The Las Campanas Distant Cluster Survey: The Catalog

Share Embed


Descripción

To appear in The Astrophysical Journal Supplement Series Preprint typeset using LATEX style emulateapj v. 14/09/00

THE LAS CAMPANAS DISTANT CLUSTER SURVEY - THE CATALOG Anthony H. Gonzalez1 , Dennis Zaritsky2 , Julianne J. Dalcanton3 , and Amy Nelson4

arXiv:astro-ph/0106055v2 19 Jul 2001

Received 2000 December 31; Accepted 2001 May 25

ABSTRACT We present an optically-selected catalog of 1073 galaxy cluster and group candidates at 0.3.z.1. These candidates are drawn from the Las Campanas Distant Clusters Survey (LCDCS), a drift-scan imaging survey of a 130 square degree strip of the southern sky. To construct this catalog we utilize a novel detection process in which clusters are detected as positive surface brightness fluctuations in the background sky. This approach permits us to find clusters with significantly shallower data than other matched-filter methods that are based upon number counts of resolved galaxies. Selection criteria for the survey are fully automated so that this sample constitutes a well-defined, homogeneous sample that can be used to address issues of cluster evolution and cosmology. Estimated redshifts are derived for the entire sample, and an observed correlation between surface brightness and velocity dispersion, σ, is used to estimate the limiting velocity dispersion of the survey as a function of redshift. We find a net surface density of 15.5 candidates per square degree at zest ≥0.3, with a false-detection rate of ∼30%. At z∼0.3 we probe down to the level of poor groups while by z∼0.8 we detect only the most massive systems (σ&1000 km s−1 ). We also present a supplemental catalog of 112 candidates that fail one or more of the automated selection criteria, but appear from visual inspection to be bona fide clusters. by including color information in the search for aggregates, but requires either a reduction in survey area or corresponding increase in telescope time. In the X-ray, the problem is not angular coverage but rather detector sensitivity. The most recent generation of orbital telescopes had insufficient sensitivity to detect all but the most luminous high-redshift clusters. Only six clusters at z>0.5 were discovered in the Einstein Medium Sensitivity Survey (EMSS; Henry et al. 1992; Gioia & Luppino 1994), and the largest published X-ray sample for this redshift regime is a set of 24 clusters detected as part of a cluster survey by Vikhlinin et al. (1998) using archival ROSAT PSPC data. With the Las Campanas Distant Cluster Survey (LCDCS) we generate a catalog that incorporates some of the most desireable elements of each of the two traditional approaches. By employing a novel technique for identifying clusters, we are able to survey an effective angular area that is a factor of five larger than traditional optical surveys, while probing to higher redshift and lower mass limits than the existing X-ray surveys. Further, we examine a sample of known clusters and utilize the properties of these systems, in conjunction with follow-up imaging of a subset of LCDCS clusters, to calibrate methods of estimating the redshift and velocity dispersion, σ, for all candidates. Estimating σ is critical, as the principal advantage of X-ray surveys over optical surveys has been that X-ray luminosity, LX , is much more strongly correlated with mass than optical richness. The survey concept is explained in §2, details of the reduction procedure and cluster identification are described in §4-5, and the catalog is presented in §6. The properties of the sample are discussed in §7, and §8 contains a summary and discussion of the desired properties of future surveys utilizing this

1. introduction

In the quest to determine the parameters describing cosmological models and discriminate between the various models, galaxy clusters constitute a uniquely powerful class of objects. In contrast to the galaxy distribution, the cluster distribution remains closely coupled to the initial power spectrum, probing scales where the mass distribution is still governed by linear dynamics. Consequently, it is relatively simple to extract information about cosmological parameters from properties of the cluster population. Properties such as the cluster abundance and spatial correlation length are strongly dependent upon Ω0 , but are insensitive to ΩΛ . Cluster-based constraints therefore complement cosmic microwave background (CMB) and high-redshift supernovae constraints, which are sensitive to Ω0 +ΩΛ and Ω0 -ΩΛ , respectively. Unfortunately, the potential for strong, cluster-based constraints remains largely unrealized. A major limitation has been the dearth of known clusters at z>0.5, because it is at these redshifts that model predictions strongly diverge (White, Efstathiou, & Frenk 1993). The two most common techniques for finding distant clusters are optical searches for projected galaxy overdensities and X-ray searches for extended thermal bremstraahlung, but the effectiveness of both approaches is currently limited at z>0.5. In the optical, detection of projected overdensities requires deep imaging. As a result, only relatively small areas have been thus surveyed, with the largest published survey of this kind being the I-band ESO Imaging Survey (EIS; Scodeggio et al. 1999), which covers 17 square degrees. Further, aggregates of cluster galaxies are dominated by faint field galaxies, and so detection of true overdensities is difficult. Detection efficiency can be improved 1 2 3 4

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tuscon, AZ 85721 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064

1

2

Gonzalez et al.

approach. 2. survey concept

The basic idea driving the Las Campanas Distant Cluster Survey is that clusters can be detected as regions of excess surface brightness relative to the background sky. This hypothesis, first suggested by Davies et al. (1994) and developed in detail by Dalcanton (1996), posits that although few individual cluster galaxies may be detectable, the integrated signal from the undetected galaxies can be sufficiently large for detection of the cluster. Subsequently, consideration of the luminosity budgets of local clusters (Uson, Bough, & Kuhn 1990, 1991; Scheick & Kuhn 1994; Gonzalez et al. 2000) has led to the realization that this signal is further augmented by a significant contribution from the halo of the brightest cluster galaxy. To maximize the contrast between a cluster and the background, the image should be smoothed on a scale comparable to the core size of the cluster, thus reducing the Poisson noise. Pilot work utilizing drift-scan data from the Palomar 5m demonstrated the feasibility of this approach (Dalcanton 1995; Zaritsky et al. 1997; data described in Dalcanton et al. 1997), laying the groundwork for the LCDCS. Our approach offers several key advantages relative to other recent optical surveys, which all rely upon identification of overdensities in the projected galaxy number density to detect clusters. Most of these surveys, such as the Palomar Distant Cluster Survey (Postman et al. 1996, PDCS;), employ a weighted filter designed to match the expected cluster luminosity function and radial profile at a given redshift.5 One key advantage of our approach is that we require much shallower imaging than previous optical surveys because our detection technique does not require that we resolve individual cluster galaxies. For the LCDCS, we are able to detect clusters out to z∼1 with an effective exposure time of 194s on a 1m telescope. This approach permits a large area to be surveyed, which is necessary for detection of the richest, rarest systems. A second advantage is that, because this method is sensitive only to dense cluster cores, cluster detections have a small cross-section (∼ 20′′ , or ∼100 h−1 kpc at z=1). Consequently, detections due to superposition of poor systems or the presence of wall-like structures are rare. Further, this method is less dependent upon the cluster luminosity function than surveys that depend upon number counts (e.g. a cluster can be detected via the BCG halo in the absence of other bright cluster galaxies) and makes no assumption about galaxy colors or the presence of a well-defined red sequence. As a result, comparison of this type of survey with more traditional optical catalogs should be quite productive for better defining the selection biases of both methods. The key disadvantage of this approach is that a variety of astrophysical phenomena are capable of inducing surface brightness excessess (most notably galactic cirrus, low surface brightness galaxies and tidal tails), and techniques must be developed to minimize contamination of the catalog by these sources. The methods employed for minimizing contamination in the LCDCS are discussed in §5.

5

Fig. 1.— Comparison of the broad W filter utilized in this work to standard Johnson (BV ) and Cousins (RI) filters. The red cutoff is designed to avoid night sky lines, while maximizing incident flux. The blue cutoff is designed to avoid large atmospheric refraction.

3. the data

The survey data were obtained in March 1995 under photometric conditions using the Las Campanas 1m telescope, the Great Circle Camera (Zaritsky, Schectman, & Bredthauer 1996), and the Tek#5 CCD. We employed a custom, wide-band filter (hereafter designated W ) designed to maximize the incident flux while avoiding strong atmospheric emission lines in the red and atmospheric refraction in the blue. The wavelength coverage, which roughly extends from B to I, is shown in Figure 1. Individual drift scans are 2048×20000 pixels with a plate scale of 0 ′′. 697 pixel−1 and an effective exposure time of 97s. The data consist of 198 contiguous, overlapping scans that collectively cover 160 square degrees of the southern sky. The geometry is such that nine scans are obtained at a given right ascension. Each of these nine scans is shifted in declination by half the width of the CCD from the previous scan. With this approach, we cover a strip extending 85◦ in right ascension (10h0.85 for these clusters. In addition, we caution that the size of the calibration sample is small, and so our estimate of σm is subject to small number statistics. Finally, we expect that the redshift dispersion for the catalog as a whole is larger than the dispersion for the calibration data due to foreground contamination and occasional miscentering. We assess the robustness of our redshift estimates using the simulations described in 7.1. These simulations reproduce all sources of uncertainty in the estimated redshifts (e.g. foreground contamination, miscentering, scatter in Σobs ) except for intrinsic BCG magnitude dispersion. Failure to identify the BCG due to miscentering turns out to be a minor issue for the clusters reinserted into the survey data. We find that for these clusters redshifts are underestimated by ∆z>0.1 less than 2% of the time, and only 1% of the time will a cluster incorrectly be assigned a redshift z>0.75.12 The largest bias in the estimated redshifts is due to foreground contamination. In Figure 18, this can be seen as a tail towards low redshift. While negligible at z0.1 35% of the time. In addition, dispersion in Σobs induces a Gaussian uncertainty in the estimated redshift of magnitude σz =0.02. Combined with the intrinsic dispersion in BCG magnitude, these factors lead us to expect an rms redshift uncertainty of ∼13% for low-redshift clusters in the final catalog, rising to ∼20% by z∼0.8. We

12

Fig. 18.— Simulated distribution of estimated redshifts for the nine clusters with Σobs >6.25×10−3 counts s−1 arcsec−2 . The vertical dashed line is the original estimated redshift, the value of which is given in each panel, while the histogram shows the distribution of derived zest when a cluster is randomly reinserted into the survey data. The most notable systematic bias is a tendency to underestimate the redshifts of distant systems due to foreground contamination.

emphasize though that this scatter is non-Gaussian due to the impact of foreground contamination (i.e. the scatter at z=0.8 is dominated by a small subset of clusters that have their redshift greatly underestimated). 7.4. Velocity Dispersions and X-ray Temperatures Estimating cluster masses from the survey data is more challenging than estimating redshifts. To develop a proxy for mass that can be measured directly from the survey data, we utilize survey quality drift-scan images of known, X-ray luminous galaxy clusters at z>0.35. As discussed in detail by Gonzalez (2000) and shown in Figure 19, we find Σcor is strongly correlated with velocity dispersion (linear correlation coefficient r=0.82), X-ray temperature, and X-ray luminosity. A fit to the σ-Σcor data yields   Σcor (1 + z)η log σ = (2.65 ± 0.06) + (1.35 ± 0.26) log 10−2 (1 + .5)η (10) 13 with η=5.1+0.39 Use of the func−0.49 for Ω0 =0.3 and Λ = 0. tional form (1+z)η for the redshift dependence is based on simulations in which we take detected low-redshift clusters, artificially move them to higher redshifts (including both evolutionary and cosmological effects), and then redetect them. We find that E+k corrections modify η relatively to pure cosmological dimming (η=4), but that the functional

However, if there are systems in which the BCG is offset from the cluster core by hundreds of kpc, as suggested by Postman & Lauer (1995), we will fail to identify these BCGs. In such cases, we can expect to underestimate the redshift by ∼20% if we instead identify a second-ranked galaxy (assuming that it is ∼0.5 mag fainter). 13 To determine the best fit we minimize the absolute deviation because this approach is more robust to outliers than a least-squares fitting procedure (see e.g. Press et al. (1992)).

16

Gonzalez et al.

Fig. 19.— (a) Velocity dispersion, σ, as a function of optical surface brightness, Σcor . The solid line is the weighted fit from Equation 10. For the data points, Σcor has been multiplied by (1 + z)η to eliminate its dependence upon redshift. (b) Cluster temperature, TX , vs. Σcor . The solid line is the weighted fit from Equation 11. For both figures we caution that, due to small number statistics, the intrinsic scatter in these relations may be larger the scatter seen in our calibration sample.

form remains a good approximation (Gonzalez 2000). The TX -Σcor data yield   Σcor (1 + z)η +0.33 log TX = (0.29−0.20 ) + (2.3 ± 1) log 10−2 (1 + .5)η (11) with η=5.2+1.05 −0.55 . The parameter uncertainties for this fit are significantly larger than for the velocity dispersion data because of greater uncertainty in TX than σ coupled with a lack of data for low-mass systems. To test for consistency, we derive the corresponding σ − TX relation at z=0.5 and compare with the results of Xue & Wu (2000) for a larger, low-redshift sample. We find σ=102.48±0.19 T 0.59±0.28 , which is consistent with their relation, σ=102.51±0.01 T 0.61±0.01 . In Figure 20 we plot the σ and TX corresponding to the surface brightness limit of the statistical catalog as a function of redshift for the mass range probed by our calibration sample. Because Xue & Wu (2000) note that low-mass groups may obey a different scaling relation than more massive systems, we refrain from extrapolating to lower mass. At the lowest redshifts we probe down to the level of poor groups, while by z=0.8 we are only able to detect very massive systems.14 Finally, one concern with this relation is that it is based upon a sample of non-LCDCS clusters and so may not probe the range of systems seen in the LCDCS. In particular, concern has been expressed that, due to the small size of the smoothing kernel, some of the high-redshift candidates in the LCDCS may actually be compact groups rather than massive clusters. The LCDCS may indeed contain some compact groups; however, it likely does not contain many of these systems. Three factors hinder their detection. First, compact groups tend to lack central, 14

dominant galaxies, whose halos contribute to the surface brightness signal. For example, Hickson (1982) found that half of the first-ranked galaxies in his sample were spirals. Second, compact groups have small Hubble core radii (rc ∼20 h−1 kpc, Ribeiro et al. 1998), which means that at z&0.5 these groups are a factor of 3.5-4 smaller than the smoothing kernel. This filter mismatch decreases the observed surface brightness by about 25% for a Hubble profile (Figure 7). Third, while compact groups have high surface densities, much of the total luminosity is contained in the few most luminous galaxies. Removal of any of these galaxies during processing thus has a large impact upon the observed surface brightness. 8. discussion

In this paper we present the Las Campanas Distant Cluster Survey. Our primary result is a statistical catalog of 1073 cluster candidates at z&0.3 drawn from an effective area of 69 square degrees. We also include a supplementary catalog of 112 candidates that, although they fail one or more of the automated selection criteria, are strong cluster candidates. These catalogs together comprise the largest existing sample of high-redshift clusters, containing roughly three times more systems than the recently published EIS catalog (302 clusters at 0.2.z.1.3). Even after accounting for an estimated contamination rate of 30%, this sample still contains more candidates at z>0.3 than all existing published cluster catalogs combined. Further, we provide redshift estimates for all candidates, and also a means of estimating velocity dispersions, enabling extraction of interesting subsamples for galaxy and cluster evolution studies.

