÞ j;s

! ðkÞ ai;s bðkÞ j;s

ðnÞ

C nþji1

! ðnÞ

C gk þjv

s¼0

ðnÞ

C ij

j¼v

ðnÞ

ðkÞ ai;s bðkÞ ngk þj;s C nþjv sv ¼ 0

Proof. See Appendix. h Finally, we have the polynomial approximations to the solution of the nonlinear neutral differential equation (1) t  yðtÞ  Y k ðxÞ ¼ Y k  k ; t 2 I k ; k P 0; ð16Þ s where for each k P 0, Y k ðxÞ is found according to the following: (i) If the degree of Y k1 ðxÞ is equal to 0 and Y k1 ðxÞ does not have the constant value ab1 , then formula (14) is used. (ii) If the degree of Y k1 ðxÞ is not equal to 0, then formula (15) is used. (iii) If Y k1 ðxÞ has the constant value ab1 , then we do not seek Y k ðxÞ, instead we use Remark 1 to conclude that yðtÞ ¼ ab1 ;

t 2 ½ðk  1Þs; 1Þ:

We note that (16) can also be expressed as  t h t i yðtÞ  Y ½ t   ; t P 0; s s s where ½w denotes the integer part of w. 3. Numerical results In this section we compare the performance of the piecewise polynomial approximation obtained in Section 2 to solve problem (1) with the theoretical and numerical results reported by other authors. Unfortunately, as

874

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

far as we know, there does not exist in the literature extensive well-known numerical experimentation with which we can carry out appropriate numerical comparisons. Also we do not have the analytical solutions of (1). The numerical examples illustrate that feasibility and higher-order accuracy can be achieved. Moreover, the proposed method requires less computing time and can be used widely. The results of the experiments in this section were obtained using MATLAB 7.2 package and were run on an Intel Pentium D processor (with 16 significant digits). In the tables of numerical results we show the nodes ‘‘t’’ in which we evaluate the approximate solutions represented by YSST (i.e., the approximate solutions achieved from to apply the SST method). The tables also show the computing time CPUTIME. Due to the ðkÞ ill conditioned matrices involved in the sj ’s parameters computation, we have applied to some of our experiments some form of scaling strategy. MATLAB function dde23 is a solver of ordinary and delay differential equations based on the explicit Runge–Kutta (2, 3) pair used by the ODE solver ode23 [13]. We test the case c ¼ 0 through the Experiments 2, 3 and 4, and we demonstrate reliability, precision and speed of our method as compared to dde23. We always ran DDE solver dde23 using the optional integration argument options to set the scalar relative tolerance ‘RelTol’ in 1e8 and the vector of absolute error tolerances ‘AbsTol‘ in 1e-16 (in all components). Next we show some of the carried out numerical experiment. For our experimentation we selected some particular cases of equations of the type (1) taken from [2]. pffiffi Experiment 1: We consider Eq. (1) with r ¼ ppffiffi3 þ 201 ; a ¼ 1; b ¼ 1; c ¼  2p3 þ 251 ; s ¼ 1 and WðtÞ ¼ t þ 2. This equation is a particular case of the neutral delay logistic equation and models a food-limited population (see Section 1). It has a first-order discontinuity at t ¼ k for k P 0 integer. Table 1 shows some of the numerical results obtained by using a segmented Tau approximation of degree 7. In Fig. 1, we plot the piecewise polynomial approximations obtained. A reference solution for t ¼ 40 reported in [2] is 0:804413836191349. Thus, from the penultimate row of Table 1 it follows that for this node, the error obtained by the application of the SST method is 4:2016  107 : Experiment 2: We consider Eq. (1) with r ¼ 1; a ¼ 75 ; b ¼ 1; c ¼ 0; s ¼ 1 and WðtÞ ¼ 0:01. This equation is a particular case of the delay logistic equation (see Section 1). It has a ðk þ 1Þst order discontinuity at t ¼ k for k P 0 integer. Table 2 shows some of the numerical results obtained by using a segmented Tau approximation of degree 8 and using the DDE solver dde23. In Fig. 2, we plot the piecewise polynomial approximations obtained. Table 1 Results for Experiment 1 t

YSST

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.592758483441024. . . 0.847357153802180. . . 1.425085420368763. . . 0.499981021082671. . . 1.326667587733823. . . 1.051372017509054. . . 0.565384239897487. . . 1.526702949318229. . . 0.792765049327441. . . 0.758029610899032. . . 1.465747828783425. . . 0.639692985784929. . . 1.043299902552723. . . 1.256381746215828. . . 0.586527510055331. . . 1.319806734683968. . . 1.012381941623081. . . 0.636247886193021. . . 1.462791192028606. . . 0.804413416033268. . .

