Trasplante hepático en pacientes con infección por el VIH: una realidad en el año 2004

Share Embed


Descripción

Liver Transplantation In Patients With HIV Infection John Fung,1 Bijan Eghtesad,1 Kusum Patel-Tom,1 Michael DeVera,1 Holly Chapman,1 and Margaret Ragni2 Key Points 1. Liver transplantation for human immunodeficiency virus (HIV)-positive patients with end-stage liver disease in the era of highly active retroviral therapy has proven to be an effective treatment. The concerns of HIV progression have not been borne out by the growing worldwide experience. 2. CD4 counts are stable and HIV viral load is controllable with medication following liver transplantation. 3. Hepatitis C virus (HCV) coinfection in HIV-positive recipients is universal, but the severity of recurrence does not appear to be different from that in HIV-negative patients with HCV liver disease. 4. Complex pharmacokinetic interactions between the calcineurin inhibitors used for immunosuppression along with protease inhibitors are present, but management directed at recognizing the need for monitoring levels does not appear to increase the risk of toxicity. 5. The degree of immunosuppression from iatrogenic drug therapy and HIV does not lead to increased risk of infectious complications. (Liver Transpl 2004;10: S39–S53.)

Human Immunodeficiency Virus (HIV)

B

oth HIVs, type 1 and type 2, can infect humans and lead to progressive immune deficiency. By far the best studied and the most prevalent strain in the United States is HIV-1, and for the purpose of this overview, the term “HIV” applies to HIV-1. HIV infection is associated with a spectrum of clinical conditions, from no symptomatology to acquired immunodeficiency syndrome (AIDS; Table 1). AIDS is a syndrome that was first recognized in 1981 and is now defined as the presence of one of more than 20 conditions, including development of one or more opportunistic infections and/or CD4 count less than 200 cells/mm3.1 In the United States, it is estimated that there are between 750,000 and 1.5 million individuals infected with HIV, with 40,000 new cases added each year.2 In addition, approximately 40,000 deaths from HIV occur each year, and it is the leading cause of death in men between 25 and 44 years of age. Worldwide, the statistics are even more staggering, with more than 40 million people infected with HIV in 2000. Given the magnitude of this disease, tremendous progress has been made in the understanding of the virus, the process of replication, the mechanisms of inducing immune deficiency, and models for projecting survival.3 – 5 Until the advent of antiviral therapies targeted toward HIV, the

natural progression to AIDS could be predicted based on viral load and CD4 counts.5 Although HIV is a retrovirus belonging to the lentivirus subfamily and is structurally relatively simple, it has a complex replication cycle.6 The virion is composed of a 2 single-stranded RNA genome packaged together with virally encoded proteins, including reverse transcriptase and structural proteins, as well as elements derived from the host, including cyclophilin A and a membrane composed of elements from both virus and host. The primary target is the CD4-positive T cell, by virtue of high-specificity binding of viral glycoprotein (gp) 120 (gp120), the HIV glycoprotein associated with the trimeric gp41 complex, to the CD4 receptor. Other cells, including monocytes and glial cells, also bear CD4 antigen and can serve as a reservoir for HIV. Fusion of the virus into the target cell also requires the presence of chemokine receptors, such as CXCR4 (lymphotropic strain) or CCR5 (monocytotrophic strain). Other chemokine receptors, such as CCR3, have been shown to function in this manner. Viral fusion is mediated by gp41 and results in deposition of the reverse transcription complex into the cytoplasm. In some HIV strains, cyclophilin A has been implicated as playing an important role in activating reverse transcription. Complementary DNA (cDNA) synthesis is followed by nuclear translocation and nuclear integration facilitated Abbreviations: HIV, human immunodeficiency virus; AIDS, acquired immunodeficiency syndrome; gp, glycoprotein; NRTI, nucleoside transcriptase inhibitors; PI, protease inhibitor; HAART, highly active antiretroviral therapy; OI, opportunistic infection; MMF, mycophenolate mofetil; MPA, mycophenolic acid; GTP, guanosine triphosphate; HCV, hepatitis C virus; HBV, hepatitis B virus; ESLD, end-stage liver disease; AUC, area under the curve. From the 1Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh; and 2Department of Medicine, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA. Presented at the AASLD/ILTS Transplant Course, October 29, 2004, Boston, MA. Address reprint requests to: John J. Fung, MD, PhD, Department of General Surgery, Cleveland Clinic Foundation, 9500 Euclid Avenue, A80, Cleveland, OH 44195. Telephone: 216-444-3776; Fax: 216444-2153; E-mail: [email protected] Copyright © 2004 by the American Association for the Study of Liver Diseases Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/lt.2004.20261

Liver Transplantation, Vol 10, No 10, Suppl 2 (October), 2004: pp S39 – S53

S39

S40

Fung et al.

Table 1. Revised 1993 Centers for Disease Control Classification System of HIV Infection Category A Asymptomatic HIV infection Persistent generalized lymphadenopathy Acute retroviral syndrome Category B Bacillary angiomatosis Oral or recurrent vaginal candidiasis Cervical dysplasia Prolonged constitutional symptoms Oral hairy leukoplakia Herpes zoster Idiopathic thrombocytopenic purpura Listeriosis Pelvic inflammatory disease Peripheral neuropathy Category C CD4 count ⬍ 200 cells/mm3 Cervical cancer Chronic herpes simplex Coccidioidomycosis Cryptococcosis Cryptosporidiosis Cytomegalovirus Histoplasmosis HIV encephalopathy/dementia Invasive Aspergillus Isosporiasis Kaposi’s sarcoma Lymphoma Microsporidiosis Mycobacterium avium Mycobacterium kansasii Mycobacterium tuberculosis Penicilliosis Pneumocystis carinii Progressive multifocal leukoencephalopathy Pulmonary or esophageal candidiasis Recurrent pneumonia Salmonellosis Toxoplasmosis

by viral integrase. Viral replication is the culmination of a complex series of steps, including synthesis of viral structural (Gag and Env) and enzymatic (pol) polyprotein precursor and viral RNA synthesis. Viral packaging occurs at the plasma membrane of the infected cells; this results in budding of immature viral particles. Autocatalytic activation of the protease enzyme provides further posttranslational processing of critical polyproteins required for the final maturation and subsequent infectivity. Certain HIV genes, in particular those encoding the envelope proteins and reverse transcriptase, are

error prone and explain both the presence of quasispecies and the development of drug-resistant mutations. The estimated total body pool of HIV is approximately 1010 virions. The kinetics of established HIV infection is notable for significant viral turnover: on the order of 30% of the total body viral load is eliminated on a daily basis and the life cycle in vivo of HIV is estimated at 1.2 days.7 Associated with this brisk viral turnover is a daily turnover of 5% of the total host CD4⫹ T-cell pool as part of active HIV replication. This leads to eventual depletion of the CD4⫹ T-cell pool as the rate of destruction exceeds the ability of the precursor pool to renew the total CD4⫹ T-cell population.4,5 However, a small population of HIV-infected individuals do not follow this timeline of progression to AIDS—10% to 17% of infected individuals remain clinically free of AIDS 20 years after exposure, and a subset of these patients (less than 5% of all HIV-infected individuals) have stable CD4⫹ T-cell counts— these patients are termed long-term nonprogressors.7 Immunological and virological studies of these individuals have failed to demonstrate a consistent pattern of viral and host factors explaining this phenomenon.8,9

Anti-HIV Therapy Delineation of the critical steps in viral replication and infection has led to development of strategies and treatments designed to reduce viral replication. Specifically, current therapies are directed toward the defined pathways: inhibition of viral binding and/or entry (enfuvirtide—inhibitor of gp41-mediated fusion); inhibiting reverse transcription (nucleoside transcriptase inhibitors [NRTI] and non-nucleoside reverse transcriptase inhibitors [NNRTI]); and inhibiting protease activity (protease inhibitors [PIs]). Since 1997, the vast majority of antiretroviral therapy protocols have included multiple drug therapy. Monotherapy and dual therapies are not recommended in the treatment of HIV-infected patients, primarily due to the high risk of developing resistance.10,11 Highly active antiretroviral therapy (HAART) generally consists of 3 active antiviral agents—2 or more NRTI plus 1 PI or 1 non-nucleoside reverse transcriptase inhibitor,11—and has been shown to be associated with significant stabilization of CD4 counts, reduction in the incidence of opportunistic infection (OI), and lower mortality. Clinical studies have demonstrated virological, immunological, and survival benefits associated with the use of HAART regimens.12 – 15 Other potential approaches to managing HIV infection include novel observations with the use of immu-

Liver Transplantation in HIV Patients

nosuppressive agents. For example, it has been reported that HIV replication can be inhibited by cyclosporine and tacrolimus.16 Both animal17 and pilot human18,19 studies have been conducted, examining the effect of calcineurin inhibitors on HIV infection, presumably by inhibiting T-cell activation and thus cytokine synthesis (which can augment HIV replication), as well as inherent effects mediated by immunophilin receptors. Mycophenolate mofetil (MMF) is another immunosuppressive agent that potentiates the effects of antiviral medications. MMF is a prodrug of mycophenolic acid (MPA), which reversibly inhibits lymphocyte inosine monophosphate dehydrogenase, thereby inhibiting de novo purine nucleotide synthesis and drastically decreasing intracellular guanosine triphosphate (GTP) concentrations both in vitro and in vivo. MPA has been shown to enhance the effectiveness of purine nucleoside analogues.20,21