Of course, scatter in Σcor will lead to the inclusion of some less massive systems.

The Las Campanas Distant Cluster Survey

Fig. 20.— Solid lines are the limiting velocity dispersions and temperatures of the LCDCS as a function of redshift, derived from the fits given in Equations 10 and 11 with an assumed mean extinction of E(B-V )=0.05 for the survey. The dashed lines correspond to 1-σ uncertainties in the best fit relations. Only the σ and TX regimes covered by the calibration data are plotted.

Finally, to a large degree this survey is an experiment in the feasibility of constructing large catalogs of clusters using surface brightness fluctuations. In the next few years, traditional optical surveys that utilize information about the individual cluster galaxies will provide catalogs of comparable size to the LCDCS (Gladders & Yee 2000), however with the deep imaging required by these surveys it is unlikely that they will provide another order of magnitude improvement beyond the LCDCS in the near future. In contrast, drift-scan imaging of a much larger fraction of the sky will exist within the next few years. Consequently, the greatest value of this survey is perhaps not the final catalog, but rather the demonstration that this technique will work in an automated fashion with large data sets. With this in mind, we consider modifications and improvements upon the reduction procedure and data presented in this paper that will enable construction of better, larger catalogs in the future. What are the primary problems and limitations of the LCDCS? What features would significantly improve the usefulness of this sample? The most obvious answers are greater redshift depth, greater angular area, and lower contamination – especially at the highest redshifts. Additionally, to push to higher redshift than the LCDCS, improved redshift estimates are required since at the limit of our survey foreground contamination is beginning to become a serious issue. To achieve these improvements, several fairly straightforward tactics can be utilized. First, observing in two or more colors, while increasing the required observing time, would significantly reduce the contamination rate. Multi-color information can be used to eliminate systemrelated signals, and also to discriminate cluster-induced 15

See Fukugita et al. (1996) for details on the Sloan filters.

17

Fig. 21.— The k-correction for a passively evolving elliptical in the LCDCS W -band and several longer wavelength passbands. Curves are based upon the models of Charlot, Worthey, & Bressnan (1996).

fluctuations (which should be relatively red) from other sources such as low surface brightness galaxies and galactic cirrus. Further, color information can be used to generate improved photometric redshift estimates and, by permitting color selection of brightest cluster galaxies, minimize foreground contamination. Improving survey depth is more challenging. While the W filter utilized in this survey was designed to maximize the incident optical flux, the k-correction for a passively evolving elliptical is large. At z=1 the k-correction corresponds to an effective dimming of two magnitudes relative to rest frame, and by a redshift of two the net dimming is roughly three magnitudes. To probe to higher redshift, it is necessary to shift to redder wavelengths. Figure 21 shows k-corrections for a passively evolving elliptical in several passbands. K ′ is the ideal choice (with J or H as the second color), as the k-correction is actually quite negative out to z∼2. A challenge with using near IR is that the sky level is very high and rapidly varying, and so additional care must be taken to avoid spurious detections, Further, unlike CCD’s, near IR detectors read out individual pixel elements independently, which precludes drift scanning in the fashion employed in the LCDCS. Still, if these observational difficulties can be overcome, near IR surface brightness surveys hold the potential to identify clusters, out to z≈2. A more conservative but more immediately feasible option is to use slightly shorter wavelength passbands, such as I and z to conduct wide-area surveys. Here the kcorrections are worse than in K ′ , but large-area drift-scan data are already in existence. The Sloan data set in particular is ideal for such a survey. The Sloan Survey is currently obtaining u′ -,g ′ -, r′ -, i′ -, and z ′ -band imaging data on the Apache Point 2.5m.15 This data set should be

18

Gonzalez et al.

sufficient to detect clusters out to z ≈1.25.16 Using the g ′ , r′ , and i′ passbands, a contamination rate of .10% should be possible, and BCG magnitudes can be used to generate redshift estimates with σz .0.10 for all candidates (alternatively, the multiwavelength data potentially can be used to derive more precise photometric redshifts). The goal of Sloan is to image π steradians, or roughly 10,000 square degrees centered on the north galactic cap. If this entire area were analyzed using a technique similar to the one used in the LCDCS, of order 105 clusters and groups could be detected at z &0.5, including 5000-10000 clusters with TX >5 keV. Several additional minor improvements should also be considered for implementation in future surveys. An adaptive filter should probably be employed for smoothing, as this will eliminate assumptions regarding the characteristic scale of clusters at high redshift. Alternatively, wavelet analysis could provide a means of eliminating these assumptions, while also improving removal of large scale, background variations. Finally, the fractional area masked can be greatly reduced if PSF models accurate to large radii are used to remove saturated stars. Unfortunately this procedure proved impractical for the LCDCS data set, but would have resulted in recovery of ∼30 square degrees. Detection of clusters via surface brightness fluctuations has great potential for dramatically increasing the number of known massive clusters. With this survey we have demonstrated the viability of this approach, in the process generating a catalog of over 1000 cluster candidates at z>0.3. This sample is currently being used to study galaxy evolution (Nelson et al. 2001a), probe large scale structure as traced by clusters, and constrain cosmological

models via evolution in the cluster number density Gonzalez (2000). We are also working to quantify the relative detection efficiency of this and other optical algorithms with the aim of better understanding the selection biases intrinsic in each approach. Finally, it is our hope that this work will serve as the basis for larger, deeper surveys in the future that will further extend the redshift baseline and permit even more detailed study of the cluster population. We thank Rebecca Bernstein for providing the SavitskyGolay code employed in bias and sky subtraction and the Carnegie Observatories for their generous allocation of telescope time for this project. We also the thank Marc Postman for his thorough analysis and constructive comments in refereeing this paper and Stefano Andreon for identifying a mistake in §3. AHG acknowledges support from the National Science Foundation Graduate Research Fellowship Program, the ARCS Foundation, and the Harvard-Smithsonian Center for Astrophysics. DZ acknowledges financial support from National Science Foundation CAREER grant AST-9733111, and fellowships from the David and Lucile Packard Foundation and Alfred P. Sloan Foundation. JD acknowledges support from NASA grant HF-01057.01-94A and GO-07327.0196A. AEN acknowledges financial support from a National Science Foundation grant (AST-9733111) and the University of California Graduate Research Mentorship Fellowship program. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES Aragon-Salamanca, A., Ellis, R. S., Couch, Warrick J., Carter, David 1993, MNRAS, 262, 764 Aragon-Salamanca, A., Baugh, C. M., Kauffmann, G. 1998, MNRAS, 297, 427 Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 Bruzual, A., Charlot, S. 1993, ApJ, 405, 538 Charlot, S., Worthey, G., & Bressnan, A. 1996, ApJ, 457, 625 Cheeseman et al. 1988, Proceedings of the Fifth International Conference on Machine Learning, (San Francisco: Morgan Kaufmann), 54 Collins, C. A., & Mann, R. G. 1998, MNRAS, 297, 128 Dalcanton, J. J. 1995, Ph.D. thesis Dalcanton, J. J. 1996, ApJ, 466, 92 Davies, J. I., Disney, M. J., Phillipps, S., Boyle, B. J., & Couch, W. J. 1994, MNRAS, 269, 349 David, L. P., Slyz, A., Jones, C., Forman, W., Vrtilek, S. D., & Arnaud, K . A. 1993, ApJ, 412, 479 Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748 Gioia, I. & Luppino, G. A. 1994, ApJ, 94, 583 Gladders, M. D., & Yee, H. K. C. 2000, astrop-ph/0004092 Goebel, J., Stutz, J., Volk, K., Walker, H., Gerbault, F., Self, M., Taylor, W., & Cheeseman, P. 1989, A&A, 222, L5 Gonzalez, A. H., Zabludoff, A. I., Zaritsky, D., Dalcanton, J. J. 2000, ApJ, 5 36, 561 Gonzalez, A. H. 2000, Ph. D. Thesis Gordon, A. D. 1981, Classification, (New York: Chapman and Hall Ltd) Guhathakurta, P., & Tyson, J. A. 1989, ApJ, 346, 773 Henry, J. P., Gioia, I. M., Maccacaro, T., Morris, S. L., Stocke, J. T., & Wolter, A. 1992, ApJ, 386, 408 Hickson, P. 1982, ApJ, 255, 382 Holden, B. P., Romer, A. K., Nichol, R. C., & Ulmer, M. P. 1997, AJ, 114, 1701 Hudson, M. J., & Ebeling, H. 1997, ApJ, 479, 621 16

Humason, M. L., Mayall, N. U., & Sandage, A. R. 1956, AJ, 61, 97 Jain, A. K., & Dubes, R. C. 1988, Algorithms for Clustering Data, (Elglewood Cliffs, NJ: Prentice-Hall, Inc.) Kawasaki, W., Shimasaku, K., Doi, M., & Okamura, S. 1998, ApJS, 130, 567 Kepner, J., Fan, X., Bahcall, N., Gunn, J., Lupton, R., & Xu, G. 1998, ApJ, 517, 78 Kim, R. S. J. et al. 2000, in Clustering at High Redshift, ed. Mazure, A., Le F´ evre, O., & Le Brun, V., ASP, 200, 422 Landolt, A. U. 1992, AJ, 104, 340 Lidman, C. E., & Peterson, B. A. 1996, AJ, 112, 2454 McGlynn, T., Scollick, K., White, N., SkyView: The MultiWavelength Sky on the Internet, McLean, B.J. et al., New Horizons from Multi-Wavelength Sky Surveys, Kluwer Academic Publishers, 1996, IAU Symposium No. 179, 465 McNally, D. 1974, Positional Astronomy, (New York: John Wiley & Sons) Nelson, A. E., Gonzalez, A. H., Zaritsky, D. Z., & Dalcanton, J. J. 2001, submitted to ApJ Nelson, A. E., Gonzalez, A. H., Zaritsky, D. Z., & Dalcanton 2001, in preparation Oke et al. 1995, PASP, 107, 375 Olsen, L. F. et al. 1999, A&A, 345, 681 Phillipps, S., & Davies, J. 1991, MNRAS, 251, 105 Postman, M., & Lauer, T. R. 1995, ApJ, 440, 28 Postman, M., Lubin, L. M., Gunn, J. E., Oke, J. B., Hoessel, J. G., Schneider, D. P., & Christensen, J. A. 1996, AJ, 111, 615 Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. 1992, Numerical Recipes, (2d ed.; New York: Cambridge University Press) Ribeiro, A. L. B., de Carvalho, R. R., Capelato, H. V., & Zepf, S. E. 1998, ApJ, 497, 72 Sandage, A. 1972a, ApJ, 173, 485 Sandage, A. 1972b, ApJ, 178, 1 Sandage, A. 1988, ARA&A, 26, 561

For expected limiting magnitudes, see http://www.sdss.org/science/tech summary.html .

The Las Campanas Distant Cluster Survey Scheick, X. & Kuhn, J. R. 1994, ApJ, 423, 566 Schindler, S. et al. 1995, A&A, 299, L9 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Scodeggio et al. 1999, A&AS, 137, 83 Szomoru, A., & Guhathakurta, P. 1998, ApJ, 494, 93 Uson, J. M., Bough, S. P., & Kuhn, J. R. 1990, Science, 250, 539 Uson, J. M., Bough, S. P., & Kuhn, J. R. 1991, ApJ, 369, 46 Vikhlinin, A., McNamara, B. R., Forman, W., Jones, C., Quintana, H, & Hornstrup, A. 1998, ApJ, 502, 558

19

White, S. D. M., Efstathiou, G., & Frenk, C. S. 1993, MNRAS, 262, 1023 Xue, Y. & Wu, X. 2000, ApJ, 538, 65 Zaritsky, D., Nelson, A. E., Dalcanton, J. J., & Gonzalez, A. H. 1997, ApJ, 480, L91 Zaritsky, D., Schectman, S. A., Bredthauer, G. 1996, PASP, 108, 104

APPENDIX

projection effects and astrometric alignment To accurately align the drift scans and generate mosaics in which objects are aligned to δθ . 1′′ over the entire length of the scans, two issues must be addressed. First, we must account for geometrical projection effects. Failure to correct for projection effects leads to a maximal alignment error of 2′′ in declination. Second, and more importantly, we must transform data taken along arbitrary Great Circles to a common coordinate system before alignment is possible. This is particularly critical because a subset of the data was taken along lines of constant right ascension due to mechanical difficulties with the Great Circle Camera (GCC), and so in some cases it is necessary to align scans of this type with Great Circle scans. In these cases, failure to transform the GCC scans would result in alignment errors of several arcminutes at the ends of the scans. For extensive information on projection effects, astrometric alignment, and related topics, we refer the reader to McNally (1974). Projection effects are typically a two-dimensional issue; however, the problem is simplified with drift scan data. Let us define an angular coordinate system (τ, β), where τ represents the longitudinal angle along the Great Circle traced by the GCC, and β is the declination relation to this circle. Further, define the projected cartesian coordinate system (x, y), with x being the direction perpendicular to the direction of the scan. For a pointed observation, the standard gnomic formulae are tan β cos β0 − sin β0 cos(τ − τ0 ) x = β0 + , (A1) tan β sin β0 + cosβ0 cos(τ − τ0 ) and,

y = τ0 +

sin(τ − τ0 ) , tan β sin β0 + cosβ0 cos(τ − τ0 )

(A2)

where (τ0 , β0 ) are the coordinates of the center of the image. With a drift scan the situation is slightly different. Along the direction of the scan, projection effects are washed out because a given position on the sky is observed over the full range of the detector. To see this mathematically, consider equation A2. Since we are now averaging over a range of τ , we should integrate over the second term. Further, since all values of τ are equivalent there is no longer a central τ0 and so the appropriate equation for y is Z τ +∆τ sin(τ ′ − τ ) y=τ+ dτ ′ . (A3) ′ τ −∆τ tan β sin β0 + cosβ0 cos(τ − τ ) (see Figure A22). Since the centerline of the scan lies along the Great Circle traced by the scan, β0 = 0, which simplifies this last equation to Z τ +∆τ y=τ+ tan(τ ′ − τ )dτ ′ = τ, (A4) τ −∆τ

with the second term disappearing because we are integrating over an odd function. For x, there is no such averaging effect. Still, we can simplify the projection equation. We have already stated that β0 = 0. We now also note that for a drift scan the gnomic projection in x is independent of τ , and so set τ0 = τ in equation A1. Thus, the equation for x simplifies to tan β cos 0 − sin 0 cos 0 x=0+ = tan β, (A5) tan β sin 0 + cos 0 cos 0 and so the equations of projection for a drift scan along a Great Circle are y = τ,

(A6)

x = tan β.