CPUTIME (s)

1.609375

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

875

2 1.8 1.6 1.4

y(t)

1.2 1 0.8 0.6 0.4 0.2

0

5

10

15

20 time t

25

30

35

40

Fig. 1. Segmented Tau approximation in [0,40] corresponding to Experiment 1. Table 2 Results for Experiment 2 showing also results with dde23 t

YSST

dde23

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

0.020037090740435. . . 0.040148500529942. . . 0.080267448421081. . . 0.159316935661258. . . 0.311664854810063. . . 0.592425328370563. . . 1.064775041578119. . . 1.722001455064376. . . 2.311988759617619. . . 2.331477414785061. . . 1.690949940365590. . . 1.032428729872882. . . 0.747922040383385. . . 0.772118890293693. . . 1.011955555500156. . . 1.408125191926395. . . 1.829572427863560. . . 2.021479460402627. . . 1.805543693653312. . . 1.367208017731018. . .

0.020037090597705. . . 0.040148499963922. . . 0.080267446727054. . . 0.159316931118312. . . 0.311664843672819. . . 0.592425302542852. . . 1.064774963019523. . . 1.722001343405133. . . 2.311988678713552. . . 2.331477427578766. . . 1.690950076249193. . . 1.032428814972972. . . 0.747922062244889. . . 0.772118888595608. . . 1.011955512384420. . . 1.408125133064433. . . 1.829572371038602. . . 2.021479441647275. . . 1.805543720932559. . . 1.367208073909903. . .

CPUTIME (s)

1.03125

1.15625

A reference solution for t ¼ 10 reported in [2] is 1:367208017754907. Thus, from the penultimate row of Table 2 it follows that for this node, the errors obtained by the application of the SST method and the DDE solver dde23 are 2:3889  1011 and 5:6155  108 , respectively. Experiment 3: We consider Eq. (1) with r ¼ 1; a ¼ 32 ; b ¼ 1; c ¼ 0; s ¼ 1 and WðtÞ ¼ 32 ðt þ 1Þ. It has a ðk þ 1Þst order discontinuity at t ¼ k for k P 0 integer. Table 3 shows some of the numerical results obtained by using a segmented Tau approximation of degree 9 and using the DDE solver dde23. In Fig. 3, we plot the piecewise polynomial approximations obtained. By doing xðtÞ ¼ 23 yðtÞ  1, we obtain the problem 3 x0 ðtÞ ¼  xðt  1Þ½1 þ xðtÞ; 2 xðtÞ ¼ t; t 6 0:

t P 0;

876

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881 2.5

2

y(t)

1.5

1

0.5

0

0

2

4

6

8

10

time t

Fig. 2. Segmented Tau approximation in [0,10] corresponding to Experiment 2.

Table 3 Results for Experiment 3 showing also results with dde23 t

YSST

dde23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3.175500024919042. . . 1.130860716492482. . . 0.505044661027307. . . 1.185123684686417. . . 2.478027169600124. . . 1.735171972405921. . . 0.751459530503598. . . 1.115837612191472. . . 2.136709208686827. . . 1.891342638734044. . . 0.940251538980253. . . 1.108343745704871. . . 1.935473980922958. . . 1.922526411135078. . . 1.084566539315653. . . 1.123070114330643. . . 1.803100792429180. . . 1.909460222635392. . . 1.195585192273148. . . 1.147223062932988. . .