Liver Disease in HIV-Infected Individuals The irony of the diminishing mortality associated with HIV infection is the increasingly apparent impact of coinfection with chronic viral hepatitis. HIV-positive patients are at risk for hepatitis C virus (HCV) and hepatitis B virus (HBV) infection and the development of end-stage liver disease (ESLD). The route for HIV acquisition is often the same as the risk for acquisition of viral hepatitis, namely, transfusion of blood products, shared needles, and unprotected sexual practices. The prevalence of HCV coinfection among HIV-positive patients has been reported in the range of 23% to 33%,22,23 while the prevalence of chronic HBV coinfection is approximately 9%.24 In some highrisk HIV-positive groups, such as hemophiliacs receiving lifelong serum-derived factor replacement, the incidence of HCV coinfection has been reported to be as high as 80% in HIV-positive hemophiliacs.25 It has also been reported that the presence of HIV infection accelerates the progression of chronic liver disease to ESLD.26–28 This translates into higher mortality rates from ESLD in HIVpositive patients coinfected with viral hepatitis.26–33 Inhospital mortality was 12% in admissions for liver disease in one study,33 and it was 4.8% in another study.32 In one study, the reported deaths due to ESLD has grown impressively, from 11.5% in 1991 to 13.9% in 1996, and to 50% in 1998–1999.31 In HCV- and HIV-coinfected hemophiliac patients, the relative risk of developing ESLD was 3.72, and death secondary to ESLD was 3.81, when compared to a group of non–HIV-infected hemophiliacs with HCV.25 In addition to chronic viral hepatitis, other causes of ESLD have been noted in the HIV-positive popula-

S41

tion.34 – 37 Acute liver failure with lactic acidosis, hepatic steatosis, and mitochondrial DNA injury has been reported as a result of therapy with the “D drug” reverse transcriptase inhibitors (e.g., zalcitabine, didanosine, and stavudine).35 – 37 These agents are all potent inhibitors of polymerase ␥, compared to other “non-D drugs,” such as zidovudine, lamivudine, and abacavir. It has also been suggested that the presence of HCV may act in association with the use of D-drug in depleting mitochondrial DNA levels.37 Other antiviral agents, in particular efavirenz and nevirapine, have also been associated with elevations in liver enzymes and may potentiate the detrimental effects of alcohol.38 HIV has also been associated with an AIDS-related cholangiopathy, leading to biliary strictures. The causative agent in these cases has been reported to include Cryptosporidium, cytomegalovirus (CMV), and Microspooridia.39,40 Lastly, there is some speculation that autoimmunity induced by HIV and/or retroviral antigen mimicry may be involved in primary biliary cirrhosis.41,42

HIV and Organ Transplantation In spite of the many advances in organ transplantation, the presence of HIV in a patient with end-stage organ failure has been considered a relative or absolute contraindication for transplantation at many centers, for both medical and psychosocial reasons.43 The conceptual conflict lies in the administration of iatrogenic immunosuppression to the “immunocompromised” HIV-infected individual, a process that relegates organ transplantation in HIV recipients to the status of a continued enigma. Early reports suggested that the course of HIV infection is accelerated in transplant patients, either due to the effect of immunosuppression44,45 or to the role of alloantigenic stimulation of lymphocytes. However, it is difficult to separate the infectious complications associated with HIV from those associated with iatrogenic immunosuppression.46,47 A review of the relatively sparse pre-HAART experience concerning the approach and outcome of solid organ transplantation in HIV-positive recipients is limited by the lack of ability to discern HIV-related deaths from “normal” OI in transplant patients, the lack of staging information (i.e., HIV viral load or CD4⫹ counts), and the lack of treatment for HIV based on current understanding of antiviral therapy. The use of AIDS OI terminology in the transplant population should be seriously questioned because these infections can also be seen in HIV-negative organ transplant recipients. The first series of patients who were positive for HIV at the time of transplantation and of patients who acquired HIV (presumably from the donor) were

S42

Fung et al.

reported by the University of Pittsburgh.47,48 In a retrospective serologic survey of organ donors and transplant recipients, 7 HIV-positive recipients had antibodies to HIV-1 prior to liver transplantation, while the other 8 HIV-positive recipients seroconverted after liver transplantation. Of the 15 liver transplant patients, 7 were alive at a mean of 2.75 years. With further follow-up (12.75 years), only 2 liver transplant patients remained alive, both on anti-HIV therapy.49 In a series of 4 hemophiliac patients at the University of Pittsburgh,50 performed from 1982 to 1987 (2 of whom were included in the analysis by Tzakis et al.48), 1 patient died in the perioperative period, and 3 survived for varying periods from 4 months to 44 months, before dying from a variety of OI: Pneumocystis, toxoplasmosis, and cryptosporidiosis. These cases preceded the routine use of trimethoprim/sulfamethoxazole and the availability of effective agents against Cryptosporidium. All deaths were classified as AIDS related. In addition, the University of Pittsburgh also reported 2 additional HIV-positive liver transplants under tacrolimus immunosuppression: 1 with chronic HBV and 1 with chronic HCV.49 The HBV recipient developed HBV recurrence and died at 102 months; the HCV patient suffered from HCV recurrence and survived only 7 months. Researchers at the University of Minnesota reviewed the overall liver transplantation experience in HIV-infected recipients reported in the literature from 1985 to 1990.51 Twenty-two cases were identified, 10 HIV positive at the time of liver transplantation and 12 developing HIV perioperatively. They noted that patients infected pretransplant with HIV had a shorter time to progression and a greater risk of dying from “AIDS” (defined primarily by development of posttransplant OI) or “AIDS-related complications” than those who acquired HIV in the perioperative period. In additional, the authors noted that in the HIV-positive patients who underwent transplantation and were longterm survivors, good liver function could be demonstrated for an extended period of time. Others have also reported positive outcomes in isolated cases.52 – 54

Controversies in Liver Transplantation in HIV-Positive Patients The following concepts summarize the current issues in offering liver transplantation to HIV-positive candidates49,55,56: (1) a stable HIV-positive candidate will immunologically decompensate with iatrogenic immunosuppression, (2) the viral load will increase and/or the immunosuppression may enhance HIV mutations, (3)

the pharmacokinetics and pharmacointeractions of current antiretroviral agents and immunosuppression may lead to subtherapeutic effects or toxicity, (4) recurrent HCV infection along with HIV infection may lead to accelerated fibrosis and graft failure, and (5) the public perception on offering transplantation to HIV-positive recipients will lead to diminished support for donation. Because these concerns have translated into lack of access for HIV-positive patients needing liver transplantation and efforts by third-party payers to deny coverage,57 the remainder of this article will focus on these issues by examining the current status of liver transplantation in the HAART era.

Liver Transplantation in HIV-Positive ESLD in the HAART Era As shown in Table 2, there is an accelerating experience in providing liver transplantation for HIV-positive patients in the HAART era. According to the literature, the total number of liver transplants performed in HIV-positive recipients in the HAART era is now 50: the US experience comprises 21 patients, the European experience comprises 27 patients, and the Asian experience comprises 2 patients. HCV was the primary indication, accounting for 68% of causes of liver disease. With varying periods of follow-up, 80% of patients were reported alive. Roland and Stock queried the United Network for Organ Sharing (UNOS) registry for HIV-positive liver transplants performed during the HAART era and found 19 patients.76 The overall patient survival was 79%, with a median follow-up of 314 days; this was similar to non – HIV-positive liver transplant recipients with a 1-year survival of 88%. The largest single-center series comes from the University of Pittsburgh. A total of 29 HIV-positive ESLD patients have been recipients of liver allografts alone since 1997 (1 patient received both a liver and kidney). The indications for liver transplantation are shown in Table 3. Overall, 89% were for HCV, 7% were for HBV, and 4% were for fulminant liver failure. Twenty-six percent were hemophiliacs that acquired viral hepatitis from coagulation factor replacement. Two patients also had concomitant hepatocellular carcinoma. The average Model for End-Stage Liver Disease score was 21 (range, 8-46). The vast majority (89%) of patients were male, and the average age at transplantation was 46.6 years (range, 34-66). Overall, all but 1 patient received some antiretroviral therapy at some point before transplantation; however, only 16 (55%) of recipients were taking HAART at the time of liver transplant. Twelve patients had been discontinued from HAART for varying periods before

S43

Liver Transplantation in HIV Patients

Table 2. Worldwide Experience with Liver Transplantation in HIV Patients in the HAART Era Center

Year

Reference

Number

% HCV

% Surviving

King’s College, UK Milan Pittsburgh New York Sweden Bonn King’s College, UK Birmingham, UK Leeds, UK Japan Barcelona Miami Pittsburgh UCSF Madrid Sweden Taiwan Clichy/Rome Rome Total