(A7)

The above equations adequately describe the gnomic distortion of the images, but we are still in a coordinate system based upon the Great Circle along which the scan was taken. Next, it is necessary to transform these coordinates to equatorial right ascension and declination (α, δ). We once again refer the reader to McNally (1974) for a more thorough treatment of spherical coordinate transformations. Define (αG , δG ) to be the coordinates of the northern pole of the GCC system in equatorial coordinates, (α0 , δ0 ) to be the equatorial coordinates of the center of the scan, and (τP , βP ) to be

20

Gonzalez et al.

the Great Circle coordinates of the northern pole of the equatorial system. The coordinates of the pole and scan center are related as  (α0 + 180, 90 − δ0 ) if α0 < 180, (αG , βG ) = (A8) (α0 − 180, 90 − δ0 ) if α0 > 180. With these definitions, application of spherical trigonometry leads to the relations sin δ = sin δG sin β + cos δG cos β cos(τP − τ ),

Cosine Law

cos δ sin(α − αG ) = cos β sin(τP − τ ),

and

Sine Law

cos δ cos(α − αG ) = sin β cos δG − cos β sin δG cos(τP − τ ). Analog Formula

(A9) (A10) (A11)

It is these three equations that we use to transform the survey data. Note that although we have three equations relating the coordinates, these do not over-constrain the problem. The third equation is required to remove sign ambiguities. Subsequent to these transformations, the cartesian coordinates of the survey correspond to a 1-to-1 linear map of right ascension and declination, with a plate scale of 0.′′ 7 pixel−1 .

t1

t2 CCD

Direction of Scan

τ

β Y

Direction of Readout X

Fig. A22.— Illustration of projection effects for drift scanning. Projection effects are washed out along the direction of readout as the signal is averaged across the entire ccd (with time increasing from t1 to t2 ). Perpendicular to the readout, projection of β onto x must be corrected.

The Las Campanas Distant Cluster Survey

21

Table 1 Statistical Catalog

ID

α(J2000) h m s

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 0051 0052

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

01 02 02 02 02 02 02 02 02 03 03 03 04 04 05 05 05 05 06 06 06 06 06 06 07 07 07 10 10 11 12 12 12 13 14 14 14 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18

07.4 01.5 17.8 17.9 27.1 39.3 43.6 46.6 50.1 16.1 28.5 58.6 31.1 49.1 24.2 28.0 43.6 58.2 00.2 20.3 22.9 24.4 36.2 39.5 07.2 42.6 54.7 15.1 59.4 01.3 43.3 53.5 58.5 17.0 43.7 49.2 50.4 17.4 24.6 26.8 37.6 09.7 16.2 19.2 31.2 32.4 51.0 58.0 07.7 08.9 20.7 16.4

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -12 -12 -12 -11 -11 -12 -12 -12 -11 -12 -11 -11 -12 -11 -11 -11 -12 -12 -11 -12 -12 -11 -11 -12 -12 -11 -11 -11 -12 -11 -12 -11 -12 -11 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12

26 45 23 50 47 39 35 38 36 02 31 18 37 39 23 51 47 47 50 50 39 40 40 53 58 08 21 36 40 40 48 30 35 39 09 40 22 07 39 42 43 49 38 45 46 51 47 41 50 41 32 30

24 0.80 6.46 7.84 35 0.43 6.79 8.05 15 0.37 6.38 7.82 10 0.59 7.25 8.62 13 0.57 7.62 9.17 32 0.41 6.41 7.81 16 0.50 7.06 8.66 42 >0.85 6.57 8.00 08 0.67 6.67 8.16 43 0.33 7.97 9.45 34 0.49 6.94 8.74 48 0.76 6.71 8.01 23 0.56 7.26 9.03 30 >0.85 6.60 8.21 04 0.49 6.35 7.34 50 0.72 6.63 7.83 43 0.53 8.49 10.10 43 0.62 7.19 8.56 03 0.50 6.92 8.08 35 0.57 7.85 9.22 18 0.52 7.80 9.15 51 0.75 7.51 8.75 29 0.36 7.26 8.50 47 0.36 6.34 7.46 26 0.35 7.28 8.49 36 0.41 7.28 8.43 19 0.52 9.00 10.50 27 0.48 6.90 7.95 03 0.39 10.10 11.90 54 0.40 7.79 9.15 43 0.62 7.28 8.88 02 0.34 9.35 11.00 15 0.40 6.91 8.33 21 0.36 6.25 7.43 28 0.44 8.87 10.80 59 0.59 7.83 9.45 19 0.58 6.80 8.21 11 0.46 7.47 9.11 00 0.73 7.28 8.89 26 0.75 6.48 7.94 19 0.34 7.55 9.18 42 0.82 6.43 7.99 03 >0.85 9.33 11.50 17 0.62 7.03 8.70 16 0.61 6.41 7.96 06 0.73 7.44 9.28 29 0.59 7.03 8.76 01 0.34 6.98 8.64 09 0.34 9.04 11.30 35 0.48 6.73 8.35 19 0.34 10.50 13.00 06 0.50 7.03 8.82

0.070 0.062 0.074 0.062 0.067 0.071 0.074 0.071 0.073 0.062 0.084 0.064 0.079 0.079 0.053 0.060 0.063 0.063 0.056 0.058 0.058 0.055 0.057 0.059 0.056 0.053 0.056 0.051 0.058 0.058 0.071 0.060 0.068 0.062 0.070 0.068 0.068 0.072 0.072 0.073 0.071 0.079 0.075 0.078 0.078 0.080 0.079 0.077 0.081 0.078 0.078 0.082

Notes

zKeck =0.52

22

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 0096 0097 0098 0099 0100 0101 0102 0103 0104

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

18 18 18 18 18 20 20 22 22 22 22 23 23 24 24 24 24 25 25 25 25 26 26 27 28 28 28 28 28 29 29 29 29 29 30 30 30 31 31 31 31 32 32 33 34 34 34 34 35 35 36 36

22.6 27.5 28.9 38.3 46.4 19.1 27.9 07.8 16.8 48.4 53.0 22.1 59.3 17.4 23.8 42.9 45.4 00.2 08.8 31.8 56.8 04.7 50.9 26.3 21.6 23.6 26.2 27.0 39.7 15.1 22.8 39.1 40.7 50.2 10.7 22.8 53.4 35.0 50.3 55.5 57.8 04.9 09.8 14.0 12.4 38.8 40.1 54.6 35.2 39.8 06.5 10.4

δ(J2000)





′′

-12 -12 -12 -11 -12 -12 -12 -12 -11 -12 -12 -12 -11 -11 -11 -12 -12 -12 -12 -12 -11 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -11 -11 -12 -12 -11 -12 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -12

53 53 17 32 11 47 38 24 38 16 50 21 45 49 56 45 46 26 36 01 49 45 39 59 46 03 54 01 41 53 39 31 48 49 21 31 57 03 44 39 30 29 43 50 19 20 30 44 18 42 00 44

50 43 48 56 53 12 02 36 43 09 35 52 24 12 55 53 05 39 20 47 01 53 59 34 23 40 53 51 15 44 37 08 51 11 27 47 46 43 27 51 43 44 59 40 43 37 03 05 18 15 34 43

zest 0.34 0.33 0.46 0.74 0.47 0.75 >0.85 0.46 0.41 0.47 0.62 0.33 0.39 0.32 0.73 >0.85 0.51 0.41 0.34 0.41 0.47 0.39 0.48 0.37 0.40 0.33 0.52 0.42 0.34 >0.85 0.40 0.49 0.68 0.49 0.40 0.82 0.42 0.75 0.69 0.70 0.55 0.45 0.68 0.67 0.43 >0.85 >0.85 0.55 0.37 0.31 0.30 0.55

Σobs Σcor E(B-V ) 9.56 10.20 8.04 6.96 8.80 7.39 6.67 9.32 6.89 6.58 6.54 6.54 6.97 8.66 6.26 6.39 6.32 11.60 13.80 7.52 7.33 7.66 10.00 10.80 7.87 8.04 6.27 10.80 7.26 6.29 6.30 6.43 6.56 6.44 7.76 7.26 6.72 7.03 8.44 6.59 8.01 8.08 7.25 6.40 6.54 6.26 6.47 7.35 7.39 9.70 7.46 7.82

12.10 13.00 10.10 8.42 11.00 9.40 8.38 11.40 8.03 7.83 8.30 7.83 8.02 9.97 7.24 8.06 7.97 14.10 17.10 8.73 8.38 9.50 11.40 12.60 9.75 9.45 7.76 12.70 9.05 7.66 7.83 7.81 7.64 7.49 9.22 8.67 7.76 8.06 10.10 7.78 9.05 9.44 8.50 7.46 7.68 7.38 7.27 8.53 8.63 10.90 8.64 9.03

0.086 0.086 0.081 0.069 0.079 0.087 0.082 0.072 0.056 0.063 0.086 0.065 0.051 0.051 0.053 0.084 0.084 0.071 0.077 0.054 0.048 0.078 0.048 0.055 0.078 0.058 0.077 0.058 0.080 0.071 0.079 0.070 0.055 0.054 0.063 0.064 0.052 0.049 0.064 0.060 0.044 0.056 0.058 0.055 0.058 0.059 0.042 0.054 0.056 0.041 0.053 0.052

Notes

Tidal Tail Tidal Tail

The Las Campanas Distant Cluster Survey

Table 1—Continued

ID

α(J2000) h m s

0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

36 36 36 36 37 37 38 38 38 38 38 38 38 38 39 39 39 39 39 39 40 40 40 40 40 40 41 41 42 43 43 43 43 44 45 45 45 45 46 46 46 46 46 46 47 47 47 47 48 48 48 50

24.7 25.5 40.7 44.9 44.9 52.6 00.0 00.7 08.3 19.8 21.1 21.6 41.7 47.1 16.3 16.8 21.7 32.7 44.9 59.2 10.2 11.3 27.3 28.3 33.5 41.6 04.7 18.6 03.3 17.7 40.1 55.0 58.3 15.8 00.1 11.2 15.3 18.6 05.8 06.6 08.5 19.5 35.9 55.4 00.6 13.4 28.8 51.9 47.2 50.6 52.4 07.0

δ(J2000)

zest

Σobs Σcor E(B-V ) Notes





′′

-12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -12 -12 -11 -11 -11 -11 -12 -11 -12 -12 -11 -12 -11 -11 -12 -11 -12 -11 -11 -12 -12 -12 -11 -11 -12 -12 -12 -12 -11 -12 -12 -12 -11 -11 -11 -12 -11

57 36 45 36 45 43 18 25 23 13 45 36 07 46 35 12 44 31 54 37 40 18 55 56 01 55 18 46 49 32 55 20 42 36 02 18 50 58 35 34 53 28 59 40 56 40 06 56 58 53 23 57

17 0.77 6.87 7.90 30 0.75 6.56 7.58 24 0.52 6.90 7.71 47 0.43 9.61 10.80 57 0.44 7.40 8.45 44 0.78 9.39 10.70 54 0.66 7.95 9.45 08 0.37 12.60 14.90 22 0.31 7.70 9.11 34 0.35 8.47 9.97 42 0.40 6.39 7.31 52 0.40 6.59 7.61 44 0.41 7.16 8.20 58 0.31 8.26 9.43 52 0.51 6.75 7.70 21 0.53 7.39 8.54 48 0.75 6.58 7.49 37 0.57 7.06 8.37 12 0.31 11.20 12.70 21 0.44 7.78 9.18 29 0.68 7.21 8.49 60 0.47 8.33 9.64 46 0.38 8.20 9.54 09 0.52 6.98 7.89 01 0.71 6.32 7.27 51 0.80 9.49 11.10 28 0.52 7.27 8.34 02 0.51 7.10 8.41 28 0.76 6.46 7.60 54 0.40 7.26 8.31 60 0.53 6.86 7.95 38 >0.85 6.65 7.73 50 0.34 6.72 7.45 56 0.84 6.91 7.56 50 0.68 6.77 7.62 15 0.75 7.02 8.00 24 0.71 6.95 8.18 43 0.35 11.60 12.80 36 0.57 6.60 7.25 24 0.31 9.36 10.80 28 0.33 8.59 10.20 24 0.44 6.74 7.65 22 0.36 9.28 11.20 36 0.45 6.69 7.35 31 0.32 9.81 11.60 14 0.73 6.77 7.94 00 0.44 6.76 7.37 15 0.47 7.07 7.77 03 0.38 6.96 7.71 48 0.38 6.76 7.53 09 0.35 9.81 11.00 54 0.35 7.99 9.04

0.051 0.052 0.040 0.041 0.048 0.048 0.063 0.060 0.061 0.059 0.049 0.052 0.049 0.048 0.047 0.052 0.047 0.062 0.046 0.060 0.059 0.053 0.055 0.044 0.051 0.057 0.050 0.061 0.059 0.049 0.053 0.055 0.037 0.032 0.043 0.048 0.059 0.035 0.034 0.052 0.063 0.046 0.068 0.034 0.061 0.058 0.031 0.034 0.037 0.039 0.040 0.045

23

24

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0157 0158 0159 0160 0161 0162 0163 0164 0165

10 10 10 10 10 10 10 10 10

50 50 50 50 50 51 51 51 52

0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

52 52 52 52 53 53 54 54 54 55 55 55 56 57 57 57 57 58 58 58 58 58 59 59 59 59 00 00 01 02 03 03 03 04 05 05 05 06 07 07 07 08

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

25.7 28.0 31.6 39.7 49.8 22.6 22.7 31.2 08.4

-12 -12 -12 -11 -12 -11 -12 -12 -12

59 40 46 59 41 36 01 55 40

40 01 47 35 34 11 27 29 42

0.57 6.42 7.54 0.35 6.68 7.57 0.67 7.17 8.20 0.69 6.38 7.25 0.37 7.53 8.59 0.71 6.78 7.68 0.67 10.80 12.30 0.67 6.43 7.36 0.48 6.29 7.21

