SOL Cálculo 2 de varias variables, 9na Edición - Ron Larson & Bruce H. Edwards (IN)

August 5, 2017 | Autor: Margy Luna | Categoría: Mathematics, Calculo Vectorial
Share Embed


Descripción

SIGUENOS EN:

LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS GRATIS EN DESCARGA DIRECTA VISITANOS PARA DESCARGARLOS GRATIS.

http://librosysolucionarios.net

C H A P T E R 1 0 Vectors and the Geometry of Space Section 10.1 Vectors in the Plane

. . . . . . . . . . . . . . . . . . . . 474

Section 10.2 Space Coordinates and Vectors in Space . . . . . . . . . . 479 Section 10.3 The Dot Product of Two Vectors . . . . . . . . . . . . . . 483 Section 10.4 The Cross Product of Two Vectors in Space . . . . . . . . 487 Section 10.5 Lines and Planes in Space . . . . . . . . . . . . . . . . . 491 Section 10.6 Surfaces in Space . . . . . . . . . . . . . . . . . . . . . . 496 Section 10.7 Cylindrical and Spherical Coordinates . . . . . . . . . . . 499 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

http://librosysolucionarios.net

C H A P T E R 1 0 Vectors and the Geometry of Space Section 10.1

Vectors in the Plane

Solutions to Even-Numbered Exercises 2. (a) v  3  3, 2  4  0, 6 (b)

4. (a) v    1  2, 3  1  3, 2 (b)

y

−3 −2 −1

y

x 1

−1

2

3

3

(− 3, 2)

−2

2

v

−3

v

−4

1

−5

(0, − 6)

−6

−3

6. u  1  4, 8  0  5, 8

−2

x

−1

8. u  11  4, 4  1  15, 3

v  7  2, 7  1  5, 8

v  25  0, 10  13  15, 3

uv

uv

10. (b) v  3  2, 6  6  1, 12 (a) and (c).

12. (b) v  5  0, 1  4  5, 3

y

(a) and (c).

y

(1, 12)

12 10 8

(− 5, 3)

v

6 4 2

(3, 6) −6

1

2

3

4

5

6

−4

2

7

x

−2

(− 5, −1)

x

−1

4

v

2 −2

(0, − 4)

−4

(2, −6)

−6

14. (b) v  3  7, 1  1  10, 0 (a) and (c).

16. (b) v  0.84  0.12, 1.25  0.60  0.72, 0.65 (a) and (c).

y

y

3

1.25

2

1.00

1

(−10, 0)

(0.84, 1.25)

0.75

v

(0.72, 0.65)

x

−8 −6 −4 −2

(−3, −1)

(0.12, 0.60)

0.50

2 4 6 8

−2

(7, −1)

18. (a) 4v  4, 20

v

0.25

x

−3

0.25 0.50 0.75 1.00 1.25

1 (b)  2 v 

 12 ,  52 

y

y

(−1, 5)

(− 4, 20) 20

v 4v 1

(− 1, 5)

−4 −3 −2 −1

v −12 −8 −4

474

x 4

8

12

−2 −3

—CONTINUED—

http://librosysolucionarios.net

x

− 1v

3

2

( 12, − 25 (

4

Section 10.1

Vectors in the Plane

18. —CONTINUED— (d) 6v  6, 30

(c) 0v  0, 0

y

y

(− 1, 5) v

6

(− 1, 5)

−15 −10 −5

x 5

−10

10

15

−6v

−15

v

−20

0v

−25 x

−3 −2 −1

1

2

(6, − 30)

−30

3

20. Twice as long as given vector u.

22.

y

y

u + 2v u 2v 2u u x

x

2 2 16 24. (a) 3u  3 3, 8   2,  3 

26. v  2i  j  i  2j

(b) v  u  8, 25  3, 8  11, 33

 3i  j  3, 1

(c) 2u  5v  23, 8  58, 25  34, 109

y

2

w

v

1

x 1

2

3

u −1

28. v  5u  3w  52, 1  31, 2  7, 11

30. u1  3  4 u2  2  9

y 2 −4 −2

u1  7

x 4

6

8

10

u2  7

5u

−3w −6

Q  7, 7

v

−8 −10 −12

32. v  144  25  13

34. v  100  9  109

40. u  6.22  3.42  50  52

38. u  52  152  250  510 v





36. v  1  1  2

5, 15 1 3 u   , unit vector u 10 10 510

v





1.24 0.68 6.2, 3.4 u  ,  unit vector 52 2 2 u

http://librosysolucionarios.net

475

476

Chapter 10

Vectors and the Geometry of Space 44. u  2, 4, v  5, 5

42. u  0, 1, v  3, 3 (a) u  0  1  1

(a) u  4  16  25

(b) v  9  9  32

(b) v  25  25  52

(c)

u  v  3, 2

(c)

u  v  49  1  52

u  v  9  4  13 u  0, 1 u

(d)

 uu   1

1 v  3, 3 v 32

 vv   1

1 uv  3, 2 u  v 13

1 uv  7, 1 u  v 52

(f)

 uu  vv   1

 uu  vv   1

u  3, 2

46.