1996 1998 1999 1999 2000 2000 2001 2001 2001 2002 2002 2003 2003 2003 2003 2003 2003 2004 2004

58 59 60 61 62 63 64,65 66 67 68 69 70 65,70 65,71 72 73 74 75 76

1 1 1 1 1 1 5 1 1 1 1 6 10 4 1 3 1 10 1 51

100% 0% 100% 100% 100% 0% 60% 100% 100% 100% NA 50% 80% 25% 100% 100% 0% 70% 100% 68%

100% 100% 100% 100% 100% 100% 40% 100% 0% 100% NA 100% 80% 75% 100% 67% 100% 80% 100% 80%

Abbreviations: NA, not applicable; UCSF, University of California, San Francisco; HIV, human immunodeficiency virus; HCV, hepatitis C virus.

transplantation, resulting in 12 patients who had HIV viral loads in the detectable range. In patients with liver failure, there can be significant difficulties in dosing HAART, given the added hepatoxicity of NRTI and the altered pharmacokinetics of PI metabolism. We have taken the position of allowing ESLD HIV-positive patients to have detectable HIV loads prior to transplantation, as long as the pattern of drug history and demonstrated HAART resistance pattern can predict suppression of HIV replication following reinstitution of HAART once normal liver function returns after liver transplantation. Nine patients died during the follow-up period, which averaged 18 months (range, 1-68). Perioperative complications not related to HIV (accelerated humoral rejection with a strongly positive crossmatch [1] and sepsis [2]) contributed to 3 deaths within 30 days. One late death was related directly to an infectious cause (a central nervous system fungal infection at 58 months after liver transplantation). One patient succumbed to recurrent hepatocellular carcinoma. Recurrent HCV was the principal cause of or was a contributing factor in 4 deaths (in one, treatment for acute and chronic rejection exacerbated HCV, and both complications were equal culprits in worsening liver failure). Although the 1-year survival of all patients was 76% and the overall survival was 69%, of those that survived more than 30

days posttransplant, the 1-year patient survival was 89% and the overall survival was 77%. In all cases, liver transplantation reversed the stigmata of acute and chronic liver failure, including ascites, encephalopathy, muscle wasting, fatigue, hypersplenism, and jaundice. Due to the skewed nature of liver disease in the HIV population—i.e., higher incidence of viral hepatitis—the survival outcomes would be more appropriately compared to a group of viral hepatitis, non–HIV-positive liver transplant recipients. HIV-positive patients with HBV infection, for which effective prophylaxis against recurrence exists using hepatitis B immune globulin (HBIG) and lamivudine,77 do not appear to suffer recurrence and have excellent short- and long-term survival rates. However, analysis of the subset of HCV- and HIV-coinfected patients points to a potential concern of HCV recurrence on long-term survival. Although it is important to note the poor outcomes in HCV- and HIV-coinfected patients from the King’s College group (in which recurrence led to decreased survival), it should be noted that their experience was in the very early period, before the complexity of HAART and immunosuppression was appreciated.65 The combined experience of the Universities of Miami and Pittsburgh points to a more optimistic outcome, with a 1-year survival rate no different from that for HCV-positive, HIV-negative patients.65 At the University of Pittsburgh, HCV recurrence was treated with ribavirin and

S44

Fung et al.

Table 3. Liver Transplantation in HIV-Positive Patients at the University of Pittsburgh Pretransplant Pt.

Diagnosis

Gender

HAART

VL

CD4

Follow-up (mo)

Alive

Recurrence

1 2 3 4

HCV* HCV HCV HCV

M M M F

N Y Y N

⫹ ⫺ ⫺ ⫹

194 486 263 248

7 1 8 1

Y N Y N

Y N N N

5 6

HCV* FHF

M F

N N

⫹ ⫹

345 103

4 49

N Y

Y N

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

HCV* HCV HCV HCV* HCV HCV HBV HCV HBV HCV HCV HCV HCV HCV/HCC* HCV HCV/HCC HCV* HCV HCV HCV* HCV*

M M M M M M M M M M M M M M F M M M M M M

Y Y N N Y Y N N N Y N Y N Y N N Y Y Y Y N

⫺ ⫺ ⫹ ⫹ ⫺ ⫺ ⫹ ⫹ ⫹ ⫺ ⫹ ⫺ ⫺ ⫺ ⫺ ⫹ ⫺ ⫺ ⫺ ⫺ ⫹

71 303 408 413 280 329 272 76 176 672 210 302 204 234 231 314 228 379 879 506 198

58 3 9 1 45 68 20 33 32 1 24 3 14 12 25 24 10 5 10 40 20

N Y N N Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y N

Y N Y N N Y N Y N N Y Y Y Y Y N N N Y N Y

28 29

HCV/HBV* HCV

M M

Y Y

⫺ ⫺

211 1051

10 12

Y Y

N N

Comment IFN Sepsis; MSOF Antibody rejection; refractory anemia IFN; HCV-related death Retransplantation secondary to chronic rejection IFN; CNS fungal infection IFN; HCV-related death Sepsis; MSOF IFN cleared HCV IFN YMDD mutant on adefovir IFN IFN IFN; HCV-related death Death due to HCC recurrence IFN

IFN IFN; HCV-related death; chronic rejection

Abbreviations: IFN, interferon; FHF, fulminant hepatic failure; CNS, central nervous system; HCC, hepatocellular carcinoma; VL, viral load; MSOF, multisystem organ failure; HCV, hepatitis C virus; HAART, highly active antiretroviral therapy. *Hemophilia.

interferon therapy; this was done in 12 HCV patients (52% of HCV patients surviving more than 1 month), although only 2 patients achieved sustained HCV clearance. The impact of HCV recurrence and disease progression in the HIV-positive liver transplant recipients does not allow us to draw a definitive conclusion about the potential for poorer outcomes. However, the issue of HCV recurrence in liver transplantation is certainly of concern in general, in light of recent data showing worsened long-term survival in the whole population of HCVpositive patients.78,79 Certainly, approaches and new agents to combat recurrent HCV will benefit all HCV patients, regardless of their HIV status.

Choice of Immunosuppression Given the ever-growing number of immunosuppressive agents for the prevention and treatment of rejection in clinical transplantation, there are numerous approaches to managing HIV-positive patients receiving liver transplantation. Calcineurin inhibitors, cyclosporine, and tacrolimus remain the mainstays of baseline immunosuppression following liver transplantation and are critical in minimizing the incidence of rejection. Corticosteroids are also utilized in most regimens; however, the use of other adjunctive agents, such as azathioprine, MMF, and rapamycin, has not been uniformly incorporated into immunosuppressive protocols in HIV-

Liver Transplantation in HIV Patients

positive recipients. Antilymphocyte antibodies, ranging from panlymphocyte antibodies— e.g., antithymocyte globulin (Thymoglobulin, ATGAM) and alemtuzumab (Campath 1H)—to anti – T-cell antibodies (e.g., OKT3) to anti-interleukin 2-receptor antibodies— e.g., basiliximab (Simulect) and dacluzimab (Zenapax)—also have not found a place in immunosuppressive protocols for HIV positive patients, the rationale being based on the poorer early experiences with OKT3 in HIV-positive patients.48 In any case, the paramount goal in the selection of a given immunosuppressive regimen is to minimize rejection, while preventing posttransplant OI. Recently, there have been intriguing reports on the potential effect of immunosuppressive agents in the treatment of HIV patients. HIV utilizes cellular cyclophilin for structural protein processing (important in the assembly of HIV virions) as well as for subsequent infectivity.80 Cyclosporine interferes with cyclophilin activity and inhibits HIV replication in vitro through inhibition of lymphocyte activation and specific inhibition of cyclophilin-HIV gag polyprotein interaction.81,82 However, in a randomized, double-blind, placebo-controlled trial, low-dose cyclosporine (2 mg/kg) did not affect HIV viral load or CD4⫹ T-cell counts.83 Nevertheless, the results of an earlier study showed that liver transplant patients acquiring HIV in the perioperative period from contaminated blood or allografts under cyclosporine immunosuppression appeared to experience a cumulative lower risk of HIV progression than those that were already infected.84 The possibility that corticosteroids, through inhibition of lymphocyte activation and thus cytokine production, might also positively influence the impact of HIV has also been examined. A randomized, doubleblind, placebo-controlled trial examining a short course of prednisone (0.5 mg/kg/d for 8 weeks) in patients with CD4 counts averaging 131 cells/L showed that this treatment was well tolerated and reasonably safe in patients with stable HIV disease, although no major HIV benefit was observed.85 On the other hand, a similar study in patients with baseline CD4 counts greater than 200 cells/L noted an increase (⬎40%) in CD4⫹ T cells, although side effects were more notable.86 Targeting reverse transcriptase with nucleoside analogues provides another potential area for immunosuppressive drug/HAART interactions. MPA, through its inhibition of GTP synthesis, acts synergistically with guanosine analogues such as abacavir in the inhibition of HIV replication.20 However, pilot clinical trials that attempted to exploit this robust in vitro phenomenon for salvage in HAART-resistant HIV-positive patients

S45

did not demonstrate a sustained benefit, although transient drops in HIV viral load were obtained.21,87 Nevertheless, these studies demonstrated that MMF could be safely administered and provide reassurance that it can be used safely as part of a maintenance immunosuppressive regimen. Although modulation of host immunity with immunosuppressive agents has yet to demonstrate a clear clinical benefit to HIV-infected patients, available data indicate that these maintenance immunosuppressive agents can be used in the context of liver transplantation for HIV-positive patients without dire consequences for safety.