0.059 0.046 0.048 0.046 0.048 0.045 0.045 0.049 0.050

31.8 33.7 56.1 56.7 22.6 46.8 24.2 43.5 56.4 04.0 17.4 47.4 23.4 07.2 11.3 28.1 44.7 00.4 12.6 34.9 37.9 38.9 09.5 12.8 23.4 50.5 23.9 39.0 13.9 37.2 00.3 24.4 42.9 33.0 37.5 49.8 55.7 08.3 05.5 08.5 59.3 09.2

-12 -11 -11 -11 -12 -11 -11 -12 -12 -12 -11 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -12 -11 -12 -11 -12 -11 -12 -11

33 34 51 31 52 38 46 45 25 40 44 52 55 24 33 18 15 10 56 11 05 41 53 56 53 57 27 21 12 34 40 37 45 18 54 53 52 58 50 32 16 33

36 0.62 7.70 8.77 12 0.37 10.80 12.00 31 0.83 6.65 7.47 20 0.39 9.45 10.50 26 0.76 7.82 8.88 38 0.44 6.72 7.37 18 0.76 7.61 8.31 50 0.83 8.34 9.36 23 0.36 8.62 9.73 14 0.80 6.29 7.07 45 0.43 6.58 7.20 36 0.76 7.70 8.69 13 0.46 6.48 7.18 02 0.73 6.52 7.24 03 0.41 6.44 7.14 19 0.55 6.71 7.44 49 0.30 6.46 7.09 44 0.32 8.75 9.53 34 0.81 6.71 7.25 09 0.37 7.18 7.73 35 0.83 6.53 7.05 27 0.63 7.47 8.10 15 0.52 8.44 9.20 51 0.41 7.61 8.31 19 0.60 6.29 6.85 09 0.48 7.85 8.55 46 0.41 7.10 7.71 49 0.36 7.55 8.19 17 0.45 7.95 8.66 14 0.32 8.67 9.66 36 0.48 9.10 10.20 31 0.43 7.20 8.08 18 0.83 7.98 8.79 42 0.31 12.00 13.50 34 0.43 8.25 9.36 16 0.41 8.20 9.33 48 >0.85 6.70 7.64 58 0.31 6.82 7.67 57 0.46 6.59 7.76 18 0.58 7.00 8.05 31 0.66 8.42 9.68 59 0.37 7.73 8.93

0.047 0.039 0.042 0.038 0.046 0.033 0.032 0.042 0.044 0.042 0.032 0.044 0.037 0.038 0.037 0.038 0.034 0.031 0.028 0.027 0.028 0.029 0.031 0.032 0.031 0.031 0.030 0.029 0.031 0.039 0.041 0.042 0.035 0.042 0.045 0.047 0.048 0.042 0.059 0.051 0.050 0.052

Notes

LSB

Merged galaxy detections

The Las Campanas Distant Cluster Survey

25

Table 1—Continued

ID

α(J2000) h m s

0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

08 08 09 10 10 10 10 10 10 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 17 17 17 18 18 18 18 18 18 19 19 19 19 19 19 19 19 20

23.4 29.6 50.1 19.8 26.0 34.8 38.3 46.7 53.2 00.6 09.4 18.2 36.2 40.7 44.0 54.2 56.9 01.9 02.2 08.8 13.5 43.1 50.5 40.1 40.2 47.1 03.3 25.2 37.6 59.8 15.6 20.1 22.0 24.5 35.7 37.4 43.2 04.0 20.0 24.0 36.2 51.9 57.6 07.5 16.5 27.5 39.3 44.3 46.5 54.6 55.2 07.2

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-11 -11 -12 -11 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -11 -11 -11 -12 -11 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -12 -11 -11 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -12 -12 -12

52 30 39 59 05 38 17 04 16 01 48 09 58 48 27 56 20 47 57 35 01 56 52 57 56 23 16 50 22 51 53 02 55 05 42 53 31 44 25 40 02 45 31 54 29 29 41 52 09 02 02 05

53 0.44 6.52 7.56 23 0.33 14.30 16.60 51 0.46 6.59 7.58 04 0.46 9.19 11.10 41 0.76 6.26 7.57 38 0.33 8.06 9.27 13 0.43 7.67 9.10 16 0.77 7.95 9.90 50 0.41 8.78 10.70 35 0.47 8.50 9.78 15 0.76 6.34 7.26 29 0.40 8.66 9.93 17 0.42 7.49 8.59 16 0.53 6.83 8.06 16 0.76 6.72 7.81 17 0.40 6.25 7.16 58 0.42 8.27 9.66 32 0.32 8.24 9.44 44 0.54 7.39 8.49 52 0.38 8.20 9.54 15 0.39 9.20 10.70 06 0.36 7.74 8.93 10 0.69 7.64 9.81 50 0.67 6.38 7.96 33 >0.85 6.56 8.17 43 0.46 9.73 11.50 59 0.44 6.84 8.06 44 0.40 6.97 8.31 08 0.41 9.09 10.90 02 0.78 7.50 8.99 27 0.39 9.18 10.80 27 0.79 6.42 7.53 46 0.79 9.05 10.90 09 0.72 6.59 7.70 49 0.34 6.60 7.86 11 0.32 11.30 13.70 44 0.53 6.26 7.74 28 0.40 6.84 7.97 16 0.39 10.60 12.50 51 0.71 7.61 8.85 03 0.60 8.53 10.20 39 0.60 6.67 7.74 22 0.39 9.11 10.90 57 0.64 6.55 7.72 33 0.63 7.62 9.01 43 0.35 12.20 14.20 37 0.79 6.33 7.36 32 0.35 10.60 12.80 35 0.55 7.53 8.85 24 0.40 9.60 11.40 26 0.47 12.40 14.80 04 0.49 13.90 16.40

0.053 0.055 0.051 0.068 0.068 0.051 0.062 0.080 0.071 0.051 0.049 0.050 0.050 0.060 0.055 0.049 0.056 0.049 0.050 0.055 0.054 0.051 0.091 0.080 0.080 0.062 0.059 0.063 0.067 0.066 0.059 0.058 0.066 0.057 0.063 0.069 0.077 0.055 0.060 0.054 0.066 0.054 0.064 0.060 0.061 0.056 0.054 0.066 0.058 0.063 0.063 0.061

Notes

Possible LSB

26

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

20 20 20 20 20 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 23 24 24 24 25 25 25 26 26 27 27 27 27 27 28 28 28 28 28 28 28 29 29 29 29 29 29 30 30 30 30 31

13.3 17.5 19.8 21.1 21.7 29.8 30.4 38.3 11.7 30.5 05.8 09.0 35.8 48.1 51.0 51.7 15.8 18.7 39.1 46.6 59.4 18.0 23.5 24.7 03.9 31.8 47.2 14.4 57.5 01.5 32.5 33.6 42.1 49.7 07.0 24.7 31.1 31.3 33.6 33.9 35.5 03.3 19.1 26.2 48.1 56.0 59.6 02.7 28.6 45.8 49.7 28.0

δ(J2000)

zest

Σobs Σcor E(B-V ) Notes





′′

-11 -12 -11 -12 -12 -11 -12 -11 -12 -11 -12 -11 -12 -12 -12 -11 -11 -12 -12 -12 -11 -11 -12 -12 -11 -12 -11 -12 -11 -11 -12 -12 -12 -12 -12 -11 -11 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -11 -12 -12 -11

58 51 46 31 01 43 48 46 10 35 01 39 17 14 23 36 32 57 36 20 50 32 57 40 35 50 47 49 51 53 06 12 06 13 39 31 59 35 32 04 32 59 07 34 43 09 53 34 35 31 22 53

52 0.38 13.90 16.60 30 0.77 6.74 7.83 06 0.60 6.56 7.88 51 >0.85 7.02 8.28 45 0.42 19.40 23.00 25 0.52 7.53 8.97 01 0.77 7.01 8.18 00 0.51 7.28 8.70 46 0.68 6.41 7.42 55 0.73 6.40 7.73 12 0.48 6.39 7.34 46 0.37 6.35 7.82 48 0.35 7.88 8.87 37 0.53 7.16 8.05 48 0.37 12.90 14.50 30 0.77 8.93 11.30 31 0.48 8.49 10.90 59 0.56 6.39 7.03 03 0.35 9.21 10.10 01 0.51 8.80 10.00 07 0.54 8.96 10.10 59 0.37 6.64 8.05 31 0.51 6.48 7.15 32 0.68 7.58 8.29 19 0.51 7.52 8.52 33 0.35 7.49 8.19 56 0.48 7.70 8.60 18 >0.85 6.76 7.40 49 0.43 9.41 10.20 55 0.42 6.33 6.88 14 0.60 6.45 6.98 52 0.77 7.49 8.16 24 0.67 6.33 6.85 36 0.71 6.25 6.79 02 0.75 10.10 11.00 00 0.42 6.38 7.15 52 0.65 6.76 7.36 16 0.34 9.87 10.80 43 0.34 8.26 8.99 18 0.43 6.74 7.31 15 0.32 6.69 7.28 24 0.49 6.59 7.12 42 0.39 10.10 10.90 33 0.36 6.70 7.32 23 0.37 12.40 13.70 57 0.35 8.93 9.59 06 0.40 11.00 11.90 18 0.35 6.46 7.09 26 0.39 9.15 9.96 43 0.55 7.34 8.04 28 0.48 7.47 8.19 56 0.74 8.07 8.71

0.065 0.054 0.067 0.060 0.063 0.063 0.056 0.065 0.053 0.068 0.050 0.076 0.043 0.042 0.042 0.086 0.090 0.035 0.033 0.048 0.043 0.070 0.035 0.033 0.045 0.032 0.040 0.033 0.030 0.030 0.028 0.031 0.028 0.030 0.032 0.041 0.031 0.031 0.031 0.029 0.030 0.028 0.027 0.032 0.036 0.026 0.026 0.034 0.031 0.033 0.033 0.028

The Las Campanas Distant Cluster Survey

27

Table 1—Continued

ID

α(J2000) h m s

0312 0313 0314 0315 0316 0317 0318 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

31 32 32 32 32 32 33 33 33 34 34 34 35 35 35 35 36 36 36 36 36 36 36 37 38 38 38 38 38 38 38 38 40 40 40 40 40 41 41 41 41 41 41 42 43 44 44 44 45 45 45 45

54.0 07.6 15.7 34.7 53.3 58.8 11.2 13.7 30.5 39.3 50.0 54.2 35.0 39.9 45.6 56.9 01.7 05.7 20.7 21.5 28.7 33.5 47.1 50.2 00.4 01.0 06.6 09.3 10.3 38.2 41.0 50.5 19.2 23.9 42.6 43.8 46.2 07.9 37.6 44.4 51.5 55.9 58.7 12.5 54.1 16.6 19.8 28.3 01.7 07.0 19.0 22.4

δ(J2000) zest Σobs Σcor E(B-V )





′′

-11 -11 -11 -11 -12 -12 -12 -11 -12 -11 -11 -11 -12 -12 -11 -12 -11 -12 -12 -12 -11 -12 -11 -12 -12 -11 -11 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -11 -11 -12 -12 -12 -11 -12 -12 -12 -11

30 49 48 50 52 07 39 31 29 45 38 36 56 47 33 37 41 47 58 59 38 52 45 31 59 35 42 26 33 24 05 20 18 00 43 59 56 40 22 56 44 27 39 54 57 37 59 52 33 24 58 55

36 01 20 22 23 51 23 20 03 38 06 28 58 30 34 16 39 32 00 23 46 03 33 26 51 30 10 16 59 35 04 56 33 17 30 34 15 08 29 19 25 21 36 41 45 41 28 32 36 59 38 52

0.40 6.84 7.48 0.71 6.97 7.53 0.35 7.31 7.90 0.43 6.55 7.08 0.74 6.54 7.36 0.56 6.36 6.87 0.79 6.58 7.26 0.81 9.59 10.40 0.66 6.35 6.95 0.40 8.61 9.30 0.56 6.51 7.05 0.55 6.38 6.91 0.38 6.68 7.48 0.42 6.56 7.32 0.38 7.28 7.90 0.62 7.74 8.60 0.39 8.55 9.25 0.59 6.28 7.04 0.65 6.70 7.51 0.37 11.60 13.00 0.33 10.30 11.10 0.37 11.00 12.30 0.67 7.34 7.90 0.36 6.35 7.05 0.33 6.85 7.50 0.47 8.34 8.85 0.52 7.36 7.81 0.41 8.27 9.17 0.85 8.76 9.27 0.81 6.56 7.21 0.43 7.17 7.85 0.30 7.07 7.79 0.52 6.68 7.29 0.79 6.83 7.44 0.80 6.27 6.75 0.30 9.38 10.60 0.51 7.15 8.07 0.37 6.53 7.26 0.37 6.43 7.00 0.31 8.45 9.55 0.56 6.42 7.00 0.39 6.68 7.28 0.65 9.83 10.70 0.76 6.27 6.77 0.61 6.26 6.97 0.52 6.77 7.38 0.37 7.07 7.82 0.56 7.05 7.59 0.39 9.17 9.96 0.37 7.60 8.19 0.44 8.41 9.22 0.44 7.20 7.72

0.032 0.028 0.028 0.028 0.042 0.028 0.036 0.029 0.033 0.028 0.029 0.029 0.041 0.040 0.030 0.038 0.028 0.041 0.041 0.042 0.029 0.043 0.027 0.038 0.033 0.021 0.021 0.037 0.021 0.034 0.033 0.035 0.031 0.031 0.027 0.043 0.044 0.038 0.031 0.044 0.031 0.031 0.031 0.028 0.039 0.031 0.037 0.027 0.030 0.027 0.033 0.025

Notes

zKeck =0.64

zKeck =0.45

Tidal Tail

LSB

28

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0364 0365 0366 0367 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

46 46 46 46 47 47 47 47 47 47 48 48 48 48 49 49 49 51 51 51 52 52 52 52 52 52 52 53 53 53 53 53 53 54 54 54 54 55 55 55 55 55 55 55 56 56 56 56 57 57 57 57

12.4 13.4 14.4 44.4 02.3 08.9 24.5 25.9 32.7 53.3 06.0 23.4 53.8 56.9 01.2 25.1 30.1 22.4 23.3 51.2 18.0 31.9 32.2 35.3 38.9 49.5 51.1 06.4 12.0 33.7 35.4 38.4 56.4 09.9 29.4 31.1 48.0 16.1 24.5 39.0 42.3 42.5 53.4 56.8 00.0 35.0 46.7 53.1 11.7 15.8 26.9 34.7

δ(J2000)





′′

-11 -12 -12 -12 -12 -11 -11 -12 -12 -11 -11 -11 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -11 -11 -12 -12 -11 -12 -11 -11 -12 -11 -12 -12 -11 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -11 -12 -12 -12 -12