1 v  5, 5 v 52

(e)

 vv   1 (f)

1 u  2, 4 u 25

(d)

 uu   1 (e)

u  v  7, 1

1 u  1, 1 u 2

48.

u  13 3.606 4

v  1, 2

uu  22 1, 1 v   22, 22 

v  5 2.236 u  v  2, 0 u  v  2 u  v ≤ u  v 1 u  0, 3 u 3

50. 3

52. v  5 cos 120i  sin 120j 5 53  i j 2 2



u  0, 3 u v  0, 3

54. v  cos 3.5i  sin 3.5j

u  4i

56.

v  i  3 j

0.9981i  0.0610j  0.9981, 0.0610

u  v  5i  3 j 58.

u  5 cos0.5 i  5 sin0.5 j

60. See page 718:

 5 cos0.5 i  5 sin0.5 j v  5 cos0.5 i  5 sin0.5 j u  v  10 cos0.5 i

(ku1, ku2) (u1 + v1, u2 + v2) (u1, u2)

ku

u+v

ku2

u

u2

(u1, u2) u2

u (v1, v2) v2

v v1

http://librosysolucionarios.net

u1

u1 ku1

Section 10.1

Vectors in the Plane

477

62. See Theorem 10.1, page 719. For Exercises 64–68, au  bw  ai  2j  bi  j  a  bi  2a  bj. 64. v  3j. Therefore, a  b  0, 2a  b  3. Solving simultaneously, we have a  1, b  1.

66. v  3i  3j. Therefore, a  b  3, 2a  b  3. Solving simultaneously, we have a  2, b  1.

68. v  i  7j. Therefore, a  b  1, 2a  b  7. Solving simultaneously, we have a  2, b  3. 72. f x  tan x

70. y  x3, y  3x2  12 at x  2.

fx  sec2 x  2 at x 

(a) m  12. Let w  1, 12, then 1 w ± 1, 12. w 145

 . 4

(a) m  2. Let w  1, 2, then w 1 1, 2. ± w 5

1 (b) m   12 . Let w  12, 1, then

1 w ± 12, 1. w 145

(b) m   12. Let w  2, 1, then w 1 ± 2, 1. w 5

74.

u  23 i  2j

76. magnitude 63.5 direction 8.26

u  v  3i  33 j v  u  v  u   3  23  i   33  2 j 78. F1  2, F1  10 F2  4, F2  140 F3  3, F3  200 R  F1  F2  F3 4.09

R  F1 F2 F3 163.0 80.

F1  F2  500 cos 30i  500 sin 30j  200 cos45 i  200 sin45 j   2503  1002  i   250  1002  j F1  F2   2503  1002    250  1002 584.6 lb 2

tan  

2

250  1002 ⇒  10.7 2503  1002

82. F1  F2  F3  400cos30i  sin30j  280cos45i  sin45j  350cos135i  sin135j  2003  1402  1752i  200  1402  1752 j R 

2003  3522  200  31522 385.2483 newtons 200  315 2

0.6908 39.6 200 3  35 2

R  arctan







http://librosysolucionarios.net

478

Chapter 10

Vectors and the Geometry of Space

84. F1  20, 0, F2  10cos , sin   (a) F1  F2  20  10 cos , 10 sin    400  400 cos   100 cos2   100 sin2   500  400 cos  (b)

(c) The range is 10 ≤ F1  F2 ≤ 30.

40

The maximum is 30, which occur at   0 and   2. The minimum is 10 at   . 2

0

(d) The minimum of the resultant is 10.

0

86.

u  7  1, 5  2  6, 3 1 u  2, 1 3 P1  1, 2  2, 1  3, 3 P2  1, 2  22, 1  5, 4

0.8761 or 50.2 24 20 24  arctan   1.9656 or 112.6 10

y

88. 1  arctan

2

θ2

A v C

u  ucos 1 i  sin 1 j

B u

θ1

x

v  vcos 2 i  sin 2 j Vertical components: u sin 1  v sin 2  5000 Horizontal components: u cos 1  v cos 2  0 Solving this system, you obtain u 2169.4 and v 3611.2. 90. To lift the weight vertically, the sum of the vertical components of u and v must be 100 and the sum of the horizontal components must be 0. u  u cos 60i  sin 60j

20°

v

30° u

v  v cos 110i  sin 110j Thus, u sin 60  v sin 110  100, or

23  v sin 110  100.

u



And u cos 60  v cos 110  0 or u

12  v cos 110  0

Multiplying the last equation by 3  and adding to the first equation gives u sin 110  3 cos 110  100 ⇒ v 65.27 lb. Then, u

12  65.27 cos 110  0 gives

u 44.65 lb. (a) The tension in each rope: u  44.65 lb, v  65.27 lb. (b) Vertical components: u sin 60 38.67 lb. v sin 110 61.33 lb.

http://librosysolucionarios.net

100 lb

Section 10.2

Space Coordinates and Vectors in Space

u  400iplane

92.

v  50cos 135i  sin 135j  252i  252j wind u  v  400  252i  252j  364.64i  35.36j tan  

35.36 ⇒   5.54 364.64

Direction North of East:  N 84.46 E Speed:  336.35 mph 94. u  cos2   sin2   1, v  sin2   cos 2   1 96. Let u and v be the vectors that determine the parallelogram, as indicated in the figure. The two diagonals are u  v and v  u. Therefore, r  xu  v, s  yv  u. But, urs  xu  v  yv  u  x  yu  x  yv. 1 Therefore, x  y  1 and x  y  0. Solving we have x  y  2 . s u r v

98. The set is a circle of radius 5, centered at the origin. u  x, y  x2  y2  5 ⇒ x2  y 2  25 100. True

102. False

104. True

ab0

Section 10.2 2.