Rejection One area in which there is little scientific knowledge is the impact of HIV on the risk of rejection and vice versa. HIV-positive patients have variable levels of immune deficiency, and some investigators have suggested that there are diminished rates of rejection in HIV positive patients and thus they may be able to reduce immunosuppression without precipitating rejection.51 This finding has not been borne out in the early posttransplant period, and acceptance of this approach may be quite harmful. Although HIV-positive patients may be able to reduce the level of immunosuppression after transplantation, this is a common phenomenon in non-HIV recipients. In fact, it is not surprising that others have shown rates of rejection equal to or even greater than non – HIV-positive transplant candidates.48 This is due to the fact that an estimated 10% of all CD4⫹ T cells can respond to allogeneic stimuli; thus, total CD4⫹ T-cell counts must be markedly suppressed before the number of alloreactive recipient T cells would obviate the development of rejection. In addition, HIV-infected patients have been shown to have dysregulated B-cell function and polyclonal gammopathy.88,89 This has been postulated to explain the unexpectedly high rates of rejection seen in a recent kidney transplant study.90 Early reports using cyclosporine-based immunosuppression were associated with high rates of rejection and the need for antilymphocyte antibody therapy, which was also associated with high risk of OI and death.48 Whether this increased morbidity and mortality is due to increased risk of OI, or to the potential impact of allogeneic stimulation of HIV-infected CD4⫹ T cells on increasing HIV replication and thus progression of HIV replication, has not been determined. While the optimal approach to immunosuppression in HIV-positive recipients has not been determined, it appears rea-

S46

Fung et al.

Table 4. Principles Outlining Current Approaches To Treatment of HIV Principle 1 HIV replication causes immune destruction and is always harmful. Principle 2 HIV RNA levels reflect viral replication and CD4⫹ T-cell destruction. Combination antiretroviral therapy is most likely to lead to sustained suppression of HIV replication and thus limits the Principle 3 potential for development of resistance. Principle 4 Maximum achievable suppression of HIV replication is the goal of therapy. Principle 5 Given the known reservoir of HIV infected cells, “cure” is unlikely and antiviral therapy is needed to prevent reactivation.

sonable to approach these patients with the same intensity of early immunosuppression as in non – HIVpositive patients. Nevertheless, this area will require further study.

Choice of HAART Regimen In general, the principles for HIV therapy in transplant patients should be the same as for nontransplant patients (Table 4). There are growing numbers of agents and novel compounds to inhibit replication of HIV that have been introduced into the clinical arena. Today, most treatment regimens include at least 2, and sometimes 3 different classes of antiretroviral therapy. The HIV clinician is faced with changing recommendations, some based on efficacy, others based on resistance patterns, and still others based on side effects of antiviral agents, either alone or in combination. These recommendations are then overlaid on the patient’s individual characteristics, necessitating individualized assessment and monitoring of response to HAART. The necessity of continuous HAART after liver transplantation has not yet been demonstrated, although it has been suggested that patients who cannot tolerate HAART posttransplant do poorly. Whether this is due to the lack of HAART or the inability to tolerate HAART due to recurrent HCV has not been determined.65 There is also uncertainty about the need for HAART in long-term nonprogressing HIV-positive patients.91,92

Pharmacointeractions Cyclosporine (CSA), tacrolimus, and rapamycin are primarily metabolized by cytochrome P450 3A2 and 3A4 isoenyzmes and are subject to pharmacokinetic interactions by other drugs that induce or inhibit this enzyme activity. These agents are also substrates of the p-glycoprotein system, also known as the multiple drug resistance transport system. In addition, the PI agents are similarly metabolized by this group of enzymes, some acting as inducers and others as inhibitors of these

metabolic enzyme pathways (Table 5; see also http:// www.hiv-druginteractions.org and http://www.proojinf. org for additional drug interactions). Drug interactions in hepatic metabolism between calcineurin inhibitors and PIs have been well described in liver transplant recipients.61,93 – 97 Several studies have indicated significant pharmacological interactions between tacrolimus and PIs, including nelfinavir, ritonavir, and lopinavir. After liver transplantation and before reinstitution of HIV therapy, tacrolimus levels were adjusted to maintain therapeutic levels. Following resumption of PIs, tacrolimus levels rose dramatically, resulting in toxicity. Tacrolimus dosing was markedly reduced to minimize levels of tacrolimus and resultant toxicity. Such interactions are frequent with combined tacrolimus and PI use, and the average maintenance dose of tacrolimus in the University of Pittsburgh experience is 1 mg/wk. Similar findings have been noted with cyclosporine and PI interactions. Brinkman et al. described a patient receiving simultaneous saquinavir and cyclosporine, in whom the addition of nelfinavir elevated cyclosporine area – under – the curve (AUC) by 5- to 10-fold.96 With a 50% reduction in the CSA dose, in the setting of continued saquinavir use the CSA AUC was still 90% of that without the use of PIs. Like tacrolimus, when used in combination with nelfinavir, saquinavir, or ritonavir, cyclosporine levels may need to be dosed less frequently than once a day. Although not a calcineurin inhibitor, rapamycin belongs to the class of macrolide antibiotics and is metabolized by the same cytochrome P450 pathway. Jain et al. reported significant drug interactions in a liver transplant patient on sirolimus maintenance immunosuppression to which nelfinavir was added.97 Therapeutic monitoring of cyclosporine, tacrolimus, or rapamycin levels is critically important, not only when PI use is instituted but also when it is stopped. In one case, the local physician treating HIV elected to take the patient off of HAART therapy (“drug-free holiday”). The elimination of the PI caused

S47

Liver Transplantation in HIV Patients

Table 5. Drug Interactions Between Commonly Used Transplant Medications and HAART Agent Nucleoside Reverse Transcriptase Inhibitors Didanosine (ddI) Lamivudine (3TC) Stavudine (d4T)

Toxicity

Interactions

GI, neuropathy

Ganciclovir, azoles, MMF, Bactrim, allopurinol, pentamidine, ribavirin Bactrim Ganciclovir, ribavirin, pentamidine

Zalcitabine (ddC)

GI, neuropathy Neuropathy, leukopenia, hepatotoxicity Neuropathy, rash, pancreatitis

Zidovudine (AZT)

Anemia, neutropenia, GI, myopathy

Non-Nucleoside Reverse Transcriptase Inhibitors Delaviridine (Rescriptor)

Efavirenz (Sustiva) Nevirapine (Viramune) Protease Inhibitors Indinavir (Invirase, Criixivan)

Nelfinavir (Viracept) Ritonavir (Norvir) Saquinavir (Fortovaase) Amprenavir (Agenerase) Atazanavir (Reyataz) Lopinavir

Rash, GI, hepatotoxicity

Dizziness, GI, hepatotoxicity, rash GI, rash, hepatotoxicity, fever GI, nephrolithiasis

GI, fatigue GI, asthenia, lipid abnormalities, hepatotoxicity, paresthesias GI, mouth sores

Aminoglycoside, bactrim, Flagyl, ribavirin, dapsone, amphotericin, foscarnet, phenytoin Azathioprine, Bactrim, dapsone, azoles, ganciclovir, amphotericin, ribavirin, pentamidine, foscarnet, ␣-interferon

Azoles, cyclosporine, tacrolimus, rapamycin, phenytoin, phenobarbital, tenofovir, calcium channel blockers, sildenafil, cisapride, Prozac, statins, glipizide, midazolam, caspofungin, ddI, corticosteroids Same as Delaviridine (Rescriptor) Same as Delaviridine (Rescriptor) Azoles, cyclosporine, tacrolimus, rapamycin, phenytoin, phenobarbital, tenofovir, calcium channel blockers, sildenafil, cisapride, Prozac, statins, glipizide, midazolam, caspofungin, ddI, corticosteroids Same as Indinavir (Invirase, criixivan) Same Indinavir (Invirase, criixivan) Same Indinavir (Invirase, criixivan)

Abbreviation: GI, gastrointestinal.

drastic reduction in tacrolimus levels, precipitating acute rejection that evolved into chronic rejection.95 This case also highlights the critical need for those managing transplant immunosuppression and those managing HIV medications to communicate before making adjustments in either medication. Unfortunately, the drug interactions are sufficiently complex that drug dosing must be determined empirically for each patient. Although HIV PI levels are not routinely measured, there is reason to consider studying the utility of monitoring of PI levels in patients receiving tacrolimus, cyclosporine, or rapamycin. In one report in which saquinavir levels were measured, the AUC was 4 to 11 times higher than in patients receiving saquinavir but not cyclosporine.96

Drug interactions between anti-HIV and antirejection and transplant medications are not only limited to calcineurin inhibitor and PI use. As noted earlier, MPA is a potent, selective, noncompetitive, and reversible inhibitor of inosine monophosphate dehydrogenase, an enzyme involved in the synthesis of deoxyguanosine triphosphate (dGTP). Reduction in intracellular dGTP concentrations induced by MPA is expected to increase the antiretroviral activity of abacavir, a guanosine analogue. In vitro studies show that MPA synergistically increases the antiviral effect of abacavir, didanosine, and tenofovir against multi – NRTI-resistant HIV strains.20 Antagonism due to inhibition of thymidine kinase has been noted with MPA (and MMF) plus the thymidine analogues

S48

Fung et al.