52 48 38 03 08 58 37 12 52 55 45 48 57 52 14 43 01 33 37 48 22 17 44 57 58 53 17 02 53 00 53 59 36 49 04 03 57 00 10 23 56 34 52 02 03 39 42 36 22 43 21 18

16 12 19 13 10 48 05 13 38 31 33 04 52 32 36 01 35 33 11 35 49 42 17 50 43 35 45 34 40 28 33 05 52 52 45 09 51 45 19 00 09 32 28 02 26 38 14 06 24 53 33 48

zest

Σobs Σcor E(B-V ) Notes

0.71 6.63 7.07 0.69 6.45 7.03 0.38 7.64 8.36 0.50 8.15 8.75 0.55 6.44 6.95 0.58 6.83 7.36 0.66 6.84 7.27 0.80 8.89 9.67 0.67 7.36 8.09 0.30 9.84 10.60 0.53 8.76 9.38 0.32 8.45 9.03 0.46 6.58 7.27 0.42 6.52 7.00 0.37 6.50 7.09 >0.85 6.54 7.24 >0.85 6.34 7.00 >0.85 7.08 8.22 0.71 6.80 7.86 0.38 9.39 10.60 0.73 6.61 7.77 0.37 9.23 10.80 0.43 6.83 7.80 0.52 7.68 8.98 0.82 7.48 8.81 0.84 6.88 8.13 0.50 6.25 7.41 0.31 7.96 9.38 0.42 7.19 8.52 0.37 9.76 11.50 >0.85 8.15 9.60 0.62 6.31 7.42 0.44 7.39 8.34 0.38 6.88 7.90 0.84 7.36 8.60 0.85 9.79 11.50 >0.85 6.30 7.51 0.75 6.28 7.58 >0.85 6.85 8.07 0.35 6.48 7.36 >0.85 8.63 10.60 0.38 7.04 7.89 0.71 9.53 11.50 0.76 6.52 8.00 0.74 7.07 8.55 0.61 6.76 8.01 0.40 14.80 16.80 0.72 8.34 9.90 0.54 6.92 8.16 0.34 9.13 10.50 0.72 6.77 8.04 0.60 8.87 10.70

0.023 0.031 0.033 0.026 0.027 0.027 0.022 0.031 0.034 0.026 0.025 0.024 0.036 0.025 0.032 0.037 0.036 0.054 0.053 0.043 0.058 0.058 0.048 0.057 0.059 0.060 0.061 0.059 0.062 0.059 0.059 0.059 0.044 0.050 0.056 0.058 0.064 0.068 0.060 0.046 0.073 0.041 0.069 0.074 0.069 0.061 0.046 0.062 0.060 0.049 0.062 0.069

The Las Campanas Distant Cluster Survey

29

Table 1—Continued

ID

α(J2000) h m s

0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 0464 0465 0466 0467

11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

57 57 58 58 58 58 59 00 00 00 00 01 01 02 02 02 02 02 02 03 03 03 03 03 04 05 05 05 06 06 06 06 06 06 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 09 09 10

53.1 54.3 14.6 19.9 37.1 59.0 18.3 20.9 25.8 34.3 53.0 08.1 28.3 02.3 43.1 48.2 50.0 50.8 57.0 27.4 35.1 38.1 44.9 45.6 23.7 05.5 14.5 15.1 01.7 04.3 05.0 07.1 20.8 54.2 01.3 03.0 04.1 06.7 18.7 20.2 23.1 25.7 28.7 41.7 00.4 39.3 47.9 51.3 54.1 08.1 55.8 04.8

δ(J2000) zest Σobs Σcor E(B-V ) Notes





′′

-12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -13 -12

10 51 14 48 11 14 33 00 46 59 58 59 24 35 24 48 22 40 33 18 14 45 59 20 53 47 56 50 38 42 53 03 48 35 54 54 52 46 08 40 21 42 45 05 22 44 46 33 28 35 00 05

27 22 11 47 29 31 32 35 22 54 45 47 09 29 31 23 06 25 18 20 35 24 01 12 50 27 28 31 16 32 57 38 17 38 39 42 35 41 26 10 13 18 47 18 00 19 35 38 03 16 09 03

0.68 7.55 9.08 0.82 9.81 11.60 0.65 8.94 10.30 0.83 6.44 7.60 0.37 8.70 10.10 0.65 6.54 7.64 0.79 7.04 8.31 0.38 6.52 7.49 0.76 7.34 8.42 0.81 6.33 7.36 0.52 6.60 7.64 0.84 8.77 10.10 0.80 7.74 8.99 0.38 6.52 7.49 0.49 8.23 9.57 0.35 8.52 9.70 0.42 9.08 10.50 0.59 6.94 7.95 0.40 8.91 10.20 0.40 7.55 8.58 0.46 7.29 8.29 0.38 6.32 7.39 0.80 6.74 7.79 0.36 9.43 10.70 0.39 11.30 13.40 0.44 6.47 7.72 0.31 8.08 9.89 0.83 6.48 7.81 0.74 6.79 8.32 0.41 6.70 8.23 0.37 9.03 11.10 0.34 8.29 10.10 0.38 15.80 19.20 0.35 6.32 7.71 0.50 6.87 8.79 0.38 6.38 7.78 0.83 7.24 8.77 0.81 6.49 8.20 0.36 6.30 7.86 0.37 9.79 12.20 0.36 7.85 9.57 0.74 7.34 9.27 0.79 7.07 9.05 0.38 9.92 12.60 0.54 6.58 7.96 0.39 7.34 9.38 0.35 10.70 13.90 0.37 6.42 7.65 0.74 6.43 7.79 0.71 7.81 9.49 0.45 7.25 9.13 0.32 7.85 9.33

0.067 0.061 0.052 0.060 0.054 0.056 0.060 0.050 0.049 0.055 0.053 0.052 0.054 0.050 0.055 0.047 0.052 0.049 0.050 0.046 0.047 0.057 0.053 0.046 0.061 0.064 0.073 0.067 0.073 0.075 0.074 0.071 0.069 0.072 0.089 0.072 0.069 0.085 0.080 0.079 0.072 0.085 0.089 0.086 0.069 0.089 0.092 0.063 0.069 0.071 0.083 0.063

LSB

30

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 18 18 18 19 19 19 19 19 19 19 20 21 22

12.7 21.8 22.4 29.6 33.8 40.3 51.1 01.5 08.9 24.6 24.6 38.8 40.1 08.1 09.7 13.7 21.9 28.2 29.9 38.5 39.2 49.3 54.2 02.4 09.5 46.1 48.1 25.0 38.5 46.8 47.3 28.6 40.5 59.3 30.8 41.4 45.1 48.8 18.1 09.1 44.4 47.9 06.0 08.1 23.5 34.9 37.6 44.5 50.9 59.3 57.8 01.1

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -11 -12 -12 -11 -11 -11 -12

19 56 08 57 37 34 35 48 58 11 30 37 14 06 56 06 02 47 16 54 25 22 32 35 52 49 32 37 31 41 54 52 56 04 07 39 01 08 00 48 52 09 04 49 01 54 03 01 57 38 58 48

07 0.74 7.63 9.42 20 0.60 9.86 12.40 56 0.78 6.56 7.95 27 0.78 6.72 8.43 08 0.84 7.85 10.20 34 0.51 9.17 12.00 09 >0.85 7.15 9.36 04 0.48 7.90 9.57 04 0.55 6.68 8.22 58 0.74 6.25 7.74 58 0.63 6.64 8.39 05 0.39 9.34 11.20 59 >0.85 6.52 8.10 18 0.46 6.30 7.95 06 >0.85 6.86 7.99 11 0.70 7.22 9.08 48 0.83 6.40 8.02 45 0.42 7.24 8.32 19 0.61 9.07 11.10 59 0.31 8.26 9.47 57 0.66 6.85 8.14 10 0.31 6.42 7.59 12 0.80 7.11 8.31 43 0.39 6.66 8.09 32 0.34 8.03 9.15 37 0.71 6.96 7.94 05 0.36 7.82 9.00 54 0.77 6.42 7.41 40 0.50 8.10 9.09 19 0.41 10.70 12.20 49 0.42 6.34 7.17 36 0.85 7.97 9.12 48 0.69 6.47 7.20 12 0.46 7.29 8.09 32 0.63 6.46 7.22 51 0.43 10.00 11.50 17 0.80 8.15 9.07 19 0.48 6.26 7.02 53 0.33 7.85 8.75 49 0.47 6.47 7.92 06 0.40 9.42 10.70 02 0.43 6.40 7.31 49 0.38 6.31 7.16 44 0.34 6.31 7.07 10 0.63 6.42 7.24 23 0.68 6.56 7.41 04 0.58 7.51 8.44 35 0.55 6.96 7.82 33 0.63 7.26 8.17 49 0.43 9.37 10.40 19 0.32 11.10 12.50 03 0.77 6.38 7.43

0.076 0.084 0.069 0.082 0.094 0.096 0.098 0.069 0.075 0.077 0.085 0.067 0.079 0.084 0.056 0.083 0.082 0.050 0.072 0.049 0.062 0.061 0.056 0.070 0.047 0.048 0.051 0.052 0.042 0.048 0.044 0.049 0.039 0.037 0.040 0.049 0.039 0.042 0.039 0.073 0.046 0.048 0.046 0.041 0.043 0.044 0.042 0.042 0.043 0.038 0.041 0.055

Notes

Possible LSB

Possible LSB zKeck =0.80

The Las Campanas Distant Cluster Survey

31

Table 1—Continued

ID

α(J2000) h m s

0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

22 22 24 26 26 26 26 26 27 27 27 27 27 28 28 29 29 30 31 32 32 32 32 32 32 34 34 34 35 35 35 35 36 36 37 37 37 37 37 37 37 37 37 38 38 38 38 38 38 38 38 40

22.4 32.4 43.0 10.8 20.5 40.1 51.1 54.8 07.8 13.8 16.0 53.9 56.5 16.2 22.0 25.5 48.3 07.2 03.9 10.9 22.3 30.5 32.4 34.4 45.2 05.0 25.8 32.9 05.1 25.0 27.7 40.0 23.6 56.1 13.9 16.9 17.4 23.6 26.1 27.1 46.2 54.1 55.2 05.2 09.9 12.5 19.8 33.5 42.6 54.7 55.9 15.0

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -12 -11 -12 -11 -12 -12 -11 -12 -12 -11 -12 -12 -11 -12

12 02 48 35 41 25 24 12 52 07 33 38 24 49 37 52 51 13 44 10 37 50 31 21 17 03 59 11 24 50 57 45 41 50 00 48 38 20 09 32 46 42 22 47 55 45 31 44 58 23 52 01

08 0.45 6.97 7.83 05 0.31 6.80 7.64 41 0.34 9.77 11.10 51 0.69 6.26 7.07 27 0.42 6.51 7.34 10 0.64 6.48 7.35 22 0.84 6.73 7.66 11 0.51 6.34 7.16 46 0.36 6.84 7.85 24 0.76 6.49 7.33 31 0.50 8.21 9.32 20 0.79 8.37 9.53 56 0.44 7.34 8.47 35 0.44 6.51 7.35 57 0.46 10.50 12.10 24 0.52 6.31 7.16 48 0.45 7.15 8.25 41 0.66 6.36 7.29 51 0.80 6.85 7.94 40 0.43 6.63 7.68 06 0.33 7.72 9.02 33 0.48 8.83 10.40 44 0.41 8.66 10.10 31 0.69 6.26 7.31 40 0.41 7.85 9.12 44 0.35 7.09 8.20 28 0.58 6.46 7.65 08 0.43 7.00 8.31 57 0.50 7.14 8.62 47 0.40 8.67 10.30 01 0.57 7.72 9.12 57 0.46 6.43 7.61 14 0.56 6.90 8.17 46 0.54 6.39 7.31 59 0.55 6.55 7.60 57 0.77 6.63 7.57 44 0.33 10.80 12.60 48 0.59 7.62 8.72 12 0.38 7.91 9.10 24 0.47 6.54 7.32 50 0.46 9.53 11.00 49 0.47 6.65 7.49 12 >0.85 6.32 7.18 08 0.39 15.40 17.60 55 0.33 8.90 10.30 37 0.47 7.12 8.11 29 0.34 6.76 7.77 28 0.47 8.28 9.43 16 0.74 6.45 7.38 03 0.34 9.74 11.10 03 0.51 7.21 8.26 27 0.48 7.19 8.20

0.042 0.042 0.048 0.044 0.043 0.046 0.047 0.044 0.050 0.044 0.046 0.047 0.052 0.044 0.050 0.046 0.052 0.050 0.054 0.053 0.056 0.061 0.057 0.056 0.054 0.053 0.061 0.062 0.068 0.061 0.060 0.061 0.061 0.049 0.054 0.048 0.053 0.049 0.051 0.041 0.050 0.043 0.046 0.048 0.053 0.047 0.050 0.047 0.049 0.048 0.049 0.048

Notes Possible LSB

LSB

LSB

LSB LSB

32

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0572 0573 0574 0575 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

40 40 41 41 41 41 42 42 42 43 44 44 44 44 44 44 44 45 45 45 47 48 48 49 49 49 50 50 50 50 51 51 52 52 52 52 52 52 53 53 54 54 55 55 55 55 55 56 56 57 58 58

43.1 47.4 11.9 14.3 35.0 52.7 34.1 41.5 45.3 44.5 23.9 36.8 39.5 49.5 51.7 54.4 56.4 02.0 20.2 40.7 15.7 21.1 53.1 04.8 11.7 27.9 17.8 20.0 28.2 59.2 00.3 41.6 12.1 26.0 33.2 34.7 49.7 59.1 05.6 27.5 07.3 29.9 02.3 11.3 31.5 33.8 51.7 17.8 18.7 19.0 24.2 45.6

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-11 -12 -12 -11 -11 -12 -12 -11 -11 -11 -12 -12 -11 -11 -12 -12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -11 -12 -12 -12 -11 -11 -12 -12 -13 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -11 -11

54 00 20 46 57 00 52 34 36 40 10 29 49 44 56 38 37 49 45 39 25 56 05 49 39 50 12 45 43 05 45 29 09 20 49 53 57 31 01 25 28 20 12 53 16 41 50 47 51 51 34 59