3.175500026681722. . . 1.130860709405948. . . 0.505044651532585. . . 1.185123592919753. . . 2.478027064149757. . . 1.735172107469037. . . 0.751459699802538. . . 1.115837511866635. . . 2.136708978170111. . . 1.891342802084340. . . 0.940251673675954. . . 1.108343691444265. . . 1.935473812084545. . . 1.922526486671191. . . 1.084566662333494. . . 1.123070095788933. . . 1.803100666138099. . . 1.909460241797122. . . 1.195585296315836. . . 1.147223075455078. . .

CPUTIME (s)

1.359375

2.28125

A reference solution reported in [2] for this last problem is xð20Þ ¼ 0:235184625529838. Hence we get yð20Þ ¼ 32 ðxð20Þ þ 1Þ ¼ 1:147223061705243. From the penultimate row of Table 3 it follows that for t ¼ 20, the errors obtained by the application of the SST method and the DDE solver dde23 are 1:2277  109 and 1:3750  108 , respectively. Experiment 4: We consider Eq. (1) with r ¼ 72 ; a ¼ 1; b ¼  191 ; c ¼ 0; s ¼ 37 and WðtÞ ¼ 19:001. Thus we 50 obtain a particular case of the equation that models the Lemmings cycle of about 4 years [2]. It has a ðk þ 1Þst order discontinuity at t ¼ ks for k P 0 integer. Table 4 shows some of the numerical results obtained by using a segmented Tau approximation and using the DDE solver dde23. In this case, motivated by the ill conditioned matrices involved, we have considered the following strategy of approximation: we initially used poly-

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881 3.5

3

2.5

y(t)

2

1.5

1

0.5

0

0

5

10 time t

15

20

Fig. 3. Segmented Tau approximation in [0,20] corresponding to Experiment 3.

Table 4 Results for Experiment 4 showing also results with dde23 t

YSST

dde23

4.44 8.88 13.32 17.76 22.20 26.64 31.08 35.52 40.00

19.005181701590246. . . 18.905491861931360. . . 19.199451310179281. . . 24.952770201313484. . . 0.495733815547412. . . 1.162713290109195. . . 3.202036613854786. . . 8.677124972490198. . . 24.765723535481836. . .

19.005199064580463. . . 18.904572222588627. . . 19.203903271535101. . . 24.990741853727513. . . 0.474942233776180. . . 1.118567314523729. . . 3.079277123134402. . . 8.359540990541770. . . 24.765984275794626. . .

CPUTIME (s)

2.078125

26.921875

100 90 80 70

y(t)

60 50 40 30 20 10 0

0

5

10

15

20 time t

25

30

35

40

Fig. 4. Segmented Tau approximation in [0,40] corresponding to Experiment 4.

877

878

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

nomials of degree 4 in ½0; 10s (this corresponds to the first 10 segmented approximations), and starting from 10s on, we use polynomials of degree 9. In Fig. 4, we plot the piecewise polynomial approximations obtained. A reference solution for t ¼ 40 reported in [2] is 24:7645486398692. Thus, from the penultimate row of Table 4 it follows that for this node, the errors obtained by the application of the SST method and the DDE solver dde23 are 1:1749  103 and 1:4356  103 respectively. Also from Table 4 we observe that although the precisions reached for both approaches are similar, the CPU times are very different (in order to reach with dde23 the same precision given by our approach, the CPU time should be approximately 1200% longer than the one reported by YSST).

4. Final remarks This paper together with some recent papers [3,5,6] demonstrates that the step by step Tau method is a natural approach, easy to apply, numerically efficient, and promising strategy in the numerical solution of functional differential equations. Moreover, the approximate solutions are consistent with the results reported elsewhere.

Appendix Proof of Theorem 3. Taking in (12) m ¼ 0, the expression obtained is used in (13) and then operating on the subindexes of some canonical polynomials, we have

Y k ðxÞ ¼

gX k 1

i X

i¼0

v¼0

þ

! ðnÞ sðkÞ v C iv

ðkÞ Qi ðxÞ

gk X

þ

!" ðnÞ sðkÞ v C gk v

c

ðkÞ

þ

gk X

i¼1

v¼0

! ðnÞ sðkÞ v C gk þiv

ðkÞ Qgk þi ðxÞ

þ

# ðkÞ ðkÞ ai;0 Qi ðxÞ

i¼0

v¼0

ng Xk

gX k 1

!