Table 6. Effect of Mycophenolate Mofetil (MMF) on Nucleoside Reverse Transcriptase Inhibitors (NRTI) NRTI Zidovudine (AZT; Retrovir) Stavudine (d4T; Zerit) Zalcitabine (ddC; HIVID) Lamivudine (3TC; Epivir) Didanosine (ddI, Videx) Abacavir (Ziagen)

Mechanism

Effect of MMF

Thymidine analogue

Antagonist

Thymidine analogue

Antagonist

Cytidine analogue Cytidine analogue Inosine analogue

Enhances

Guanosine analogue

Enhances

zidovudine and stavudine (Table 6). This also raises the important concern of whether the mitochondrial toxicity of NRTI will be potentially augmented by the effect of MPA. Mitochondrial toxicity and lactic acidosis has been linked to the use of D drugs such as didanosine, stavudine, and zalcitabine and is attributed to the damage of mitochondrial polymerase ␥ by these agents. Patients with this syndrome can present with lethargy, malaise, hepatitis, peripheral neuropathy, pancreatitis, and other end-organ damage. Failure to identify this syndrome may result in death from hypoxia and lactic acidosis. This has also been suggested to be a potential area for enhanced toxicity.76 Ribavirin used in combination for HCV therapy has been shown to inhibit phosphorylation of zidovudine, stavudine, and zalcitabine. Ribavirin may also increase the potency of didanosine and improve anitviral activity. Since ribavirin is also a known inhibitor of inosine monophosphate dehydrogenase, this would add another level of potential interaction with MPA and NRTI and could account for enhanced toxicity. In a report of an HCV-coinfected HIV patient on HAART, MMF, and ribavirin, with lactic acidosis and a liver biopsy revealing 80% microsteatosis, electron microscopy revealed abnormalities in mitochondrial structure consistent with NRTI toxicity.98

Opportunistic Infections OI refers to the development of infectious disease in individuals with significant defects in host defenses. The pathogens responsible for this infection often lack intrinsic virulence and therefore require an immune or inflammatory defect to establish infection. Probably the single most important achievement in

the management of the immunocompromised patient are the improvements in the strategies for detection, prevention, and treatment of OI. For prophylaxis, the routine addition of trimethoprim/sulfamethoxazole has reduced the incidence of Pneumocystis jiroveci (formerly Pneumocystis carinii), Toxoplasmosis gondii, and Listeria monocytogenes. The development of assays to detect OI when the infection is subclinical or at the earliest onset of disease allows for targeted preemptive therapy. Such is the case in CMV, in which pp65 antigenemia or CMV polymerase chain reaction monitoring allows for earlier detection and better assessment of efficacy of treatment.99 However, the utility of early detection would not be of benefit if effective agents were not available for treatment. The development of ganciclovir, first intravenously and now orally, has reduced the morbidity and mortality of CMV infection.100 While similar assays are being developed for fungal infections and Epstein-Barr viral infections, these tests remain in the developmental phase. The risk of OI in immunosuppressed HIV-positive transplant patients does not appear to be above and beyond the risk of immunosuppressed HIV-negative transplant recipients using current-day prophylaxis, monitoring, and treatment. The ability to attain routine suppression of HIV viral loads on HAART is associated with stabilization or improvement in CD4 counts, which has been shown to decrease OI in HIVpositive patients.101

Current Recommendations for Liver Transplantation in HIV-Positive Patients HIV-infected ESLD patients should be considered for liver transplantation if they meet standard medical criteria for inclusion/exclusion as currently practiced by a multidisciplinary transplant team and meet UNOS criteria for listing. Added institutional requirements include expertise in HIV management, a transplant pharmacologist with expertise in drug interactions, a transplant infectious diseases specialist, and a fiscal administrator knowledgeable in the area of insurance coverage. In addition to the standard transplant evaluation process, CD4⫹ T-cell counts, quantitative HIV loads, and current/prior responsiveness to antiviral therapy must be obtained. Patients who demonstrate drug resistance can be considered if an effective antiretroviral drug regimen can be devised; drug-resistance pattern determinations may be required if a clear history of antiviral therapy cannot be obtained in the presence of detectable HIV viral load. Clinical responsiveness to antiretroviral therapy is defined as suppression

Liver Transplantation in HIV Patients

of HIV RNA to less than 0.4 ⫻ 103 copies/mL (using the Chiron assay). Individuals with severe liver dysfunction preventing tolerance of antiretroviral therapy should be considered if they have shown prior responsiveness to, or are naive to HAART. It has been suggested that HAART be stopped before transplantation in order to allow “wild type virus [to] rebound”; however, this approach has not been proven.102 These same authors have suggested that lamivudine-resistant hepatitis B may pose a problem in patients with HIV and HBV. However, the options of using high-dose hepatitis B immune globulin and/or the promising experience with adefovir and tenofovir disoproxil for lamivudineresistant HBV appear to effectively suppress HBV recurrence. Exclusion criteria are continuing to evolve as more experience is gleaned. Those conditions known to negatively affect survival after liver transplantation, such as renal failure, requirement for life support, and advanced malnutrition are risk factors that have excluded patients from active consideration. The criteria for OI exclusions include a previous OI within the previous 6 to12 months; previous Kaposi’s sarcoma (given the high rate of recurrence103,104); and patients with evidence of JC polyoma viral infection. In the 29 cases of liver transplant at the University of Pittsburgh, 6 patients had a remote history of Pneumocystis carinii pneumonia with posttransplant prophylaxis, and none of them experienced PCP recurrence. While most centers that are performing kidney transplantation in HIVpositive candidates have used a CD4 cutoff of 200 cells/mm3 as being the lower threshold for consideration, liver transplant patients have hypersplenism that may render the CD4 count artifactually low and may not actually reflect the overall status of the patient. Thus, lower CD4 counts for these patients can be accepted based on a relative comparison of the CD4 count with the absolute neutrophil count. Lastly, given the complexity of posttransplant monitoring and complex drug regimens, a strong history of noncompliance should be considered a contraindication; however, it should be recognized that due consideration should be given on an individual basis to extenuating circumstances, e.g., long-term nonprogressors. Because of a relatively high rate of acute cellular rejection in HIV-positive patients, calcineurin-based immunosuppression should be used, with or without steroids and with or without other adjunctive agents, such as MMF. Although we have avoided using antilymphocyte induction, use of induction antibodies has been used in HIV-positive kidney transplant recipients without any apparent detrimental effects on HIV or

S49

increased risk of OI (Dr. Henke Tan, University of Pittsburgh, personal communication, July 2004). With respect to the selection of HAART, very often the choice of antiretroviral medications is dictated by the past history of their use and the patient’s responsiveness to various regimens. In our liver transplant patients, HAART has utilized PI combination antiretroviral therapy before (unless not tolerated because of severe liver dysfunction) and after transplantation, when the total bilirubin has fallen to 2 mg/dL. Care should be taken in prescribing antiretroviral medications to continue already successful combinations used by the patient and to avoid drugs that are associated with clinical resistance in the patient. It is critical to modify doses of cyclosporine, tacrolimus, and rapamycin— based on pharmacokinetic interactions with HAART that includes PI)— based on their respective blood levels routinely monitored after transplantation. In addition, HAART will pose a challenge in patients with HCV due to the augmented risk of hepatotoxicity.105,106 Because HCV is the most common coinfection in the HIV-positive patient with ESLD, the issues of HCV recurrence that plague non–HIV-positive liver transplant recipients also apply to the HIV-positive patient. Although the guidelines for treatment of HCV recurrence are evolving, HCV treatment should be initiated posttransplant when there is liver biopsy documentation of recurrent HCV infection and disease is moderate –to severe or progressive. A liver biopsy should be obtained prior to treatment and a HAI score greater than 8 and/or fibrosis stage greater than 2 should be considered as the threshold for treatment with interferon and ribavirin. However, these agents are not without substantial side –effects: ribavirin is excreted by the kidney, and given the high incidence of renal dysfunction in liver transplant patients, dosing should be started at low levels and increased as tolerated. The contraindications for interferon and ribivarin use are shown in Table 7. In addition, the added risk to medical and surgical teams of HIV exposure is not irrelevant—this argument has been put forward as a reason not to perform transplants at all in this population. All members of the surgical team should be made aware of risks and a treatment plan for prophylaxis should be determined before initiating the transplant procedure.56

Future Directions A multicenter prospective study funded by the National Institutes of Health and coordinated by the University of California, San Francisco, was designed to evaluate various outstanding issues in the use of liver and kidney transplantation in people with HIV disease.55,57 The

S50

Fung et al.