27 0.43 7.01 08 0.41 6.65 46 0.42 6.47 36 0.42 7.42 26 0.61 7.29 39 0.74 6.59 19 0.53 6.30 42 0.55 6.72 44 0.48 7.49 46 0.44 9.58 34 0.47 7.07 48 0.81 6.44 54 0.43 7.20 12 0.39 8.12 56 0.58 8.13 08 0.74 12.60 21 0.32 8.29 19 0.50 9.20 43 0.44 6.49 40 0.34 8.01 23 0.40 7.20 42 0.46 11.60 28 0.65 6.35 59 0.56 6.29 26 0.34 10.00 33 0.41 8.49 57 0.68 6.51 38 0.53 9.58 36 0.69 6.37 04 0.44 7.08 47 0.35 7.32 42 0.70 8.55 13 0.77 6.41 17 0.50 8.92 34 0.37 6.60 56 0.47 6.92 52 0.75 6.48 01 0.50 6.54 02 0.38 9.06 12 0.37 6.86 55 0.79 6.47 02 0.31 11.30 22 >0.85 9.38 33 0.73 6.81 55 0.54 9.77 44 0.43 7.18 09 0.46 6.26 55 0.39 14.60 44 0.55 7.00 17 0.40 7.17 22 0.85 6.39 38 0.42 6.27

8.02 7.59 7.51 8.56 8.53 7.63 7.12 7.78 8.63 11.00 8.21 7.49 8.25 9.21 9.36 14.30 9.43 10.50 7.32 9.05 8.21 13.40 7.17 7.29 11.60 9.60 7.29 11.00 7.23 7.96 8.32 9.47 7.25 9.91 7.57 7.92 7.32 7.31 10.30 7.75 7.41 13.00 10.60 7.91 11.00 8.23 7.30 16.90 8.17 8.08 7.34 7.06

0.049 0.048 0.054 0.052 0.057 0.053 0.044 0.053 0.051 0.051 0.054 0.054 0.049 0.046 0.051 0.047 0.047 0.047 0.043 0.044 0.048 0.053 0.044 0.053 0.053 0.045 0.041 0.051 0.046 0.042 0.046 0.037 0.044 0.038 0.049 0.049 0.044 0.041 0.047 0.044 0.049 0.050 0.045 0.054 0.044 0.049 0.056 0.052 0.056 0.043 0.051 0.043

Notes

Possible Dwarf

LSB

LSB

Dwarf LSB

The Las Campanas Distant Cluster Survey

33

Table 1—Continued

ID

α(J2000) h m s

0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 0672 0673 0674 0675

12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

58 59 59 00 00 00 00 00 01 01 01 01 01 02 02 02 02 03 03 04 04 04 04 05 05 06 06 06 06 06 07 07 07 07 08 08 09 10 10 10 10 11 11 11 11 12 12 12 12 12 12 13

55.9 33.4 43.2 01.4 09.8 10.5 21.5 34.1 30.0 34.8 40.1 44.9 49.9 09.4 25.5 55.6 59.5 16.9 23.1 07.0 25.3 26.1 46.3 32.7 33.6 20.4 24.5 31.4 32.5 41.1 29.9 37.4 43.2 45.1 09.9 49.9 27.1 10.7 31.4 47.7 56.9 01.0 29.6 31.7 41.8 09.9 26.8 27.4 33.4 47.9 53.5 40.6

δ(J2000)

zest

Σobs Σcor E(B-V ) Notes





′′

-12 -12 -11 -12 -12 -11 -11 -12 -11 -11 -11 -12 -12 -12 -12 -11 -12 -11 -11 -12 -11 -11 -12 -12 -12 -11 -12 -12 -12 -11 -11 -12 -12 -12 -12 -12 -11 -12 -11 -11 -12 -12 -12 -12 -11 -11 -12 -12 -12 -12 -12 -11

15 40 46 41 41 38 45 01 38 38 39 13 28 14 27 37 34 49 53 09 47 49 27 55 12 53 29 31 42 34 52 07 45 05 45 14 36 31 39 59 27 01 12 32 53 33 11 36 15 55 33 53

05 0.65 7.23 8.10 49 0.48 6.66 7.54 51 0.65 6.53 7.42 48 0.33 7.51 8.47 46 0.42 6.28 7.09 00 0.37 6.80 7.75 11 0.60 6.59 7.57 50 0.85 6.66 7.51 31 0.57 7.90 9.02 32 0.43 10.50 12.00 24 0.48 8.35 9.50 24 0.50 8.65 9.86 10 0.66 7.03 7.88 28 0.53 7.47 8.53 48 0.36 9.52 10.70 22 >0.85 16.80 19.60 34 0.62 6.39 7.22 25 0.66 8.03 9.28 12 0.54 8.24 9.49 60 0.51 7.00 7.96 26 0.71 6.76 7.84 21 0.66 7.02 8.10 35 0.67 6.75 7.60 09 0.44 6.83 7.62 55 0.34 8.04 9.04 55 0.58 6.39 7.38 06 0.43 7.69 8.65 44 0.78 7.92 8.89 51 0.54 7.72 8.78 44 0.48 6.89 8.42 10 0.38 6.96 8.53 55 0.40 7.44 8.56 26 0.55 6.90 7.99 06 0.42 7.96 9.34 30 0.52 7.05 8.07 48 0.54 7.80 8.75 47 0.43 6.47 7.56 23 0.57 9.71 11.20 41 0.36 15.20 17.60 46 0.79 6.58 7.65 11 0.37 8.96 10.20 30 0.78 8.57 9.96 28 0.55 6.45 7.55 25 0.61 6.85 7.92 56 0.38 6.63 7.63 44 0.40 6.83 7.78 53 0.81 6.89 8.27 13 0.65 7.23 8.31 39 0.85 6.58 7.87 12 >0.85 6.63 7.70 40 0.78 7.96 9.11 07 0.34 8.51 9.85

0.041 0.045 0.046 0.044 0.044 0.048 0.050 0.043 0.048 0.048 0.047 0.047 0.041 0.048 0.042 0.057 0.044 0.052 0.051 0.046 0.054 0.052 0.043 0.040 0.043 0.052 0.043 0.042 0.047 0.073 0.074 0.051 0.053 0.058 0.049 0.042 0.056 0.051 0.053 0.055 0.046 0.055 0.057 0.052 0.051 0.047 0.066 0.050 0.065 0.054 0.049 0.053

Dwarf

34

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0720 0721 0722 0723 0724 0725 0726 0727

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

13 13 14 15 15 15 15 15 15 16 16 16 16 17 17 17 18 18 19 19 19 19 19 19 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 22 23 23 24 24 24 24 25 25 25 25

41.3 57.0 48.0 09.2 15.8 19.4 21.2 34.1 47.5 02.1 27.0 35.5 59.7 02.9 32.9 46.1 29.2 46.5 01.8 34.0 44.0 44.1 50.3 56.9 19.2 26.7 49.4 53.7 56.7 07.9 16.5 23.3 24.7 38.3 59.9 05.7 19.8 25.8 32.8 34.5 53.3 56.9 29.8 50.2 06.2 25.3 37.7 48.3 03.1 32.2 39.4 44.1

δ(J2000)





′′

-12 -11 -12 -11 -11 -11 -12 -12 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -11 -12 -12 -12 -11 -12 -12 -12 -12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12

40 55 25 43 37 54 12 27 37 50 31 10 35 49 43 18 21 08 44 52 04 02 06 42 36 09 50 34 31 43 51 57 25 17 44 50 45 20 44 51 33 44 32 52 16 45 22 02 05 57 47 20

46 27 19 51 22 11 14 53 26 19 03 19 35 45 14 33 29 51 30 03 18 26 35 11 39 24 16 36 58 12 18 13 57 22 44 39 12 59 16 54 11 43 41 51 48 05 18 42 16 04 50 08

zest

Σobs Σcor E(B-V )

0.81 6.30 7.12 0.42 6.35 7.30 0.66 7.27 8.32 0.71 7.35 8.39 0.35 6.71 7.66 0.50 6.26 7.09 0.66 7.11 8.11 0.34 6.56 7.52 0.53 9.28 10.50 0.55 6.47 7.27 0.53 6.80 7.64 0.40 7.14 8.19 0.37 6.97 8.00 0.38 6.36 7.35 >0.85 6.37 7.33 0.36 7.29 8.46 0.50 6.75 7.75 0.48 8.14 9.35 0.57 8.19 9.35 0.68 6.67 7.55 0.80 6.39 7.19 >0.85 6.73 7.57 0.55 16.00 18.10 0.38 6.49 7.48 >0.85 7.54 8.73 0.44 6.51 7.29 0.41 11.70 13.40 0.83 6.62 7.71 0.50 8.43 9.79 0.41 6.30 7.09 0.69 6.73 7.49 0.52 6.32 7.18 0.31 6.90 8.01 0.37 8.69 9.77 0.73 6.66 7.38 0.45 6.81 7.71 0.35 6.60 7.53 0.53 7.93 8.90 0.42 6.32 7.24 >0.85 6.29 7.15 0.79 6.78 7.93 0.72 8.51 9.50 0.43 9.46 10.90 0.59 8.03 9.17 0.42 9.98 11.20 0.46 7.19 8.29 0.35 6.30 7.13 0.47 7.37 8.16 0.49 8.60 9.50 0.46 6.64 7.67 >0.85 6.85 7.89 0.38 9.32 10.40

0.044 0.050 0.049 0.048 0.048 0.045 0.047 0.050 0.045 0.042 0.042 0.050 0.050 0.052 0.051 0.054 0.050 0.050 0.048 0.045 0.043 0.043 0.043 0.052 0.053 0.041 0.048 0.055 0.054 0.043 0.039 0.046 0.054 0.042 0.037 0.045 0.047 0.042 0.049 0.047 0.057 0.040 0.050 0.048 0.041 0.051 0.045 0.037 0.036 0.052 0.051 0.041

Notes

Tidal Tail

The Las Campanas Distant Cluster Survey

35

Table 1—Continued

ID

α(J2000) h m s

0728 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

25 26 26 26 26 26 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 29 29 29 29 29 29 30 30 30 31 31 31 31 32 32 33 33 33 34 34 34 34 34 34 35 35 35 35 35 35 35

45.0 13.7 28.3 37.2 50.3 51.4 12.7 14.1 14.6 16.4 32.8 34.5 46.8 51.4 54.2 05.6 18.0 45.9 48.5 52.9 53.0 11.3 13.4 17.8 37.7 39.1 40.8 22.3 33.9 45.1 04.4 14.1 28.3 48.1 20.0 53.3 25.7 52.8 57.2 04.4 12.3 20.5 22.4 35.8 39.2 04.8 06.3 06.4 32.1 47.1 50.4 53.7

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -11 -11 -12 -12 -12 -11 -12 -12 -11 -11 -12 -12 -11 -12 -12 -13 -11 -12 -12 -12 -11 -12 -12 -12 -12 -11 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -11 -12 -11 -11 -11 -11 -11 -12

49 28 51 46 25 15 23 45 10 12 52 56 15 07 57 52 29 00 40 10 04 01 56 07 54 40 28 48 51 34 59 00 56 17 10 34 06 59 53 50 38 54 52 02 51 31 41 55 49 53 46 11

07 0.32 6.25 7.21 35 0.76 6.33 7.18 45 0.85 6.83 7.60 07 0.70 7.02 7.85 44 0.47 7.83 8.86 22 0.33 6.76 7.58 35 0.78 6.62 7.53 16 0.59 6.80 7.75 49 0.45 7.18 8.04 09 0.68 7.62 8.54 39 0.54 6.43 7.31 25 0.45 6.45 7.28 47 0.38 12.50 14.30 39 0.63 6.39 7.22 55 0.80 6.29 7.09 16 0.64 6.30 7.42 12 0.71 7.31 8.56 51 0.70 7.30 8.66 60 0.82 7.29 8.33 18 0.50 7.11 8.04 21 0.67 6.66 7.46 05 0.48 7.31 8.19 11 0.68 7.16 8.03 56 0.45 6.46 7.31 02 0.79 6.28 7.44 10 0.36 7.61 9.01 32 0.34 6.36 7.46 59 0.78 6.91 7.99 56 0.56 7.51 8.88 30 0.35 8.64 10.20 27 0.47 8.13 9.54 18 0.34 8.41 9.96 07 0.41 7.19 8.54 34 0.35 8.71 10.30 53 0.44 7.16 8.50 04 0.51 6.92 8.16 15 0.61 6.68 7.90 41 0.41 7.99 9.36 55 0.48 7.15 8.35 57 0.41 9.43 11.00 08 >0.85 6.33 7.52 30 0.38 6.47 7.62 48 0.33 10.00 11.70 53 0.42 6.53 7.61 15 0.40 8.94 10.40 39 0.47 6.48 7.56 07 >0.85 6.55 8.01 32 0.48 13.70 15.90 49 0.80 6.94 8.20 46 0.63 7.12 8.36 16 0.58 8.71 10.40 09 0.60 6.92 8.07

0.052 0.045 0.039 0.040 0.045 0.042 0.047 0.047 0.041 0.041 0.046 0.044 0.049 0.044 0.043 0.059 0.057 0.062 0.048 0.045 0.041 0.041 0.041 0.045 0.061 0.061 0.058 0.052 0.060 0.060 0.058 0.061 0.062 0.060 0.062 0.060 0.061 0.057 0.056 0.057 0.063 0.059 0.058 0.056 0.055 0.056 0.073 0.055 0.060 0.058 0.064 0.056

Notes

Tidal Tail

LSB

36

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

36 36 36 36 36 37 37 37 37 37 38 38 38 38 38 39 39 39 39 40 40 40 40 40 40 40 40 41 41 41 41 41 42 42 42 42 42 43 44 44 44 44 44 45 45 46 46 46 46 47 47 48

13.5 40.8 53.4 55.1 58.9 08.7 19.6 21.5 50.5 54.7 10.8 21.8 31.6 50.7 55.1 22.1 31.1 57.0 59.4 04.5 06.3 09.6 19.2 25.9 28.4 37.8 41.9 07.6 12.6 38.5 39.5 39.7 01.1 04.3 12.8 15.1 28.4 22.6 19.5 20.4 26.2 37.0 47.5 09.5 09.7 24.7 41.9 42.4 59.3 31.5 59.7 02.6

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -11 -12 -11 -11 -13 -11 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -11 -11 -12 -11 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12 -12 -11 -12 -11 -12 -11 -12 -11 -12 -12

00 57 27 57 24 57 54 52 01 40 57 42 23 42 34 00 59 11 48 07 14 10 18 15 39 23 06 47 45 18 57 28 34 55 59 18 25 48 25 55 00 03 53 40 03 54 53 59 28 45 27 46