Space Coordinates and Vectors in Space z

4.

z

8

8

(3, −2, 5)

(4, 0, 5)

x

x

y

( 32 , 4, −2( 6. A2, 3, 1 B3, 1, 4

y

(0, 4, − 5)

8. x  7, y  2, z  1:

10. x  0, y  3, z  2: 0, 3, 2

7, 2, 1

12. The x-coordinate is 0.

14. The point is 2 units in front of the xz-plane.

16. The point is on the plane z  3.

18. The point is behind the yz-plane.

http://librosysolucionarios.net

479

480

Chapter 10

Vectors and the Geometry of Space 22. The point x, y, z is 4 units above the xy-plane, and above either quadrant II or IV.

20. The point is in front of the plane x  4.

24. The point could be above the xy-plane, and thus above quadrants I or III, or below the xy-plane, and thus below quadrants II or IV. 26. d  2  22  5  32  2  22

28. d  4  22  5  22  6  32

 16  64  16  96  46

 4  49  9  62

30. A5, 3, 4, B7, 1, 3, C3, 5, 3

32. A5, 0, 0, B0, 2, 0, C0, 0, 3

AB  4  4  1  3 AC  4  4  1  3 BC  16  16  0  42 Since AB  AC , the triangle is isosceles.

AB  25  4  0  29 AC  25  0  9  34 BC  0  4  9  13 Neither

34. The y-coordinate is changed by 3 units:

36.

5, 6, 4, 7, 4, 3, 3, 8, 3 38. Center: 4, 1, 1

40. Center: 3, 2, 4

Radius: 5

r3

x  42  y  12  z  12  25 x  2

y2



4 2 8, 0 2 8, 6 2 20  6, 4, 7

z2

(tangent to yz-plane)

 8x  2y  2z  7  0

x  32   y  22  z  42  9

x2  y2  z2  9x  2y  10z  19  0

42.

x

2

 9x 



81 81  y2  2y  1  z2  10z  25  19   1  25 4 4

x  29 Center: Radius:

2

 y  12  z  52 

109 4

 29, 1, 5 109

2 4x2  4y2  4z2  4x  32y  8z  33  0

44.

x2  y2  z2  x  8y  2z 

x

2

x



1 33 1   y2  8y  16  z2  2z  1     16  1 4 4 4

x  21   y  4 2

2

Center:

33 0 4

 z  12  9

12, 4, 1

Radius: 3

http://librosysolucionarios.net

Section 10.2

Space Coordinates and Vectors in Space

x2  y2  z2 < 4x  6y  8z  13

46.

x2  4x  4  y2  6y  9  z2  8z  16 < 4  9  16  13 x  22  y  32  z  42 < 16 Interior of sphere of radius 4 centered at 2, 3, 4. 48. (a) v  4  0 i  0  5 j  3  1k

50. (a) v  2  2 i  3  3 j  4  0k

 4i  5j  2k  4, 5, 2 (b)

 4k  0, 0, 4 (b)

z

z

8

4

〈 0, 0, 4 〉

〈4, − 5, 2〉

x

x

y

52. 1  4, 7  5, 3  2  5, 12, 5

54. 2  1, 4  2, 2  4  1, 6, 6

5, 12, 5  25  144  25  194 Unit vector:



5, 12, 5 12 5 5  , , 194 194 194 194

y

1, 6, 6  1  36  36  73

173, 673, 673

Unit vector:

56. (b) v  4  2 i  3  1 j  7  2k

z

 6i  4j  9k  6, 4, 9

12

(− 4, 3, 7) (− 6, 4, 9)

(a) and (c).

x

y

(2, −1, − 2)

5 2 1 58. q1, q2, q3  0, 2, 2   1,  3, 2 

Q  1,  3, 3 8

60. (a) v  2, 2, 1

(b) 2v  4, 4, 2

z

z

4

8

〈4, − 4, 2〉

〈− 2, 2, −1〉 x

(c)

1 2

x

y

v   1, 1, 12 

(d)

5 2v

y

  5, 5, 52

z

z

2

8

〈5, −5, 〈 5 2

〈1, −1, 12 〈 x

y

x

http://librosysolucionarios.net

y

481

482

Chapter 10

Vectors and the Geometry of Space

62. z  u  v  2w  1, 2, 3  2, 2, 1  8, 0, 8  7, 0, 4 1 64. z  5u  3v  2 w  5, 10, 15  6, 6, 3  2, 0, 2  3, 4, 20

66. 2u  v  w  3z  21, 2, 3  2, 2, 1  4, 0, 4  3z1, z2, z3   0, 0, 0 0, 6, 9  3z1, 3z2, 3z3  0, 0, 0 0  3z1  0 ⇒ z1  0 6  3z2  0 ⇒ z2  2 9  3z3  0 ⇒ z3  3 z  0, 2, 3 68. (b) and (d) are parallel since i  43 j  32 k  2 12 i  23 j  34 k and 34 i  j  98 k  32  12 i  23 j  34 k. 72. P4, 2, 7, Q2, 0, 3, R7, 3, 9

70. z  7, 8, 3 (b) is parallel since zz  14, 16, 6.