gk X

ni X

i¼1

v¼ngk

ðnÞ C iþv

sðkÞ nv

ðkÞ

Qnk þðnnk þiÞ ðxÞ

and now using (12) with m ¼ i and m ¼ n  gk þ i, we have Y k ðxÞ ¼

gX k 1

i X

i¼0

v¼0

þc

ðkÞ

! ðnÞ sðkÞ v C iv

þ

þ

þc

ðkÞ

ng Xk

gk i X X

ðnÞ sðkÞ v C gk v

! ðnÞ sðkÞ v C gk þiv

s bðkÞ i;s x

þ

þ

gk X

i¼1 j¼i1

v¼0

! ðnÞ sðkÞ v C gk þiv

min fnnX k þi2;gk 1g

ni X

i¼1

j¼0

v¼ngk

i¼1 j¼nnk þi1

gk X

i¼0

v¼0

ni X

gk X

i¼1

j¼0

v¼0

! ðkÞ aj;s bðkÞ i;s

ðkÞ Qj ðxÞ

þc

ðkÞ

v¼ngk

!

jþ1 X

!

nn k þi X s¼0

! ðkÞ aj;s bðkÞ nnk þi;s

ðkÞ

Qj ðxÞ

jþ1 X

! ðkÞ aj;s bðkÞ i;s

ðkÞ

Qj ðxÞ

s¼0

s¼0

ðkÞ

Qj ðxÞ

s¼0

ðkÞ

!

! ðkÞ aj;s bðkÞ nnk þi;s

ðkÞ

ai;0 Qi ðxÞ

ðnÞ sðkÞ v C gk þiv

gk nn k þi X X i¼1

ðnÞ sðkÞ nv C iþv

ðnÞ sðkÞ nv C iþv

! ðnÞ sðkÞ v C gk v

min fX i2;gk 1g

s¼0

gk X

gX k 1

i X

gX k 1

ngk X

v¼0

s¼0

ng k 1 Xk gX

gk X

gk X v¼0

i¼1

þ

ðkÞ Qi ðxÞ

ni X v¼ngk

! ðnÞ sðkÞ nv C iþv

s bðkÞ nnk þi;s x

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

879

By rearranging and simplifying ! gk ng gk i X Xk X X ðkÞ ðkÞ ðnÞ ðkÞ ðkÞ ðnÞ ðkÞ sv C gk v þ c bi;s sv C gk þiv xs Y k ðxÞ ¼ c v¼0

þc

ðkÞ

i¼1

gk nn k þi X X i¼1

þ þ

þ

i¼0

v¼0

v¼0 gk jþ1 X X

gk X

þ

j¼0 i X

gk X

i¼1 j¼i1

s¼0

v¼0

ðkÞ ðnÞ sðkÞ v C gk v ai;0

ðkÞ

Qi ðxÞ !

ðkÞ ðkÞ ðnÞ aj;s bðkÞ i;s sv C gk þiv

v¼0

s¼0

ng k 1 Xk gX

xs

!

ng i2;gk 1g Xk min fX

ðnÞ sðkÞ v C iv

ðkÞ

Qj ðxÞ

!

ðkÞ ðkÞ ðnÞ aj;s bðkÞ i;s sv C gk þiv

min fnnX k þi2;gk 1g

i¼1

þ

v¼ngk

s¼0

ðkÞ

Qj ðxÞ !

jþ1 X ni X

ðkÞ ðnÞ ðkÞ aj;s bðkÞ nnk þi;s snv C iþv

s¼0 v¼ngk

j¼0

gk X

!

ðnÞ ðkÞ bðkÞ nnk þi;s snv C iþv

i X

gk X

v¼0

s¼0

gk 1 X

i¼1

þ

ni X

gX k 1

nn k þi X

ni X

s¼0

v¼ngk

i¼1 j¼nnk þi1

ðkÞ

Qj ðxÞ

!