58 0.32 12.40 14.50 25 0.35 8.20 10.00 02 0.41 8.41 10.30 43 0.39 6.49 7.97 13 0.42 13.00 16.20 14 0.62 11.50 14.10 06 0.50 8.41 10.40 20 0.39 8.71 10.70 04 0.82 6.28 7.92 36 0.34 11.70 14.50 17 0.32 7.75 9.62 18 0.52 6.27 7.49 50 0.49 6.61 8.30 11 0.72 7.73 9.38 41 0.68 6.29 7.61 14 0.59 9.08 11.30 40 0.46 7.05 8.85 31 >0.85 7.90 10.30 38 0.44 10.00 12.50 51 0.74 10.30 13.00 57 0.79 6.37 8.19 09 0.67 10.40 13.20 14 0.58 6.67 8.49 22 0.50 6.60 8.33 35 0.49 6.52 8.09 07 0.58 7.50 9.44 19 0.54 7.07 8.70 56 >0.85 8.23 10.10 23 0.65 6.40 7.84 16 0.41 7.44 8.99 28 0.63 6.69 7.99 50 0.47 10.20 12.60 41 0.48 6.32 7.82 25 0.58 8.00 9.51 28 0.54 7.64 9.35 37 0.79 6.37 7.73 46 0.39 6.87 8.45 08 0.55 8.22 10.40 41 0.81 6.72 8.43 18 0.65 7.37 8.79 22 0.53 6.90 8.28 48 0.40 6.66 8.02 41 0.80 7.28 9.34 15 0.35 6.67 7.99 56 0.71 7.52 8.97 18 0.39 9.78 11.60 35 0.54 6.79 8.43 24 0.71 9.42 11.30 60 0.35 6.65 8.45 06 0.43 21.50 25.50 24 0.82 7.54 9.63 44 0.85 6.98 8.59

0.056 0.073 0.075 0.074 0.078 0.074 0.075 0.075 0.084 0.079 0.078 0.065 0.082 0.070 0.069 0.080 0.082 0.095 0.079 0.085 0.091 0.088 0.087 0.084 0.078 0.083 0.075 0.073 0.073 0.069 0.064 0.077 0.077 0.062 0.073 0.070 0.075 0.086 0.082 0.064 0.066 0.067 0.090 0.065 0.064 0.063 0.079 0.066 0.087 0.062 0.088 0.075

Notes

Tidal Tail

(1)

The Las Campanas Distant Cluster Survey

Table 1—Continued

ID

α(J2000) h m s

0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 0880 0881 0882 0883

13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14

48 48 48 48 48 48 50 50 50 50 50 50 51 51 51 51 52 53 53 53 53 54 54 54 54 54 56 56 56 57 57 57 57 58 58 58 59 59 59 59 00 00 00 00 00 01 01 01 01 02 02 03

05.6 28.4 41.5 46.2 52.0 56.9 22.6 23.3 40.5 41.6 47.6 51.7 14.4 28.4 29.6 42.7 29.7 01.0 29.0 50.2 52.4 09.5 22.7 30.1 32.8 50.9 17.9 48.4 48.6 09.0 43.5 46.9 57.5 10.2 15.6 36.7 19.9 24.8 31.6 36.9 25.5 33.9 37.4 46.5 53.1 25.2 26.3 30.8 32.5 48.4 48.9 15.8

δ(J2000)

zest

Σobs Σcor E(B-V ) Notes





′′

-12 -11 -12 -11 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -13 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -11 -11 -12

24 37 01 48 04 59 36 14 18 12 54 17 05 17 11 32 45 37 18 51 44 30 35 33 23 09 53 07 30 08 00 53 14 44 13 27 32 54 56 48 31 34 00 10 01 22 03 44 16 36 39 14

39 0.48 6.61 8.56 33 0.55 7.17 8.59 49 0.40 10.80 13.20 45 0.34 9.73 11.70 18 0.59 10.40 12.80 39 0.65 7.33 8.98 25 0.64 7.52 9.12 12 0.40 6.83 8.42 34 0.34 8.53 10.40 13 0.39 7.04 8.62 54 0.49 6.37 7.75 03 0.36 8.78 10.70 56 0.56 6.52 7.95 03 0.39 6.52 7.81 03 0.41 6.65 7.96 39 >0.85 7.78 9.35 39 0.77 7.05 8.79 31 0.50 7.09 8.52 46 0.77 7.65 9.36 21 0.71 6.69 7.94 49 0.83 6.88 8.41 59 0.84 8.11 9.92 39 0.43 18.00 21.20 28 0.51 8.45 9.98 29 0.36 6.60 8.04 11 0.72 7.82 9.55 56 0.79 8.15 10.30 47 0.40 11.10 13.50 11 0.43 6.54 8.00 29 0.48 6.35 7.79 04 0.37 6.67 8.40 09 0.47 6.74 8.49 28 0.39 7.12 8.82 28 0.56 7.26 8.67 50 0.47 7.92 9.90 10 0.37 7.32 9.19 49 0.46 7.60 9.57 35 0.36 7.76 9.90 30 0.35 7.29 9.25 00 0.36 6.78 8.59 55 0.36 16.70 20.80 50 0.47 7.23 8.92 03 0.82 6.43 7.97 02 0.39 8.62 10.80 21 0.40 10.60 13.20 45 0.44 8.59 10.80 32 0.68 6.67 8.38 46 0.57 7.98 9.72 33 0.43 6.28 7.78 32 0.36 6.94 8.30 16 0.44 6.93 8.32 18 0.65 8.34 10.10

0.094 0.065 0.072 0.068 0.075 0.073 0.070 0.076 0.071 0.073 0.071 0.071 0.072 0.065 0.065 0.066 0.080 0.066 0.073 0.062 0.073 0.073 0.061 0.060 0.071 0.072 0.083 0.072 0.073 0.074 0.084 0.084 0.078 0.064 0.081 0.082 0.083 0.088 0.086 0.086 0.079 0.076 0.078 0.083 0.079 0.083 0.083 0.071 0.077 0.065 0.066 0.071

37

38

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 0928 0929 0930 0931 0932 0933 0934 0935

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

03 03 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 06 06 06 06 07 07 07 07 08 08 08 08 08 09 09 10 10 10 10 10 10 10 11 11 11 11 12 13 13 13 13 14 14

52.1 56.8 11.8 20.5 25.5 33.0 54.3 54.6 58.0 00.8 11.4 16.1 25.4 28.8 29.3 37.0 37.9 39.9 59.8 35.4 37.0 39.6 60.0 01.0 34.8 36.2 54.2 05.8 17.8 32.0 46.2 46.6 08.7 43.8 01.1 02.7 26.2 28.2 33.3 35.6 50.2 03.9 06.6 23.9 58.9 32.6 06.1 17.6 35.8 40.0 05.9 13.9

δ(J2000) zest Σobs Σcor E(B-V ) Notes





′′

-12 -12 -11 -12 -11 -12 -11 -11 -12 -11 -11 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -11 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -11 -11 -11 -12 -12 -11 -12 -11 -12 -12 -12 -12

54 35 44 22 39 09 55 41 32 30 47 22 52 47 24 23 46 26 58 21 07 47 10 58 41 17 46 31 09 14 15 33 58 42 18 33 00 40 06 25 44 48 50 46 40 50 07 55 29 01 39 54

53 45 22 28 21 31 38 36 15 45 09 44 27 47 45 38 43 07 02 49 03 59 13 18 26 11 09 11 31 15 58 57 36 02 30 02 07 35 00 05 04 22 46 53 53 15 02 59 56 04 33 04

0.37 6.94 8.74 0.54 6.66 8.06 0.52 6.95 8.43 0.55 7.66 9.16 0.42 7.47 9.07 0.40 7.41 8.84 0.39 6.28 7.46 0.84 6.35 7.50 0.65 6.32 7.71 0.81 7.24 8.97 0.64 6.52 7.68 0.41 7.36 8.82 0.52 6.90 8.06 0.39 7.16 8.39 0.49 6.59 8.04 0.79 7.53 9.22 0.40 6.64 7.99 0.71 6.77 8.31 0.40 7.51 9.29 0.63 6.45 7.80 0.75 6.28 7.68 0.45 7.30 8.52 0.38 6.76 8.22 0.39 6.27 7.55 0.36 10.20 12.00 0.34 7.42 8.82 0.62 6.40 7.66 0.35 9.29 11.00 0.49 6.78 8.16 0.34 6.30 7.60 0.71 6.57 7.90 0.74 7.22 8.51 0.47 7.23 8.79 0.35 6.54 7.83 0.67 8.98 10.80 0.49 7.41 9.21 0.82 7.96 9.33 0.69 6.67 8.08 0.81 6.44 7.64 0.69 8.51 10.20 0.40 6.49 7.62 0.47 11.10 13.00 0.68 7.74 9.01 0.75 6.45 7.88 0.31 9.96 12.20 0.69 6.58 7.67 0.82 11.00 13.00 0.82 6.75 8.02 0.38 6.31 7.61 0.58 7.80 9.26 0.59 6.47 7.80 0.64 6.34 7.92

0.083 0.069 0.070 0.064 0.070 0.064 0.063 0.060 0.072 0.078 0.059 0.065 0.056 0.057 0.072 0.073 0.067 0.074 0.077 0.069 0.073 0.056 0.071 0.068 0.059 0.063 0.065 0.061 0.067 0.068 0.067 0.060 0.071 0.065 0.065 0.079 0.058 0.069 0.062 0.066 0.058 0.056 0.055 0.073 0.074 0.055 0.062 0.062 0.068 0.062 0.068 0.081

LSB

The Las Campanas Distant Cluster Survey

39

Table 1—Continued

ID

α(J2000) h m s

0936 0937 0938 0939 0940 0941 0942 0943 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

14 14 15 15 15 15 16 16 16 16 17 17 17 18 19 19 20 20 20 20 22 22 23 23 23 24 24 24 26 26 26 26 27 27 27 28 28 28 28 29 29 30 31 31 32 32 33 34 35 36 36 37

37.0 55.6 18.0 34.4 45.8 57.2 03.0 15.2 30.6 51.7 03.8 08.9 32.7 20.2 31.3 57.0 19.4 29.4 29.7 32.2 15.8 22.4 40.4 49.1 52.3 16.7 24.4 41.3 14.5 20.6 24.9 42.0 31.8 52.5 54.2 22.7 57.2 58.4 59.7 37.3 40.1 30.2 31.0 40.2 25.6 54.5 14.4 45.5 23.0 15.0 58.8 29.2

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -11 -12 -11 -11 -11 -12 -12 -12 -12 -12 -11 -12 -11 -11 -11 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12

57 58 01 44 46 50 57 01 35 56 21 34 45 44 53 46 36 51 34 44 11 09 14 30 23 09 01 57 50 00 46 29 36 21 10 03 31 22 27 54 50 26 43 50 30 55 43 59 08 35 40 20

32 0.37 6.26 7.76 08 0.47 7.27 8.59 53 0.42 7.15 8.48 11 0.31 6.25 7.49 36 0.43 7.22 8.63 47 0.51 6.42 7.62 11 0.61 6.65 8.16 35 0.38 6.56 7.88 59 0.62 8.24 10.00 46 0.76 6.38 7.94 48 0.38 9.00 10.80 17 0.39 6.28 7.48 02 0.83 6.35 7.83 51 0.37 9.42 11.30 28 0.77 11.80 14.50 16 0.83 7.18 9.00 36 0.49 9.36 12.20 24 0.53 6.57 8.34 04 0.67 13.60 17.30 46 0.60 6.58 8.52 15 >0.85 7.29 9.52 01 0.54 7.71 10.10 42 0.74 6.29 8.05 29 0.51 6.56 8.46 12 0.35 12.90 16.60 51 0.74 8.71 11.10 48 0.52 7.95 10.10 20 0.45 10.90 13.70 13 0.37 9.81 12.50 33 0.54 6.96 8.81 28 0.35 9.72 12.40 08 0.40 6.85 8.81 20 0.76 6.66 8.62 56 0.41 9.56 12.20 15 0.59 6.34 8.07 30 0.76 6.63 8.59 12 0.36 10.40 13.60 15 0.32 7.68 10.00 07 0.63 8.34 10.90 42 0.78 7.35 9.49 01 0.35 11.60 15.10 18 0.35 7.62 9.85 02 0.31 7.76 9.99 23 0.74 6.56 8.39 20 >0.85 7.20 9.07 25 0.37 7.61 9.57 57 0.42 7.61 9.46 09 0.33 6.33 8.02 07 0.67 6.99 8.77 19 0.72 6.30 7.77 44 0.57 6.30 7.87 21 0.74 6.56 8.16

0.078 0.060 0.062 0.066 0.065 0.062 0.074 0.066 0.070 0.079 0.067 0.063 0.076 0.066 0.073 0.082 0.096 0.087 0.089 0.094 0.097 0.099 0.089 0.092 0.090 0.087 0.087 0.082 0.089 0.086 0.088 0.091 0.094 0.087 0.087 0.094 0.096 0.097 0.096 0.093 0.096 0.093 0.091 0.089 0.084 0.083 0.079 0.085 0.082 0.076 0.080 0.079

Notes

Tidal Tail

Tidal Tail

40

Gonzalez et al.

