Stress transfer efficiency in model composites under dynamic loading

May 30, 2017 | Autor: Vassilis Kostopoulos | Categoría: Condensed Matter Physics, Raman Spectroscopy, Shear Stress, Carbon fibre
Share Embed


Descripción

The micromechanics of tension-tension fatigue loading in model single-fibre composite geometries is investigated in this paper. In an attempt to emulate the conditions encountered in full carbon fibre composites, the fibres were prestrained prior to the curing process to ensure that they were free of high residual compressive stresses as a result of resin shrinkage. The resulting specimens were grouped into two categories depending on the level of the initial fibre prestrain (case A low, case B high). The cyclic load is designed to be well below the endurance fatigue limit of the polymer matrix ( 0.6%), and to have a frequency low enough to avoid unwanted thermal post curing. Throughout the preparation procedure, as well as during fatigue loading, the fibre stress (strain) was constantly monitored by means of laser Raman spectroscopy. The fibre axial stress distributions at each fatigue step were converted to interfacial shear stress (ISS) distributions, from which important parameters such as the maximum ISS the system can accommodate, the transfer length for efficient stress built-up and the length required for the attainment of maximum ISS were obtained. The results showed that, up to 2×106 loading cycles, the main parameters which affected the stress transfer efficiency at the interface were the fibre fracture process itself and the viscoelastic behaviour of the matrix material.
Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.