ðkÞ ðnÞ ðkÞ aj;s bðkÞ nnk þi;s snv C iþv

ðkÞ

Qj ðxÞ

To continue, we use the results ! ng ng ng i Xk Xk X Xk Xk ng Ai;s xs ¼ As;0 þ As;i xi ; i¼1

s¼1

s¼0

gk ng k þi X X i¼1 ng Xk

Ai;s x ¼

s¼0 min fi2;g X k 1g

i¼1 ng Xk i¼1 gk X

s

gk X

i¼0

s¼1

! ðkÞ

Ai;j Qj ðxÞ

!

! ¼

j¼i1

gk X

gX k 1

i¼1

j¼ngk þi1

ðkÞ

s¼iþgk n ng Xk

i¼0

j¼iþ2

!

! ðkÞ

Aj;i Qi ðxÞ;

ðkÞ

Aj;i Qi ðxÞ;

¼

min fng k 1;gk 1g X

gk X

i¼0

j¼1

gX k 1

iþgX k nþ1

i¼ngk

j¼1

¼

As;i xi ;

j¼1

!

! Ai;j Qj ðxÞ

i¼ngk þ1 min fng k 2;gk 1g X

ðkÞ Ai;j Qj ðxÞ

j¼0

i¼1

gk X

min fiþ1;ng X kg

i¼0

min fngX k þi2;gk 1g

!

n X

As;i x þ

gX k 1

¼

s¼i i

ðkÞ Ai;j Qj ðxÞ

j¼0 gX k 1

i¼1

ng Xk

!

! Aj;i

ðkÞ Qi ðxÞ

!

gX k 1

gk X

i¼ngk

j¼iþgk nþ2

þ

ðkÞ

Aj;i Qi ðxÞ;

ðkÞ

Aj;i Qi ðxÞ;

(where Au;w denotes the uwth element in an array). Thus, Y k ðxÞ ¼ cðkÞ

gk X

ðnÞ ðkÞ sðkÞ v C gk v þ c

v¼0

þc

ðkÞ

ng Xk i¼0

þ

gk 1 X

i X

i¼0

v¼0

nk ns X X

ng Xk

gk X

s¼1

v¼0

ðkÞ ðnÞ bs;0 sðkÞ v C gk þsv

þ cðkÞ

i¼1

! ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

i

x þc

ðkÞ

ðnÞ

sðkÞ v C iv þ

v¼0

! ðkÞ

n X i¼ngk þ1

s¼1 v¼ngk gk X

ngk ng gk X Xk X

ðkÞ

ðnÞ sðkÞ v C gk v ai;0 Qi ðxÞ

s¼i

! ðkÞ ðnÞ i bðkÞ s;i sv C gk þsv x

v¼0

gk X

ns X

s¼iþgk n v¼ngk

! ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

xi

880

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

þ

ng Xk

min fng k 2;gk 1g X

j¼iþ2 s¼0

i¼0

þ þ

gX k 1

min fX iþ1;ngk g

i¼0

j¼1

s¼0

þ

nk X

þ

ðkÞ

Qi ðxÞ

v¼0

!

nj X

ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

nj iþ1 X X

gX k 1

iþnX k þj k nþ1 nn X

i¼nnk

j¼1

nj X

ðkÞ

Qi ðxÞ

!

ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

j¼iþgk nþ2 s¼0 v¼ngk

i¼ngk

ðkÞ

Qi ðxÞ

!

ðkÞ ðkÞ ðnÞ ai;s bðkÞ j;s sv C gk þjv

s¼0 v¼ngk

j¼1

i¼0 gX k 1

ðkÞ ðkÞ ðnÞ ai;s bðkÞ j;s sv C gk þjv

v¼0

gk j X X

nk X iþ1 X

min fng k 1;gk 1g X

!

gk iþ1 X X

ðkÞ

Qi ðxÞ !

ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ðkÞ

Qi ðxÞ:

v¼ngk

s¼0

By rearranging and simplifying " g ! # ng nk ns k X X Xk ðkÞ X ðkÞ ðnÞ ðnÞ ðnÞ ðkÞ ðkÞ ðkÞ Y k ðxÞ ¼ c sv C gk v þ bs;0 C gk þsv þ bnnk þs;0 snv C sþv v¼0

þ cðkÞ þc

ng Xk

gk X

i¼1

s¼i

v¼0

n X

ðkÞ

þ þ

gX k 1

i X

i¼0

v¼0

ðkÞ ðnÞ bðkÞ s;i sv C gk þsv þ

ðnÞ ðkÞ i bðkÞ nnk þs;i snv C sþv x

!

ns X

þ

gk X

ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

ðkÞ ðnÞ sðkÞ v C gk v ai;0

xi

þ

min fX iþ1;ngk g

gk j X X

j¼1

s¼0 v¼0

v¼0 ng iþ1 Xk X

min fng k 2;gk 1g X

gk X

i¼0

j¼iþ2 s¼0 v¼0

min fng k 1;gk 1g X

nj nk X iþ1 X X

ðkÞ

!

ðnÞ

nk X

ðkÞ

! ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ðkÞ

Qi ðxÞ

nj iþ1 X X

ðkÞ

ðnÞ

ðkÞ ai;s bðkÞ nnk þj;s snv C jþv þ

iþnX k þj k nþ1 nn X j¼1

s¼0

!

nj X

ðkÞ

• If gk  1 6 n  gk  2: " g ! ng nk ns k X X Xk ðkÞ X ðkÞ ðnÞ ðnÞ ðnÞ ðkÞ ðkÞ sv C gk v þ bs;0 C gk þsv þ bnnk þs;0 sðkÞ Y k ðxÞ ¼ c nv C sþv v¼0

þ

ng Xk

gk X

i¼1

s¼i

v¼0

gX k 1 i¼0

þ

ng Xk

ðkÞ ðnÞ bðkÞ s;i sv C gk þsv

i X

!

ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

xi

ns X

! #

ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

xi

s¼iþgk n v¼ngk ðnÞ

sðkÞ v C iv þ

gk X

ðkÞ

ðnÞ sðkÞ v C gk v ai;0 þ

v¼0

v¼0 gk iþ1 X X

j¼iþ2 s¼0

þ

nk ns X X s¼1 v¼ngk

gk X

n X i¼ngk þ1

þ

s¼1 v¼ngk

s¼1

ng Xk

v¼0

ðkÞ ðkÞ ðnÞ ai;s bðkÞ j;s sv C gk þjv

gk j X iþ1 X X j¼1

þ

s¼0

nj nk X iþ1 X X j¼1

s¼0 v¼ngk

ðkÞ

ðnÞ

ðkÞ ai;s bðkÞ j;s sv C gk þjv

v¼0 ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ðnÞ

ðkÞ

ðkÞ ai;s bðkÞ nnk þj;s snv C jþv Qi ðxÞ:

v¼ngk

Two possibilities exist: either gk  1 6 n  gk  2 or gk  1 > n  gk  2.

þ

ðkÞ

Qi ðxÞ

ðkÞ ai;s bðkÞ j;s sv C gk þjv Qi ðxÞ

j¼iþgk nþ2 s¼0 v¼ngk

i¼ngk

! ðkÞ ðkÞ ðnÞ ai;s bðkÞ j;s sv C gk þjv

j¼1 s¼0 v¼ngk

i¼0

þ

!

s¼iþgk n v¼ngk

ðnÞ sðkÞ v C iv

gk 1 X

nk ns X X s¼1 v¼ngk

gk X

i¼ngk þ1

þ

s¼1 v¼ngk

s¼1

ng Xk

! ðkÞ

Qi ðxÞ

L.F. Cordero, R. Escalante / Applied Mathematics and Computation 190 (2007) 866–881

881

• If gk  1 > n  gk  2 : " g ! ng nk ns k X X Xk ðkÞ X ðkÞ ðnÞ ðnÞ Y k ðxÞ ¼ cðkÞ sðkÞ C gðnÞ þ b C bnnk þs;0 sðkÞ þ s;0 g v nv C sþv v þsv k k v¼0

þ

s¼i

i¼1

þ

n X

þ

i X

i¼0 ng Xk

v¼0

ðnÞ

þ þ

gk X

xi gk j X iþ1 X X

ðkÞ

ðnÞ sðkÞ v C gk v ai;0 þ

j¼1

ðkÞ ðkÞ ðnÞ ai;s bðkÞ j;s sv C gk þjv

v¼0

þ

ðnÞ

sðkÞ v C ngk 1v þ

gk X

ðkÞ

ðnÞ

ðkÞ ai;s bðkÞ j;s sv C gk þjv

v¼0

!

ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ðkÞ

Qi ðxÞ

s¼0 v¼ngk ðkÞ

ðnÞ sðkÞ v C gk v angk 1;0 þ

v¼0 ðkÞ

s¼0

nj nk X iþ1 X X j¼1

nj nk ng Xk X X j¼1

ðnÞ ðkÞ bðkÞ nnk þs;i snv C sþv

v¼0

v¼0

þ

ðnÞ ðkÞ i bðkÞ nnk þs;i snv C sþv x

! #

ns X

sðkÞ v C iv þ

gk iþ1 X X

j¼iþ2 s¼0

þ

!

s¼1 v¼ngk

v¼0 gk X

ng k 2 X

ng k 1 X

ðkÞ ðnÞ bðkÞ s;i sv C gk þsv þ

nk ns X X

s¼iþgk n v¼ngk

i¼ngk þ1

þ

s¼1 v¼ngk

s¼1

ngk ng gk Xk X X

! ðnÞ

ng Xk

gk j X X

j¼1

s¼0

ðkÞ

ðnÞ

ðkÞ angk 1;s bðkÞ j;s sv C gk þjv

v¼0

ðkÞ

ðkÞ angk 1;s bðkÞ nnk þj;s snv C jþv Qngk 1 ðxÞ

s¼0 v¼ngk

gk 1 X

i X

i¼ngk

v¼0

nk X

ðnÞ sðkÞ v C iv

þ

nj iþ1 X X

j¼iþgk nþ2 s¼0 v¼ngk

gk X

ðkÞ ðnÞ sðkÞ v C gk v ai;0

þ

v¼0 ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ng Xk

gk j X X

j¼1

s¼0

þ

ðkÞ

v¼0

iþnX k þj k nþ1 nn X j¼1

ðnÞ

ðkÞ ai;s bðkÞ j;s sv C gk þjv

s¼0

nj X

! ðkÞ ðnÞ ðkÞ ai;s bðkÞ nnk þj;s snv C jþv

ðkÞ

Qi ðxÞ

v¼ngk

Finally, in each one of these two last expressions for Y k ðxÞ, we equal to zero the coefficients of the gk undefined canonical polynomials. Next, after we adjust some terms, we obtain (15) and the required corresponding linear systems of equations. h References [1] Y. Kuang, A. Feldstein, Boundedness of solutions of a nonlinear nonautonomous neutral delay equation, J. Math. Anal. Appl. 156 (1991) 293–304. [2] C.A. Paul, A test set of functional differential equations, Numerical Analysis Report 243, Mathematics Department, University of Manchester, 1994. [3] H.G. Khajah, Tau method treatment of a delayed negative feedback equation, Comput. Math. Appl. 49 (2005) 1767–1772. [4] E.M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955) 66–87. [5] L.F. Cordero, R. Escalante, Segmented Tau approximation for test neutral functional differential equations, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.08.085. [6] E.L. Ortiz, H.G. Khajah, On a differential-delay equation arising in number theory, Appl. Numer. Math. 21 (1996) 431–437. [7] C. Lanczos, Applied Analysis, Pretince-Hall, Englewood Cliffs, NJ, 1956. [8] E.L. Ortiz, The Tau method, SIAM J. Numer. Anal. 6 (1969) 480–492. [9] E.L. Ortiz, Step by step Tau method I, Comput. Math. Appl. 1 (1975) 381–392. [10] A. Bellen, M. Zennaro, Numerical Methods for Delay differential Equations, Oxford University Press, New York, 2003. [11] O. Diekmann, S. van Gil, S.V. Lunel, H.O. Walther, Delay Equations, Springer, New York, 1995. [12] C. Lanzos, Legendre versus Chebyshev polynomials, in: J.J.H. Miller (Ed.), Studies in Numerical Analysis, Academic Press, London, 1973, pp. 191–201. [13] L. Shampine, S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math. 37 (2001) 441–458.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.