Table 1—Continued

ID

α(J2000) h m s

0988 0989 0990 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15

37 38 38 39 39 40 40 40 40 41 41 42 42 43 43 43 43 44 44 46 46 46 46 49 49 51 51 51 51 51 52 52 52 52 53 53 53 53 54 54 54 54 55 55 55 56 56 56 57 58 59 00

42.7 42.7 46.0 29.8 49.9 18.1 31.1 35.3 45.0 02.0 32.6 17.4 53.9 40.1 44.4 52.8 59.4 54.3 57.9 08.4 14.4 27.8 47.5 11.1 21.6 14.2 38.3 46.4 50.8 59.8 01.7 18.4 29.6 38.7 25.6 35.5 45.0 47.0 22.8 31.3 48.8 57.7 02.1 09.4 22.0 04.2 38.8 44.4 06.2 01.3 03.0 18.1

δ(J2000)

zest

Σobs Σcor E(B-V )





′′

-12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -11 -12 -11 -11 -11 -11 -11 -11 -12 -12 -11 -12 -12 -12 -12 -12 -12 -11 -11 -11 -11 -11 -12 -12 -12 -12 -11 -12 -12 -11 -11 -12 -12 -11 -12 -12 -12 -12 -12 -11 -12 -12

38 20 27 19 39 45 01 27 22 52 50 23 46 58 31 59 32 36 17 32 47 38 15 38 28 39 08 37 47 51 59 57 36 34 01 48 36 34 33 34 31 50 58 31 54 46 38 35 46 39 51 15

37 0.45 8.05 60 0.58 6.62 58 0.65 6.42 39 0.41 7.51 17 0.45 6.62 58 0.37 6.94 24 0.49 6.36 54 0.41 7.78 07 0.49 14.60 23 0.38 6.27 59 0.35 7.66 03 0.33 7.22 35 0.75 6.57 01 0.70 6.77 51 0.38 6.67 29 0.40 7.29 29 0.38 7.60 51 0.81 6.84 58 0.35 8.07 08 0.53 10.20 46 0.57 6.66 37 0.75 7.11 59 0.52 6.62 14 0.60 6.55 19 0.31 12.30 56 0.42 8.57 58 0.36 8.40 21 0.57 9.24 17 0.74 6.55 10 0.58 6.56 15 0.62 6.88 56 0.35 6.88 30 0.40 13.30 41 0.73 6.88 33 >0.85 6.81 28 0.42 7.25 23 0.42 8.17 46 0.42 6.80 50 0.54 7.16 24 0.77 7.81 57 0.39 7.98 10 0.83 6.81 36 0.81 7.19 11 0.52 7.72 22 0.75 7.14 57 0.32 11.30 50 0.62 7.31 13 0.35 7.19 33 0.46 6.44 14 0.36 6.55 08 0.63 7.87 37 0.42 7.01

10.00 8.17 7.93 9.14 8.02 8.31 7.68 9.51 17.80 7.61 9.36 8.73 8.05 8.43 8.06 9.04 9.23 8.37 9.90 13.10 8.18 9.26 8.45 8.18 15.40 10.70 10.70 11.80 8.20 8.21 8.70 8.68 16.60 8.58 8.78 8.97 10.20 8.52 8.94 9.95 10.20 8.45 8.92 9.92 8.80 13.70 8.87 8.76 7.79 8.54 9.71 8.55

0.080 0.076 0.077 0.071 0.069 0.065 0.068 0.073 0.072 0.070 0.073 0.069 0.074 0.079 0.068 0.078 0.070 0.073 0.074 0.089 0.074 0.096 0.088 0.080 0.081 0.082 0.086 0.089 0.081 0.082 0.085 0.084 0.080 0.080 0.092 0.077 0.079 0.081 0.080 0.087 0.088 0.078 0.078 0.091 0.076 0.071 0.070 0.072 0.069 0.096 0.076 0.072

Notes

Possible LSB

The Las Campanas Distant Cluster Survey

Table 1—Continued

ID

α(J2000) h m s

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

00 00 00 00 00 00 00 00 01 01 01 01 02 03 03 03 03 04 04 05 05 05 05 06 06 06 07 08 09 10 10 11 11 11

22.7 30.1 31.5 44.1 53.8 57.6 58.1 59.6 13.5 32.3 43.4 51.2 02.5 29.2 33.5 34.9 40.4 07.4 17.8 27.4 38.0 46.4 51.1 11.4 16.4 23.2 39.3 39.7 47.9 40.6 43.2 19.3 46.9 53.3

δ(J2000) zest Σobs Σcor E(B-V ) Notes





′′

-11 -12 -12 -12 -12 -11 -12 -12 -11 -11 -11 -12 -11 -12 -11 -11 -12 -11 -12 -11 -12 -11 -12 -12 -12 -12 -11 -12 -12 -11 -12 -11 -12 -12

39 20 21 44 29 44 16 53 57 52 51 57 36 57 59 56 56 55 14 44 11 48 29 40 02 04 58 51 04 59 22 50 38 38

39 48 18 12 44 24 19 05 60 15 54 38 23 27 35 09 17 09 25 59 56 22 13 52 33 13 55 52 35 37 52 07 30 25

0.80 0.38 0.36 0.35 0.31 0.32 0.41 0.45 0.35 0.57 0.68 0.32 0.32 0.45 0.32 0.35 0.83 0.59 0.51 0.82 0.41 0.77 0.50 0.67 0.38 0.77 0.40 0.84 0.40 0.36 0.59 0.78 0.40 0.35

6.37 11.40 10.40 7.29 7.14 8.24 8.24 6.67 6.26 7.99 7.49 6.73 7.29 8.11 10.40 12.40 6.26 6.98 6.28 7.25 6.32 7.26 6.82 7.41 9.01 7.08 11.10 7.58 6.52 7.32 6.52 6.97 8.92 6.58

8.37 14.00 12.70 9.09 8.80 10.50 10.10 8.32 7.74 9.96 9.34 8.52 9.50 10.30 13.20 15.70 7.94 9.00 8.08 9.42 8.33 9.45 8.89 9.71 11.80 9.28 14.60 9.86 8.55 9.61 8.60 9.15 11.60 8.57

0.099 0.072 0.072 0.080 0.076 0.086 0.073 0.080 0.077 0.080 0.080 0.085 0.096 0.087 0.086 0.086 0.086 0.092 0.091 0.095 0.100 0.096 0.096 0.098 0.098 0.098 0.099 0.095 0.098 0.099 0.100 0.098 0.097 0.096

Note. — Units for Σobs and Σcor are 10−3 counts s−1 arcsec−2 . (1) RX J1347.5 at z=0.451 (Schindler et al. 1995)

41

42

Gonzalez et al.

Table 2 Supplemental Catalog

ID S001 S002 S003 S004 S005 S006 S007 S008 S009 S010 S011 S012 S013 S014 S015 S016 S017 S018 S019 S020 S021 S022 S023 S024 S025 S026 S027 S028 S029 S030 S031 S032 S033 S034 S035 S036 S037 S038 S039 S040 S041 S042 S043 S044 S045 S046 S047 S048 S049 S050 S051 S052

α(J2000) h m s 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13

06 06 15 23 24 27 28 31 36 40 41 44 46 51 51 51 51 51 56 02 16 20 23 28 36 37 38 39 45 47 47 48 49 50 55 06 06 07 12 12 17 17 39 40 46 46 48 58 03 13 14 14

18.8 25.8 38.4 11.1 09.8 21.4 33.7 27.9 52.7 40.8 40.3 59.6 04.6 09.3 13.7 31.1 31.7 35.7 55.0 29.0 54.4 24.5 03.9 34.6 32.0 55.2 26.3 44.0 16.0 15.7 17.0 01.8 06.2 34.4 28.5 05.6 49.6 42.0 39.4 55.2 06.3 47.3 17.9 54.1 02.2 23.4 16.9 59.8 11.9 07.0 09.6 44.6



δ(J2000) ′

′′

zest Σobs

Failed Σcor E(B-V ) Criteriaa

-12 -12 -12 -12 -11 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -11 -12 -12 -11 -12 -11 -12 -11 -12 -11 -12 -12 -12 -12 -11 -12 -12 -12 -12 -12 -12 -12 -11 -12

58 40 43 33 48 47 59 35 49 14 50 43 47 42 01 38 04 37 44 47 22 03 36 52 36 58 38 46 46 51 52 31 46 49 25 33 03 59 02 37 51 01 54 02 48 30 08 19 31 22 34 40

13 48 52 47 08 48 29 20 51 00 31 22 50 55 14 35 12 45 02 50 22 16 35 29 08 49 21 59 03 46 05 14 06 48 41 06 44 08 50 33 51 56 45 00 05 07 28 39 56 37 12 53

0.47 0.60 0.39 0.29 0.29 0.50 0.35 0.56 0.33 0.52 0.28 0.66 0.50 0.63 0.37 0.49 0.26 0.50 0.39 0.32 0.27 0.28 0.36 0.37 0.26 0.35 0.35 0.24 0.26 0.69 0.62 0.20 0.48 0.23 0.51 0.27 0.60 0.26 0.26 0.28 0.39 0.33 0.45 0.43 0.76 0.75 0.34 0.26 0.76 0.54 0.43 0.42

11.80 9.05 14.00 16.60 24.30 11.20 14.60 9.17 16.80 11.20 13.50 8.57 14.20 15.30 22.20 11.10 12.90 11.00 9.96 13.30 9.22 9.29 9.78 22.30 12.30 9.35 17.00 12.70 32.20 7.36 6.85 14.00 11.80 13.30 17.00 13.80 8.01 34.30 8.37 25.30 20.10 12.00 9.90 8.71 10.60 7.77 10.30 7.82 7.36 13.80 8.64 11.20

9.85 7.77 11.40 13.40 21.10 9.75 12.50 7.63 14.50 9.84 11.80 7.36 12.10 13.30 19.60 9.82 11.40 9.74 8.95 11.90 7.64 7.83 8.82 20.20 11.40 8.52 15.50 11.70 30.10 6.70 6.23 13.10 10.80 11.60 15.00 11.10 6.56 27.60 6.80 21.90 17.00 10.60 8.70 7.62 9.18 6.81 9.20 7.00 6.55 12.00 7.58 9.85

0.066 0.055 0.075 0.079 0.051 0.051 0.057 0.067 0.052 0.048 0.048 0.055 0.058 0.050 0.045 0.045 0.045 0.045 0.038 0.042 0.068 0.062 0.038 0.034 0.029 0.033 0.032 0.030 0.024 0.034 0.034 0.026 0.035 0.048 0.045 0.080 0.072 0.079 0.075 0.053 0.062 0.045 0.047 0.048 0.051 0.048 0.042 0.040 0.042 0.052 0.047 0.046

Notes

S S M z,G z,M M G S G M z M M M G M,G z,M M M G z z,LSB,M M M z,G M G z,M z,M,G S S zKeck =0.58 z,G M z,M M z,LSB S z,LSB z z,M M M M MS M S M z,G M M M M

The Las Campanas Distant Cluster Survey

43

Table 2—Continued

ID S053 S054 S055 S056 S057 S058 S059 S060 S061 S062 S063 S064 S065 S066 S067 S068 S069 S070 S071 S072 S073 S074 S075 S076 S077 S078 S079 S080 S081 S082 S083 S084 S085 S086 S087 S088 S089 S090 S091 S092 S093 S094 S095 S096 S097 S098 S099 S100 S101 S102 S103 S104

α(J2000) h m s 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15

15 22 24 24 26 27 29 38 48 48 48 53 03 04 04 05 06 08 09 11 11 11 11 13 16 31 31 37 40 40 47 47 49 49 50 51 51 52 54 56 56 59 59 00 03 08 09 10 11 11 13 14

29.7 50.8 03.2 09.4 01.9 39.1 11.4 38.5 03.3 04.5 59.7 26.9 22.4 45.2 46.2 49.5 09.1 50.3 57.9 02.1 34.8 48.8 50.4 28.7 21.7 49.4 54.4 11.2 11.1 22.3 07.0 38.0 45.8 46.9 01.3 13.9 46.0 45.5 36.9 40.9 42.5 37.1 50.8 13.0 15.1 47.7 41.5 49.1 12.3 48.6 52.6 49.4

δ(J2000)

Failed Σcor E(B-V ) Criteriaa





′′

-12 -12 -12 -12 -12 -12 -12 -11 -12 -12 -11 -12 -12 -11 -12 -11 -12 -12 -11 -12 -12 -12 -12 -12 -11 -11 -11 -12 -12 -11 -11 -11 -12 -12 -12 -12 -12 -11 -11 -12 -12 -12 -12 -12 -12 -12 -12 -12 -11 -12 -11 -11

12 24 07 26 51 01 56 59 53 21 34 02 51 34 16 49 07 18 47 37 19 01 02 36 56 48 51 25 23 45 36 48 13 33 38 39 20 40 37 47 48 48 45 45 37 54 25 53 55 53 47 52

51 0.37 23.10 26.50 10 0.54 7.57 8.58 43 0.45 10.30 11.50 02 0.34 14.70 16.70 59 0.36 7.33 8.56 04 0.29 34.90 39.20 22 0.37 18.90 22.30 16 0.42 12.40 15.80 16 0.65 8.36 10.40 04 0.35 9.07 12.10 24 0.38 10.00 11.90 57 0.81 8.69 10.60 02 0.41 12.90 16.20 37 0.53 7.27 8.97 26 0.42 9.61 11.40 26 0.35 21.40 24.90 18 0.35 26.50 31.80 12 0.55 14.70 17.60 33 0.60 7.72 9.19 17 0.32 18.70 22.60 18 >0.85 9.17 10.90 07 0.38 13.40 15.80 26 0.29 16.30 19.30 06 0.43 17.00 20.60 06 0.48 7.76 9.29 55 0.37 9.48 12.90 21 0.32 12.20 16.60 30 0.59 7.85 9.74 41 0.28 29.80 36.60 15 0.30 23.40 28.60 54 0.43 14.00 17.50 56 0.52 9.68 12.20 56 0.73 7.66 9.54 27 0.35 17.10 21.30 55 0.29 16.80 21.10 19 0.28 7.33 9.20 39 0.26 6.61 8.40 30 0.70 7.93 9.87 19 0.67 7.14 9.19 10 0.40 12.20 14.80 14 0.25 7.02 8.49 01 0.36 13.60 17.10 26 0.32 9.11 11.30 46 0.42 15.80 19.70 05 0.43 13.00 16.90 26 0.57 17.10 22.30 19 0.29 8.08 10.60 42 0.32 15.50 20.60 29 0.73 8.42 11.00 00 0.41 15.50 20.80 32 0.41 11.00 15.00 54 0.31 9.07 12.50

zest

Σobs

0.049 0.045 0.039 0.046 0.056 0.042 0.061 0.089 0.080 0.103 0.063 0.070 0.081 0.076 0.062 0.056 0.066 0.065 0.063 0.069 0.064 0.060 0.061 0.068 0.065 0.111 0.111 0.078 0.073 0.072 0.080 0.084 0.080 0.081 0.083 0.082 0.087 0.079 0.091 0.069 0.069 0.083 0.079 0.078 0.095 0.097 0.097 0.102 0.097 0.106 0.112 0.117

M M M G M z,G LSB M M E M M M M M G G M M LSB,G M M z M M E E,M M G G M M M M z,M z z,S M M M z M M M M M z E M E,M E E

Notes

zKeck =0.38

44

Gonzalez et al.

Table 2—Continued

ID S105 S106 S107 S108 S109 S110 S111 S112

α(J2000) h m s 15 15 15 15 15 15 15 15

14 15 27 29 33 34 37 38

δ(J2000)

54.0 39.6 12.0 35.1 18.9 17.8 20.9 17.3





′′

Failed zest Σobs Σcor E(B-V ) Criteriaa Notes

-12 -12 -12 -12 -12 -12 -12 -12

14 54 20 31 53 31 29 25

25 27 40 44 09 56 43 58

0.34 0.43 0.78 0.25 0.32 0.41 0.34 0.53

9.04 13.80 9.52 41.00 13.60 9.02 17.70 8.94

12.50 19.90 15.00 62.10 19.60 13.10 26.10 12.80

0.117 0.133 0.164 0.150 0.131 0.135 0.142 0.131

E E E,M z,E E E E E

Note. — (a) Automated criteria that the detection failed to satisfy. The following designations are used: E - extinction E(B −V )≥0.10; z - z
Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.