\

PQ  6, 2, 4 \

PR  3, 1, 2 3, 1, 2   12 6, 2, 4 → → Therefore, PQ and PR are parallel. The points are collinear. 74. P0, 0, 0, Q1, 3, 2, R2, 6, 4

76. A1, 1, 3, B9, 1, 2, C11, 2, 9, D3, 4, 4

\

\

PQ  1, 3, 2

AB  8, 2, 5

\

\

PR  2, 6, 4 \

DC  8, 2, 5

\

\

AD  2, 3, 7

Since PQ and PR are not parallel, the points are not collinear.

\

BC  2, 3, 7 \

\

\

\

Since AB  DC and AD  BC , the given points form the vertices of a parallelogram. 78. v  1  0  9  10

80.

v  4, 3, 7

82.

v  16  9  49  74 u  6, 0, 8

84.

(a)

u  8

1 u  6, 0, 8 u 10

(b) 

(a)

u 1   6, 0, 8 u 10

88. (a) u  v  4, 7.5, 2

v  1  9  4  14

u  8, 0, 0

86.

u  36  0  64  10

v  1, 3, 2

u  1, 0, 0 u

(b) 

90.

u  1, 0, 0 u

c u  c, 2c, 3c

(b) u  v  8.732

c u  c 2  4c 2  9c 2  3

(c) u  5.099

14c 2  9

(d) v  9.014

c±

314 14

http://librosysolucionarios.net

Section 10.3 92. v  3



 

u 1 1 1 3 3 3 3 , ,  , , u 3 3 3 3 3 3



94. v  5

The Dot Product of Two Vectors



u 2 3 1  5 , , u 14 14 14 

96. v  5cos 45i  sin 45k 

52 i  k or 2

52 v  5cos 135i  sin 135k  i  k 2

483



7 70 , 31470 , 1470  v  5, 6, 3

98.

 103, 4, 2 1, 2, 5  103, 4, 2  133, 6, 3 2 3v



z

5 2 (i + k) 2

8

x

y

102. x  x02   y  y02  z  z02  r 2

100. x0 is directed distance to yz-plane. y0 is directed distance to xz-plane. z0 is directed distance to xy-plane. 104. A sphere of radius 4 centered at x1, y1, z1. v  x  x2, y  y1, z  z1 

106. As in Exercise 105(c), x  a will be a vertical asymptote. Hence, lim T  . r0 →a

 x  x1   y  y1  z  z1  4 2

2

2

x  x12   y  y12  z  z12  16 sphere 550  c75i  50j  100k

108.

302,500 

18,125c 2

c 2  16.689655 c 4.085 F 4.08575i  50j  100k

306i  204j  409k

110. Let A lie on the y-axis and the wall on the x-axis. Then A  0, 10, 0, B  8, 0, 6, C  10, 0, 6 and → → AB  8, 10, 6 , AC  10, 10, 6 . → →  AB  102,  AC  259 → → AB AC Thus, F1  420 → , F2  650 →  AB  AC F  F1  F2 237.6, 297.0, 178.2  423.1, 423.1, 253.9

185.5, 720.1, 432.1 F 860.0 lb

Section 10.3

The Dot Product of Two Vectors

2. u  4, 10 , v  2, 3

4. u  i, v  i

(a) u  v  42  103  22

(a) u  v  1

(b) u  u  44  1010  116

(b) u  u  1

(c)

u2

 116

(d) u  vv  222, 3  44, 66 (e) u

 2v  2u  v  222  44

(c) u2  1 (d) u  v v  i (e) u  2v  2u

http://librosysolucionarios.net

 v  2

484

Chapter 10

Vectors and the Geometry of Space 8. u  3240, 1450, 2235

6. u  2i  j  2k, v  i  3j  2k (a) u

 v  21  13  22  5

v  2.22, 1.85, 3.25

(b) u  u  22  11  22  9 (c)

u2

Increase prices by 4%: 1.042.22, 1.85, 3.25 . New total amount: 1.04u  v  1.0417,139.05

9

(d) u  v v  5i  3j  2k  5i  15j  10k (e) u

10.

 $17,824.61

 2v  2u  v  25  10

uv  cos  u v

12. u  3, 1 , v  2, 1

u  v  4025 cos

cos  

5  5003 6



u  cos

14.