Table 7. Contraindications to the Use of Interferon and Ribivirin in HIV-Positive Liver Transplant Recipients Absolute Contraindications to ribavirin use 1. Dialysis 2. Prior serious adverse reaction to ribavirin 3. Hemoglobin ⬍ 10 g/dL and inability to correct with growth factors Relative contraindications to ribavirin use 1. Serum creatinine ⬎ 2.0 mg/dL 2. Hemolytic anemia 3. Concomitant use of “D drugs” — ddI, d4T, ddC Absolute Contraindications to interferon use 1. Uncontrolled depression or other psychiatric disease 2. Uncontrolled thyroid disease 3. History of significant retinopathy (visual loss) Relative contraindications to interferon use 1. Autoimmune disease (e.g., lupus, ulcerative colitis, psoriatic arthritis) 2. Concomitant use of AZT 3. Ongoing acute or chronic rejection 4. Platelet count ⬍ 40,000 or WBC ⬍ 3,000 and inability to correct with growth factors Abbreviations: ddI, didanosine; d4T, stavudine; ddC, zalcitabine; AZT, zidovudine; WBC, white blood cell count.

long-range goals are (1) to provide patients and clinicians with information regarding the HIV-specific risks of transplantation, (2) to provide clinicians with information necessary to manage immunosuppressive and HAART medications together, and (3) to understand underlying basic science mechanisms that explain patient outcomes so that clinical management may be adjusted to maximize these outcomes. The study anticipates enrolling 150 kidney transplant recipients and 125 liver transplant recipients over 3 years with 2 to 5 years of follow-up. The primary endpoints are subject survival and graft survival; secondary endpoints include (1) opportunistic complications and changes in CD4⫹ T-cell counts and HIV-1 RNA levels; (2) viral markers and host responses to viral copathogens, including hepatitis B and C and herpesviruses; (3) rejection rates and markers of alloresponse; and (4) pharmacokinetic interactions between immunosuppressive agents and the hepatically metabolized antiretroviral agents.

Conclusions We believe that while there should be further accrual and follow-up of these patients to assess long-term benefits and risks, there is ample evidence to support the application of this life-saving procedure to selected HIV-positive patients with ESLD. The growing expe-

rience summarized here suggests that liver transplantation is effective in selected HIV-positive patients. There have been significant advances in the management of transplant patients and in the management of HIV infection that have allowed liver and other transplant procedures to be successful. The successful application of other transplant procedures, such as kidney107–109 and heart,110 highlights the growing acceptance of transplantation in HIV-positive patients. Indeed, a recent editorial supports broader application of all solid-organ transplant procedures for HIV-positive patients.111

References 1. 1993 Revised Classification System for HIV Infection and Expanded Surveillance of Definition for AIDS Among Adolescents and Adults. MMWR Recomm Rep 1992;31:1 – 19. 2. Karon JM, Rosenberg PS, McQuillan G, Khare M, Gwinn M, Peterson LR. Prevalence of HIV infection in the United States. JAMA 1996;276:126 – 131. 3. Enger C, Graham N, Peng Y, Chmiel JS, Kingsley LA, Detels R, Munoz A. Survival from early, intermediate, and late stages of HIV infection. JAMA 1996;275:1329 – 1334. 4. Fauci AS, Pantaleo G, Stanley S, Weissman D. Immunopathogenic mechanisms of HIV infection. Ann Intern Med 1996;124: 654 – 663. 5. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, et al. Plasma viral load and CD4⫹ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997; 126:946 – 954. 6. Stevenson M. Viral genes and their products. In Merigan TC, Bartlett JG, Bolognesi D, eds. Textbook of AIDS Medicine, 2nd ed. pp. 13-48, Baltimore: Williams & Wilkins; 2001;13 – 48. 7. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995;373:117 – 122. 8. Buchbinder SP, Katz MH, Hessol, NA, O’Malley PM, Holmberg SD. Long-term HIV-1 infection without immunologic progression. AIDS 1995;8:1123 – 1128. 9. Pantaleo G, Menzo S, Vaccarezza M, Graziosi C, Cohen OJ, Demarest JF, et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N Engl J Med 1995;332:209 – 216. 10. Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team. N Engl J Med 1996;335:1081 – 1090. 11. Tavel JA, Miller KD, Masur H. Guide to major clinical trials of antiretroviral therapy in human immunodeficiency virus-infected patients: Protease inhibitors, non-nucleoside reverse transcriptase inhibitors, and nucleotide reverse transcriptase inhibitors. Clin Infect Dis 1999;28:643 – 676. 12. Murphy EL, Collier AC, Kalish LA, Assmann SF, Para MF, Flanigan TP, et al. Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease. Ann Intern Med 2001;135:17 – 26. 13. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer

Liver Transplantation in HIV Patients

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338:853 – 860. Hammer SM, Squires KE, Hughes MD, Grimes JM, Demeter LM, Currier JS, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997;337:725 – 733. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R, et al. Positive effects of combined antiretroviral therapy on CD4⫹ T cell homeostasis and function in advanced HIV disease. Science 1997;277:112 – 116. Karpas A, Lowdell M, Jacobson SK, Hill F. Inhibition of human immunodeficiency virus and growth of infected T cells by the immunosuppressive drugs cyclosporin A and FK506. Proc Natl Acad Sci U S A 1992;89:8351 – 8355. Martin LN, Murphey-Corb M, Mack P, Baskin GB, Pantaleo G, Vaccarezza M, et al. Cyclosporin A modulation of early virologic and immunologic events during primary simian immunodeficiency virus infection in rhesus monkeys. J Infect Dis 1997;176: 374 – 383. Andrieu JM, Even P, Venet A, Tourani JM, Stern M, Lowenstein W, et al. Effects of cyclosporin on T-cell subsets in human immunodeficiency virus disease. Clin Immunol Immunopathol 1988;47:181 – 198. Levy R, Jais JP, Tourani JM, Even P, Andrieu JM. Long-term follow-up of HIV positive asymptomatic patients having received cyclosporin A. Adv Exp Med Biol 1995;374:229 – 234. Margolis D, Heredia A, Gaywee J, Oldach D, Drusano G, Redfield R. Abacavir and mycophenolic acid, an inhibitor of inosine monophosphate dehydrogenase, have profound and synergistic anti-HIV activity. J Acquir Immune Defic Syndr 1999;21:362–370. Chapuis AG, Paolo Rizzardi G, D’Agostino C, Attinger A, Knabenhans C, Fleury S, et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med 2000;6:762 – 768. Sulkowski MS, Moore RD, Mehta SH, Chaisson RE, Thomas DL. Hepatitis C and progression of HIV disease. JAMA 2002; 288:199 – 206. Staples CT Jr, Rimland D, Dudas D. Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): The effect of coinfection on survival. Clin Infect Dis 1999;29:150 – 154. Rusti V, Hoofnagle J, Gerin J. Hepatitis B virus infection in the acquired immunodeficiency syndrome. Ann Intern Med 1984; 101:795 – 797. Ragni MV, Belle SH. Impact of human immunodeficiency virus infection on progression to end-stage liver disease in individuals with hemophilia and hepatitis C virus infection. J Infect Dis 2001;183:1112 – 1115. Eyster ME, Sherman KE, Goedert JJ, Katsoulidou A, Hatzakis A. Natural history of hepatitis C virus infection in multitransfused hemophiliacs: Effect of coinfection with human immunodeficiency virus. The Multicenter Hemophilia Cohort Study. J Acquir Immune Defic Syndr 1993;6:602 – 610. Ockenga J, Tillmann HL, Trautwein C, Stoll M, Manns MP, Schmidt RE. Hepatitis B and C in HIV infected patients. Prevalence and prognostic value. J Hepatol 1997;27:18 – 24. Soto B, Sanchez-Quijano A, Rodrigo L, del Olmo JA, GarciaBengoechea M, Hernandez-Quero J, et al. Human immunode-

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41. 42.

43.

44.

S51

ficiency virus infection modifies the natural history of chronic parenterally-acquired hepatitis C with an unusually rapid progression to cirrhosis. J Hepatol 1997;26:1 – 5. Monga HK, Rodriguez-Barradas MC, Breaux K, Khattak K, Troisi CL, Velez M,Yoffe B. Hepatitis C virus infection-related morbidity and mortality among patients with human immunodeficiency virus infection. Clin Infect Dis 2001;33:240 – 247. Soriano V, Garcia-Samaniego J, Rodriguez-Rosado R, Gonzalez J, Pedreira J. Hepatitis C and HIV infection: Biological, clinical, and therapeutic implications. J Hepatol 1999;31(suppl 1):119 – 123. Bica I, McGovern B, Dhar R, Stone D, McGowan K, Scheib R, Snydman DR. Increasing mortality due to end-stage liver disease in patients with human immunodeficiency virus infection. Clin Infect Dis 2001;32:492-497. Soriano V, Garcia-Samaniego J, Valencia E, Rodriguez-Rosado R, Munoz F, Gonzalez-Lahoz J. Impact of chronic liver disease due to hepatitis viruses as cause of hospital admission and death in HIV-infected drug users. Eur J Epidemiol 1999;15:1 – 4. Puoti M, Spinetti A, Ghezzi A, Donato F, Zaltron S, Putzolu V, et al. Mortality from liver disease in patients with HIV infection: A cohort study. J Acquir Immune Defic Syndr 2000;24:211 – 217. Gordon S, Reddy R, Gould E. The spectrum of liver disease in the acquired immunodeficiency syndrome. J Hepatol 1986;2: 475 – 484. Carr A, Morey A, Mallon P, Williams D, Thorburn DR. Fatal portal hypertension, liver failure, and mitochondrial dysfunction after HIV-1 nucleoside analogue-induced hepatitis and lactic acidaemia. Lancet 2001;357:1412 – 1414. Chariot P, Drogou I, de Lacroix-Szmania I, Eliezer-Vanerot MC, Chazaud B, Lombes A, et al. Zidovudine-induced mitochondrial disorder with massive liver steatosis, myopathy, lactic acidosis, and mitochondrial DNA depletion. J Hepatol 1999;30: 156 – 160. Walker UA, Bauerle J, Laguno M, Murillas J, Mauss S, Schmutz G, et al. Depletion of mitochondrial DNA in liver under antiretroviral therapy with didanosine, stavudine, or zalcitabine. Hepatology 2004;39:311 – 317. Ena J, Amador C, Benito C, Fenoll V, Pasquau F. Risk and determinants of developing severe liver toxicity during therapy with nevirapine- and efavirenz-containing regimens in HIV-infected patients. Int J STD AIDS 2003;14:776 – 781. Bouche H, Housset C, Dumont JL, Carnot F, Menu Y, Aveline B, et al. AIDS-related cholangitis: Diagnostic features and course in 15 patients. J Hepatol 1993;17:34 – 39. Pol S, Romana CA, Richard S, Amouyal P, Desportes-Livage I, Carnot F, et al. Microsporidia infection in patients with the human immunodeficiency virus and unexplained cholangitis. N Engl J Med 1993;328:95 – 99. Zandman-Goddard G, Shoenfeld Y. HIV and autoimmunity. Autoimmun Rev 2002;1:329 – 337. Mason AL, Xu L, Guo I, Munoz S, Jaspan JB, Bryer-Ash M, et al. Detection of retroviral antibodies in primary biliary cirrhosis and other idiopathic biliary disorders. Lancet 1998;351:1620 – 1624. Spital A. Should all human immunodeficiency virus-infected patients with end-stage renal disease be excluded from transplantation? Transplantation 1998;65:1187 – 1191. Phillips A, Wainberg MA, Coates R, Klein M, Rachlis A, Read S, et al. Cyclosporine-induced deterioration in patients with AIDS. Can Med Assoc J 1989;140:1456 – 1460.

S52

Fung et al.

45. Baum KF. Immunosuppression in HIV-infected transplant recipients. Clin Infect Dis 1992;14:622 – 623. 46. Schwarz A., Offermann G, Keller F, Bennhold I, L’age-Stehr J, Krause PH, Mihatsch MJ: The effect of cyclosporine on the progression of human immunodeficiency virus type 1 infection transmitted by transplantation— data on four cases and review of the literature. Transplantation 1993;55:95 – 103. 47. Dummer JS, Erb S, Breinig MK, Ho M, Rinaldo CR Jr, Gupta P, et al. Infection with human immunodeficiency virus in the Pittsburgh transplant population. A study of 583 donors and 1043 recipients, 1981-1986. Transplantation 1989;47:134–140. 48. Tzakis AG, Cooper MH, Dummer JS, Ragni M, Ward JW, Starzl TE. Transplantation in HIV⫹ patients. Transplantation 1990;49:354 – 358. 49. Fung JJ. Transplantation in HIV-positive patients? Medscape Ask the Experts. Available at www.medscape.com/medscape/ transplantation/AskExperts/2000/02/TRAN-ae09.html. Accessed February 29, 2000. 50. Ragni MV, Bontempo FA, Lewis JH. Organ transplantation in HIV-positive patients with hemophilia. N Engl J Med 1990; 322:1886 – 1887. 51. Erice A, Rhame FS, Heussner RC, Dunn DL, Balfour HH Jr. Human immunodeficiency virus infection in patients with solidorgan transplants: Report of five cases and review. Rev Infect Dis 1991;13:537 – 547. 52. Jacobson SK, Calne RY, Wreghitt TG. Outcome of HIV infection in transplant patient on cyclosporin [letter]. Lancet 1991; 337:794. 53. Gordon FH, Mistry PK, Sabin CA, Lee CA. Outcome of orthotopic liver transplantation in patients with haemophilia. Gut 1998;42:744 – 749. 54. Vanhems P, Bresson-Hadni S, Vuitton DA, Miguet JP, Gillet M, Lab M, Brechot C. Long-term survival without immunosuppression in HIV-positive liver-graft recipients. Lancet 1991;337:126. 55. Kuo PC, Stock PG. Transplantation in the HIV⫹ patient. Am J Transplant 2001;1:13 – 17. 56. Samuel D, Duclos Vallee JC, Teicher E, Vittecoq D. Liver transplantation in patients with HIV infection. J Hepatol 2003;39: 3 – 6. 57. Roland M, Lo B, Braff B, Stock PG. Key clinical, ethical, and policy issues in the evaluation of the safety and efficacy of solid organ transplantation in HIV-infected patients. Arch Intern Med 2003;163:1773 – 1778. 58. McCarthy M, Gane E, Pereira S, Tibbs CJ, Heaton N, Rela M, et al. Liver transplantation for haemophiliacs with hepatitis C cirrhosis. Gut 1996;39:870 – 875. 59. Caccamo L, Colledan M, Rossi G, Gridelli B, Maggi U, Vannelli A, et al. Post-transplant primary disease does not influence 6-year survival after liver transplantation beyond 1 year. Transpl Int 1998;11(suppl 1):S212 – S220. 60. Ragni MV, Dodson SF, Hunt SC, Bontempo FA, Fung JJ. Liver transplantation in a hemophilia patient with acquired immunodeficiency syndrome. Blood 1999;93:1113 – 1114. 61. Sheikh AM, Wolf DC, Lebovics E, Goldberg R, Horowitz HW. Concomitant human immunodeficiency virus protease inhibitor therapy markedly reduces tacrolimus metabolism and increases blood levels. Transplantation 1999;68:307 – 309. 62. Schvarcz R, Rudbeck G, Soderdahl G, Stahle L. Interaction between nelfinavir and tacrolimus after orthotopic liver transplantation in a patient coinfected with HIV and Hepatiitis C virus (HCV). Transplantation 2000;69:2194 – 2195. 63. Schliefer K, Paar WD, Aydemir G, Wolff M, Rockstroh JK,

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76. 77.

78.

79.

80.

Spengler U, Sauderbruch T. Orthotopic liver transplantation in a 33-year-old patient with fulminant hepatitis B and HIV infection. Dtsch Med Wochenschr 2000;125:523 – 526. Prachalias A, Anton P, Taylor C, Srinivasan P, Muiesan P, Wendon J, et al. Liver transplantation in adults coinfected with HIV. Transplantation 2001;72:1684 – 1688. Ragni M, Belle SH, Im KA, Neff G, Roland M, Stock P, et al. Survival of human immunodeficiency virus-infected liver transplant recipients. J Infect Dis 2003;188:1412 – 1420. Gow PJ, Mutimer D. Liver transplantation for an HIV-positive patient in the era of highly active antiretroviral therapy. AIDS 2001;15:291 – 292. Tolan DJ, Davies MH, Millson CE. Fibrosing cholestatic hepatitis after liver transplantation in a patient with Hepatitis C and HIV infection [letter]. N Engl J Med 2001;345:1781. Sugawara Y, Ohkubo T, Makuuchi M, Kimura S, Morisawa Y, Tachikawa N, Oka S. Living donor liver transplantation in an HIV-positive patient with hemophilia. Transplantation 2002; 74:1655 – 1656. Rafecas A, Rufi G, Fabregat J, Xiol X. Liver transplantation in a patient infected by human immunodeficiency virus. Med Clin (Barc) 2002;119:596. Neff GW, Bonham A, Tzakis AG, Ragni M, Jayaweera D, Schiff ER, et al. Orthotopic liver transplantation in patients with human immunodeficiency virus and end-stage liver disease. Liver Transpl 2003;9:239 – 247. Stock PG, Roland ME, Carlson L, Freise CE, Roberts JP, Hirose R, et al. Kidney and liver transplantation in human immunodeficiency virus-infected patients: A pilot safety and efficacy study. Transplantation 2003;76:370 – 375. Gonzalez Alonso R, Barcena R, Blesa C, Garcia M, Moreno A, Fortun J, et al. Liver transplantation in a patient coinfected with human immunodeficiency virus and hepatitis C virus. Transplant Proc 2003;35:1846 – 1847. Nowak P, Schvarcz R, Ericzon BG, Flamhole L, Sonnerborg A. Follow-up of a antiretroviral treatment in liver transplant recipients with primary and chronic HIV type 1 infection. AIDS Res Hum Retroviruses 2003;19:13 – 19. Jeng LB, Lee WC, Hung CM, Yu MC, Kuo LM, Chen MF. Liver transplantation in a patient with human immunodeficiency virus infection: A case report. Transplant Proc 2003;35: 361. Boschetto A, Ettorre GM, Durand F, Dondero F, Francoz C, Soommacale D, et al. Is anti-retroviral treatment after transplantation in HIV positive patients always necessary? [abstract no. 14]. 10th Congress of the International Liver Transplantation Society, Kyoto, Japan, 10 June 2004. Liver Transpl 2004;10:C6. Roland M, Stock PG. Review of solid-organ transplantation in HIV-infected patients. Transplantation 2003;75:425 – 429. Yoshida EM, Erb SR, Partovi N, Scudamore CH, Chung SW, Frighetto L, et al. Liver transplantation for chronic hepatitis B infection with the use of combination lamivudine and low-dose hepatitis B immune globulin. Liver Transpl Surg 1999;5:520 – 525. Berenger M, Forman LM, Lewis JD, Berlin HA, Feldman HI, Lucey MR. The association between hepatitis C infection and survival after orthotopic liver transplantation. Gastroenterology 2002;122:889 – 896. Berenguer M, Ferrell L, Watson J, Prieto M, Kim M, Rayon M, et al. HCV-related fibrosis progression following liver transplantation: Increase in recent years. J Hepatol 2000;32:673 – 684. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. Human