v  cos cos  

6 i  sin 6 j 

3

2

1 i j 2

uv u v



3





2





3

uv 32  23  0  0 u v u v

2





18. u  2i  3j  k, v  i  2j  k cos  

cos  



 22   21 22  42 1  2   arccos  1  3   105 4 

4

16. u  3i  2j  k, v  2i  3j

2 2 3 3 i  sin j i j 4 4 2 2



uv 5 1   u v 105 2

uv u v

20. u  2, 18 , v 

32,  61

u cv ⇒ not parallel

9 321 9    14 146 221

u  v  0 ⇒ orthogonal

3 1421 10.9

  arccos



1 22. u   3 i  2j, v  2i  4j

u

1 6

v ⇒ parallel

26. u  cos , sin , 1 , v  sin , cos , 0 u c v ⇒ not parallel u

v0

⇒ orthogonal

24. u  2i  3j  k, v  2i  j  k u cv ⇒ not parallel u  v  0 ⇒ orthogonal

28. u  5, 3, 1 cos  cos  cos 

u  35

5 35

3 35

1 35

cos2  cos2  cos2 

http://librosysolucionarios.net

25 9 1   1 35 35 35

Section 10.3

The Dot Product of Two Vectors

485

30. u  a, b, c , u  a2  b2  c 2 cos  cos  cos 

a2

a  b2  c2

a 2

b  b2  c 2

a2

c  b2  c2

cos2  cos2  cos2 

32. u  4, 3, 5 cos  cos  cos 

u  50  52

4 52 3 52 5 52

36. F1: C1  F2: C2 



a2 b2 c2   1 a2  b2  c 2 a2  b2  c 2 a2  b2  c 2

1 2

34. u  2, 6, 1

⇒ 2.1721 or 124.4

cos 

⇒ 1.1326 or 64.9

cos 



or 45 4

cos 

300

13.0931 F1

38.

 230.239, 36.062, 65.4655

cos

65.4655 ⇒ 74.31 F

v1  s, s, s

cos  

z

v1 (s, s, s)

40. F1  C10, 10, 10. F1  200  C1 102 ⇒ C1  102

6

3

v2 x

35.26

42. w2  u  w1  9, 7  3, 9  6, 2

and F1   0, 1002, 1002 F2  C2 4, 6, 10 F2  C34, 6, 10 F  0, 0, w F  F1  F2  F3  0 4C2  4C3  0 ⇒ C2  C3 1002  6C2  6C3  0 ⇒ C2  C3 

y

s2 6  3 s3

  arccos

F 242.067 lb

36.062 ⇒ 98.57 F

⇒ 1.4140 or 81.0

v2  s2

13.093120, 10, 5  6.32465, 15, 0

cos

1 41

⇒ 0.3567 or 20.4

v2  s, s, 0

F  F1  F2

230.239 ⇒ 162.02 F

6 41

⇒ 1.8885 or 108.2

v1  s3

100

6.3246 F2

cos

2 41

u  41

252 N 3

44. w2  u  w1  8, 2, 0  6, 3, 3  2, 1, 3

http://librosysolucionarios.net

(s, s, 0)

486

Chapter 10

Vectors and the Geometry of Space 48. u  1, 0, 4 , v  3, 0, 2

46. u  2, 3 , v  3, 2

uv vv  0v  0, 0

(a) w1 

(a) w1 

2

(b) w2  u  w1  2, 3

11 33 22 3, 0, 2   , 0, 

uv vv  13 13 13 2

(b) w2  u  w1  1, 0, 4 



 

50. The vectors u and v are orthogonal if u  v  0.

3313, 0, 2213

20 30 , 0, 13 13



52. (a) and (b) are defined.

The angle  between u and v is given by uv . u v

cos  

54. See figure 10.29, page 739.

 uv v v    vu u u 

56. Yes,

2

2

v

u

u  vv2  v  uu2 1 1  v u u  v

58. (a) u  5, v 8.602,  91.33

60. (a)

(b) u 9.165, v 5.745,   90

6417, 1617 

(b) 

21 63 42 , , 26 26 13



62. Because u appears to be a multiple of v, the projection of u onto v is u. Analytically, projv u  

uv 3, 2  6, 4 6, 4 v v2 6, 4  6, 4 26 6, 4  3, 2  u. 52

64. u  8i  3j. Want u  v  0.

66. u  0, 3, 6 . Want u  v  0.

v  3i  8j and v  3i  8j are orthogonal to u. \

68. OA  10, 5, 20 , v  0, 0, 1 \

projvOA 

20 0, 0, 1  0, 0, 20 12

\

projvOA   20

v  0, 6, 3 and v  0, 6, 3 are orthogonal to u. 70. F  25cos 20i  sin 20j v  50i W  F  v  1250 cos 20 1174.6 ft  lb

\

72. PQ  4, 2, 10 \

V  2, 3, 6 \

W  PQ

 V  74 \

74. True w  u  v  w  u  w  v 000 ⇒ w and u  v are orthogonal.

http://librosysolucionarios.net

Section 10.4

The Cross Product of Two Vectors in Space \

(d) r1  k, k, 0 

z

76. (a)

(0, k, k) (k, 0, k)

k

\

r2  0, 0, 0 

y

k

k

cos  

(k, k, 0)

x



 k 2

2k, 2k, 2k  2k, 2k,  2k

2k, 2k, 2k   2k,  2k,  2k

k2 4

2

3



1 3

(b) Length of each edge:

  109.5

k2  k2  02  k2

(c) cos  

k2 1  2  k2 k2

  arccos

12  60

78. The curves y1  x2 and y2  x1 3 intersect at 0, 0 and at 1, 1. At 0, 0: 1, 0 is tangent to y1 and 0, 1 is tangent to y2. The angle between these vectors is 90.

2

At 1, 1:  1 5 1, 2 is tangent to y1 and  310 1, 1 3   1 10 3, 1 is tangent to y2. To find the angle between these vectors,

1

cos  

80.

y

u

y1

y2

1 1 1 3  2  ⇒   45. 5 10 2

(1, 1) x

(0, 0)

1

2

 v  u v cos 

u  v  u v cos   u v cos  ≤ u v since cos 

≤ 1.