Liver Transplantation in HIV Patients

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 1993;73:1067 – 1078. Bartz SR, Hohenwalter E, Hu MK, Rich DH, Malkovsky M. Inhibition of human immunodeficiency virus replication by nonimmunosuppressive analogs of cyclosporin A. Proc Natl Acad Sci U S A 1995;92:5381 – 5385. Mlynar E, Bevec D, Billich A, Rosenwirth B, Steinkasserer A. The non-immunosuppressive cyclosporin A analogue SDZ NIM 811 inhibits cyclophilin A incorporation into virions and virus replication in human immunodeficiency virus type 1-infected primary and growth-arrested T cells. J Gen Virol 1997;78:825–835. Calabrese LH, Lederman MM, Spritzler J, Coombs RW, Rox L, Schock B, et al. Placebo-controlled trial of cyclosporin-A in HIV-1 disease: Implications for solid organ transplantation. J Acquir Immune Defic Syndr 2002;29:356 – 362. Bouscarat F, Samuel D, Simon F, Debat P, Bismuth H, Saimot AG. An observational study of 11 French liver transplant recipients infected with human immunodeficiency virus type 1. Clin Infect Dis 1994;19:854 – 859. McComsey GA, Whalen CC, Mawhorter SD, Asaad R, Valdez H, Patki AH, et al. Placebo-controlled trial of prednisone in advanced HIV-1 infection. AIDS 2001;15:321 – 327. Wallis RS, Kalayjian R, Jacobson JM, Fox L, Purdue L, Shikuma CM, et al. A study of the immunology, virology, and safety of prednisone in HIV-1-infected subjects with CD4 cell counts of 200 to 700 mm3. J Acquir Immune Defic Syndr 2003;32:281–286. Coull JJ, Turner D, Melby T, Betts MR, Lanier R, Margolis DM. A pilot study of the use of mycophenolate mofetil as a component of therapy for multidrug-resistant HIV-1 infection. J Acquir Immune Defic Syndr 2001;26:423 – 434. Lane HC, Masur H, Edgar LC, Whalen G, Rook AH, Fauci AS. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983;309:453 – 458. Shirai A, Cosentino M, Leiitman-Klinman SF, Klinman DM. Human immunodeficiency virus infection induces both polyclonal and virus-specific B cell activation. J Clin Invest 1992;89: 561 – 566. Hirose K, Baxter-Lowe LA, Carlson L, Freise CE, Hirose R, Cunniffe K, et al. Unexpectedly high rejection rates in HIVpositive recipients of renal transplants [abstract no. 481]. 2004 American Transplant Congress, Boston, MA, 16 May 2004. Am J Transplant 2004;4(suppl 8):290. Toso C, Berney T, Oberholzer J, Chave JP, Martin PPY, Zeender E, et al. Kidney-pancreas transplantation in a long-term non-progressor HIV-infected recipient. Am J Transplant 2003; 3:631 – 633. Purgus R, Tamalet C, Poignard P, Spire B, George F, Robert A, Olmer M. Long-term nonprogressive human immunodeficiency virus-1 infection in a kidney allograft recipient. Transplantation 1998;66:1384 – 1386. Jain AB, Venkataramanan R, Shapiro R, Scantlebury V, Potdar S, Bonham A, et al. The interaction between antiretroviral agents and tacrolimus in liver and kidney transplant patients. Liver Transpl 2002;8:841 – 845. Jain AB, Venkataramanan R, Eghtesad B, Marcos A, Ragni M, Shapiro R, et al. Effect of coadministered lopinavir and ritonavir (Kaletra) on tacrolimus blood concentration in liver transplantation patients. Liver Transpl 2003;9:954 – 960. Antonini M, Ettorre GM, Vennarecci G, D’Offizi G, Narciso P,

S53

Del Non F, et al. Anti-retrovirals and immunosuppressive drug interactions in a HIV-positive patient after liver transplantation. Hepatogastroenterology 2004;51:646 – 648. 96. Brinkman K, Huysmans F, Burger DM. Pharmacokinetic interaction between saquinavir and cyclosporine [letter]. Ann Intern Med 1998;129:914 – 915. 97. Jain AK, Venkataramanan R, Fridell JA, Gadomski M, Shaw LM, Ragni M, et al. Nelfinavir, a protease inhibitor, increases sirolimus levels in a liver transplantation patient: A case report. Liver Transpl 2002;8:838 – 840. 98. Antoniades C, Macdonald C, Knisely A, Taylor C, Norris S. Mitochondrial toxicity associated with HAART following liver transplantation in an HIV-infected recipient. Liver Transpl 2004;10:699 – 702. 99. Kusne S, Shapiro R, Fung J. Prevention and treatment of cytomegalovirus infection in organ transplant recipients. Transpl Infect Dis 1999;1:187 – 203. 100. McGavin JK, Goa KL. Ganciclovir: An update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs 2001;61:1153 – 1183. 101. Price P, Mathiot N, Krueger R, Stone S, Keane NM, French MA. Immune dysfunction and immune restoration disease in HIV patients given highly active antiretroviral therapy. J Clin Virol 2001;22:279 – 287, 2001. 102. Gow PJ, Pillay D, Mutimer D. Solid organ transplantation in patients with HIV infection. Transplantation 2001;72:177–181. 103. Gomez E, Aguado S, Rodriguez M, Alvarez-Grande J. Kaposi’s sarcoma after renal transplantation— disappearance after reduction of immunosuppression and reappearance 7 years later after start of mycophenolate mofetil treatment. Nephrol Dial Transplant 1998;13:3279 – 3280. 104. Doutrelepont JM, De Pauw L, Gruber SA, Dunn DL, Qunibi W, Kinnaert P, et al. Renal transplantation exposes patients with previous Kaposi’s sarcoma to a high risk of recurrence. Transplantation 1996;62:463 – 466. 105. den Brinker M, Wit FW, Wertheim-van Dillen PM, Jurriaans S, Weel J, van Leeuwen R, et al. Hepatitis B and C virus co-infection and the risk for hepatotoxicity of highly active antiretroviral therapy in HIV-1 infection. AIDS 2000;14:2895–2902. 106. McGovern B, Bica I. Risk of HAART therapy in hepatitis C. Hepatology 2002;35:730. 107. Abbott KC, Swanson SJ, Agodoa LY, Kimmel PL. Human immunodeficiency virus infection and kidney transplantation in the era of highly active antiretroviral therapy and modern immunosuppression. J Am Soc Nephrol 2004;5:1633 – 1639. 108. Ahuja TS, Zingman B, Glicklich D. Long-term survival in an HIV-infected renal transplant recipient. Am J Nephrol 1997; 17:480 – 482. 109. Swanson SJ, Kirk AD, Ko CW, Jones CA, Agodoa LY, Abbott KC. Impact of HIV seropositivity on graft and patient survival after cadaveric renal transplantation in the United States in the pre highly active antiretroviral therapy (HAART) era: An historical cohort analysis of the United States Renal Data System. Transpl Infect Dis 2002;4:144 – 147. 110. Calabrese LH, Albrecht M, Young J, McCarthy P, Haug M, Jarcho J, Zackin R. Successful cardiac transplantation in an HIV-1-infected patient with advanced disease. N Engl J Med 2003;348:2323 – 2328. 111. Halpern SD, Ubel PA, Caplan AL. Solid-organ transplantation in HIV-infected patients. N Engl J Med 2002;347:284 – 287.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.