82. Let w1  projv u, as indicated in the figure. Because w1 is a scalar multiple of v, you can write u  w1  w2  cv  w2. u  v  cv  w2  v  cv

u

w2

Taking the dot product of both sides with v produces

 v  w2  v

θ v

 c v 2, since w2 and v are orthogonol.

w1

uv uv v. Thus, u  v  c v 2 ⇒ c  and w1  projv u  cv  v 2 v 2

Section 10.4

The Cross Product of Two Vectors in Space



i 2. i j  1 0

j k 0 0 k 1 0



i 4. k j  0 0

z

k j

x

−1

1

−i

k j

j 1

1 y

x

1

1 −1

j k 0 1 j 0 0

z

1

k

i



i 6. k i  0 1

z

1

1

j k 0 1  i 1 0

y

http://librosysolucionarios.net

x

i

1 −1

y

487

488

Chapter 10

Vectors and the Geometry of Space



i 8. (a) u v  3 2

j k 0 5  15, 16, 9 3 2



i j k 10. (a) u v  3 2 2  8, 5, 17 1 5 1

(b) v u   u v  15, 16, 9

(b) v u   u v  8, 5, 17

(c) v v  0

(c) v v  0

12. u  1, 1, 2, v  0, 1, 0



i u v  1 0 u

14. u  10, 0, 6, v  7, 0, 0

j 1 1

k 2  2i  k  2, 0, 1 0

i u v  10 7

 u v  12  10  21

u

k 6  42j  0, 42, 0 0

 u v  100  042  60

0 ⇒ uu v

0 ⇒ uu v

v  u v  02  10  01

v  u v  70  042  00

0 ⇒ vu v

16. u v 

j 0 0

0 ⇒ vu v

i 1 2

j k 6 0  6i  j  13k 1 1

u  u v  16  61  0 ⇒ u  u v v  u v  26  11  113  0 ⇒ v  u v 18.

20.

z 6 5 4 3 2 1

z 6 5 4 3 2 1

v 1

1 4

3

2

v

u

4 6

4

y

3

2

u

4 6

y

x

x

22. u  8, 6, 4 v  10, 12, 2 u v  60, 24, 156 u v 1  60, 24, 156 u v 3622 

3522 , 3222 , 31322

24.

2 u k 3 1 v  i  6k 2





1 u v  0, , 0 3

u v  0, 1, 0 u v

26. (a) u v  18, 12, 48

28. u  i  j  k

u v  52.650

vjk

(b) u v  50, 40, 34 u v  72.498



i u v 1 0

j k 1 1  j  k 1 1

A  u v  j  k  2

http://librosysolucionarios.net

Section 10.4

The Cross Product of Two Vectors in Space

30. u  2, 1, 0 v  1, 2, 0 u v

i j 2 1 1 2

k 0  0, 0, 3 0

A  u v  0, 0, 3  3 32. A2, 3, 1, B6, 5, 1, C3, 6, 4, D7, 2, 2 \

\

\

\

AB  4, 8, 2, AC  1, 3, 3, CD  4, 8, 2, BD  1, 3, 3 \

\

\

\

Since AB  CD and AC  BD , the figure is a parallelogram. \

\



AB and AC are adjacent sides and i j k AB AC  4 8 2  18, 14, 20. 1 3 3 \

\

\

\

Area  AB AC  920  2230 34. A2, 3, 4, B0, 1, 2, C1, 2, 0 \

36. A1, 2, 0, B2, 1, 0, C0, 0, 0

\

\

\

AB  2, 4, 2, AC  3, 5, 4

AB  3, 1, 0, AC  1, 2, 0

i AB AC  2 3

i j AB AC  3 1 1 2

\



\

j k 4 2  6i  2j  2k 5 4

\

1 1 A  AB AC  44  11 2 2 \

\



k 0  5k 0

1 5 A  AB AC  2 2

\

\

38. F  2000cos 30 j  sin 30 k  10003 j  1000k

\

z

\

PQ  0.16 k

i PQ F  0 0 \

j 0 10003

k 0.16  1603 i 1000

PQ F  1603 ft  lb \

PQ 0.16 ft

60°

F

y

x

15 5 40. (a) B is  12   4 to the left of A, and one foot upwards:

AB  5 4 j  k

\

(d) If T  AB F ,

\

F  200cos  j  sin  k

i j k (b) AB F  0 5 4 1 0 200 cos  200 sin  \

 250 sin   200 cos  i

\

AB F  250 sin   200 cos 



5 dT  2510 cos   8 sin   0 ⇒ tan   d 4 ⇒   51.34. The vectors are orthogonal. \

(e) The zero is   141.34, the angle making AB parallel to F. 400

 2510 sin   8 cos  0

(c) For   30, \

 12  8 23 

AB F  25 10



−300

 25 5  43   298.2.

http://librosysolucionarios.net

180

489

490

Chapter 10

Vectors and the Geometry of Space





1 42. u  v w  2 0

1 1 0

1 0 4

46. u  v w 

1 0  1 1

44. u

 v w 

2 1 0

0 1 2

0 1 0 2

3 1 6 6  72 0 4

V  u  v w  72 48. u  1, 1, 0

50. See Theorem 10.8, page 746.

v  1, 0, 2 w  0, 1, 1 u

 v w 



1 1 0

1 0 1

0 2  3 1

V  u  v w  3

52. Form the vectors for two sides of the triangle, and compute their cross product: x2  x1, y2  y1, z 2  z1  x3  x1, y3  y1, z3  z1  54. False, let u  1, 0, 0, v  1, 0, 0, w  1, 0, 0. Then, u v  u w  0, but v w. 56. u  u1, u2, u3, v  v1, v2, v3, w  w1, w2, w3 u  u1i  u2 j  u3 k v w  v2w3  v3w2i  v1w3  v3w1j  v1w2  v2w1 k



u1 u2 u3 u  v  w  u1v2w3  v3w2  u2v1w3  v3w1  u3v1w2  v2w1  v1 v2 v3 w1 w2 w3 58. u  u1, u2, u3, v  v1, v2, v3, c is a scalar.



i j c u v  cu1 cu2 v1 v2

k cu3 v3

 cu2v3  cu3v2i  cu1v3  cu3v1j  cu1v2  cu2v1k  cu2v3  u3v2i  u1v3  u3v1j  u1v2  u2v1k  cu v



u1 u2 60. u  v w  v1 v2 w1 w2

u3 v3 w3



w1 w2 u v  w  w  u v  u1 u2 v1 v2

w3 u3 v3

 w1u 2v3  v2 u 3  w2u 1v3  v1u 3  w3u 1v2  v1u 2  u 1v2w3  w2v3   u 2v1w3  w1v3   u 3v1w2  w1v2   u  v w

http://librosysolucionarios.net

Section 10.5

Lines and Planes in Space

491

62. If u and v are scalar multiples of each other, u  cv for some scalar c. u  v  cv  v  c v  v  c 0  0 If u  v  0, then u v sin   0. Assume u  0, v  0. Thus, sin   0,   0, and u and v are parallel. Therefore, u  cv for some scalar c. 64. u  a1, b1, c1 , v  a2, b2, c2, w  a3, b3, c3



i j v  w  a2 b2 a3 b3 u  v  w 

k c2  b2c3  b3c2i  a2c3  a3c2j  a2b3  a3b2k c3



i j k a1 b1 c1 b2c3  b3c2 a3c2  a2c3 a2b3  a3b2

u  v  w  b1a2b3  a3b2  c1a3c2  a2c3i  a1a2b3  a3b2  c1b2c3  b3c2 j 

a1a3c2  a2c3  b1b2c3  b3c2k  a2a1a3  b1b3  c1c3  a3a1a2  b1b2  c1c2 i 

b2a1a3  b1b3  c1c3  b3a1a2  b1b2  c1c2 j  c2a1a3  b1b3  c1c3  c3a1a2  b1b2  c1c2k  a1a3  b1b3  c1c3a2, b2, c2   a1a2  b1b2  c1c2a3, b3, c3   u  wv  u  vw

Section 10.5

Lines and Planes in Space

2. x  2  3t, y  2, z  1  t (a)

(b) When t  0 we have P  2, 2, 1. When t  2 we have Q  4, 2, 1.

z

\

PQ  6, 0, 2 The components of the vector and the coefficients of t are proportional since the line is parallel to PQ . \

x

y

(c) z  0 when t  1. Thus, x  1 and y  2. Point: 1, 2, 0 2 x  0 when t  . Point: 3

0, 2, 13

6. Point: 3, 0, 2

4. Point: 0, 0, 0



Direction vector: v  0, 6, 3

5 Direction vector: v  2, , 1 2

Direction numbers: 0, 2, 1

Direction numbers: 4, 5, 2

(a) Parametric: x  3, y  2t, z  2  t

(a) Parametric: x  4t, y  5t, z  2t

(b) Symmetric:

y z x   (b) Symmetric: 4 5 2

http://librosysolucionarios.net

y  z  2, x  3 2

492

Chapter 10

Vectors and the Geometry of Space 10. Points: 2, 0, 2, 1, 4, 3

8. Point: 3, 5, 4 Directions numbers: 3, 2, 1

Direction vector: 1, 4, 5

(a) Parametric: x  3  3t, y  5  2t, z  4  t

Direction numbers: 1, 4, 5

(b) Symmetric:

x3 y5  z4 3 2

(a) Parametric: x  2  t, y  4t, z  2  5t (b) Symmetric: x  2 

12. Points: 0, 0, 25, 10, 10, 0

14. Point: 2, 3, 4 Direction vector: v  3i  2j  k

Direction vector: 10, 10, 25

Direction numbers: 3, 2, 1

Direction numbers: 2, 2, 5

Parametric: x  2  3t, y  3  2t, z  4  t

(a) Parametric: x  2t, y  2t, z  25  5t (b) Symmetric:

y z  25 x   2 2 5

16. Points: 2, 0, 3, 4, 2, 2

18. L1: v  4, 2, 3

Direction vector: v  2i  2j  k

L 2: v  2, 1, 5

Direction numbers: 2, 2, 1

L 3: v  8, 4, 6

Parametric: x  2  2t, y  2t, z  3  t Symmetric:

z2 y  4 5



1 1 2

8, 5, 9 on line

L 4: v  2, 1, 1.5

x2 y z3   2 2 1

(a) Not on line 1 

8, 5, 9 on line

L1 and L 2 are identical.



(b) On line (c) Not on line

32  32  1

20. By equating like variables, we have (i) 3t  1  3s  1, (ii) 4t  1  2s  4, and (iii) 2t  4  s  1. 1 From (i) we have s  t, and consequently from (ii), t  2 and from (iii), t  3. The lines do not intersect.

22. Writing the equations of the lines in parametric form we have x  2  3t

y  2  6t

z3t

x  3  2s

y  5  s

z  2  4s.

By equating like variables, we have 2  3t  3  2s, 2  6t  5  s, 3  t  2  4s. Thus, t  1, s  1 and the point of intersection is 5, 4, 2. u  3, 6, 1

(First line)

v  2, 1, 4

(Second line)

cos  

u  v  u v

24. x  2t  1

4 4621



x  5s  12

y  4t  10

y  3s  11

zt

z  2s  4

4 966



2966 483

x = 2t − 1 y = − 4t + 10 z=t

z

x = − 5s − 12 y = 3s + 11 z = − 2s − 4

3 2

Point of intersection: 3, 2, 2 3 x

−2

−3

2 2

(3, 2, 2)

3

y

http://librosysolucionarios.net

Section 10.5

P  0, 0, 1, Q  2, 0, 0, R  3, 2, 2 \

(a) PQ  2, 0, 1, PR  3, 2, 3



i (b) PQ  PR  2 3 \

\

493

28. Point: 1, 0, 3

26. 2x  3y  4z  4 \

Lines and Planes in Space

j k 0 1  2, 3, 4 2 3

n  k  0, 0, 1 0x  1  0y  0  1z  3  0 z30

The components of the cross product are proportional (for this choice of P, Q, and R, they are the same) to the coefficients of the variables in the equation. The cross product is parallel to the normal vector. 32. Point: 3, 2, 2

30. Point: (0, 0, 0

Normal vector: v  4i  j  3k

Normal vector: n  3i  2k 3x  0  0y  0  2z  0  0

4x  3  y  2  3z  2  0

3x  2z  0

4x  y  3z  8

34. Let u be vector from 2, 3, 2 to 3, 4, 2: 1, 1, 4.

36. 1, 2, 3, Normal vector: v  i, 1x  1  0, x  1

Let v be vector from 2, 3, 2 to 1, 1, 0: 1, 4, 2. Normal vector: u  v 

i j 1 1 1 4

k 4  18, 6, 3 2  36, 2, 1

6x  2  2 y  3  1z  2  0

6x  2y  z  8 38. The plane passes through the three points 0, 0, 0, 0, 1, 0  3, 0, 1. The vector from 0, 0, 0 to 0, 1, 0: u  j

The vector from 0, 0, 0 to  3, 0, 1: v  3 i  k



i 0 Normal vector: u  v  3 x  3 z  0

j 1 0

k 0  i  3 k 1

42. Let v be the vector from 3, 2, 1 to 3, 1, 5: v  j  6k Let n be the normal to the given plane: n  6i  7j  2k Since v and n both lie in the plane P, the normal vector to P is:



i j k v  n  0 1 6  40i  36j  6k 6 7 2  220i  18j  3k

40. The direction of the line is u  2i  j  k. Choose any point on the line, 0, 4, 0, for example, and let v be the vector from 0, 4, 0 to the given point 2, 2, 1: v  2i  2j  k



i j Normal vector: u  v  2 1 2 2

x  2  2z  1  0 x  2z  0

k 1  i  2k 1

44. Let u  k and let v be the vector from 4, 2, 1 to 3, 5, 7: v  7i  3j  6k Since u and v both lie in the plane P, the normal vector to P is: uv

i 0 7

j 0 3

k 1  3i  7j   3i  7j 6

3x  4  7y  2  0 3x  7y  26

20x  3  18y  2  3z  1  0 20x  18y  3z  27

http://librosysolucionarios.net

494

Chapter 10

Vectors and the Geometry of Space

46. The normal vectors to the planes are n1  3, 1, 4, n2  9, 3, 12. Since n2  3n1, the planes are parallel, but not equal 48. The normal vectors to the planes are

50. The normal vectors to the planes are

n1  3i  2j  k, n2  i  4j  2k, cos  

n1  n2  3  8  2  n1 n2

Therefore,   arccos

1421

n1  2, 0, 1, n2  4, 1, 8,

1 . 6

cos  

16  65.9 .

Thus,  



52. 3x  6y  2z  6

n1  n2  0. n1 n2

and the planes are orthogonal. 2

54. 2x  y  z  4

56. x  2y  4

z

z

z 4

4

3

2 −4 3

2

2

1

y

3

1

x

y y

x

x

58. z  8

3

4

3

60. x  3z  3 z

62. 2.1x  4.7y  z  3  0 z

z

8 2

3

1 2 3

2

1 1

2

1

y

x

1

Generated by Mathematica 5 x

5

x

y

64. P1: n  60, 90, 30 or 2, 3, 1 P2: n  6, 9, 3 or 2, 3, 1 P3: n  20, 30, 10 or 2, 3, 1

2

y

Generated by Mathematica

0, 0, 109  on plane 0, 0,  23  on plane 0, 0, 56  on plane

P4: n  12, 18, 6 or 2, 3, 1 P1, P2, and P3 are parallel. 66. If c  0, z  0 is xy-plane. 1 z is a plane parallel to c x-axis and passing through the points 0, 0, 0 and 0, 1, c. If c  0, cy  z  0 ⇒ y 

68. The normals to the planes are n1  6, 3, 1. and n2  1, 1, 5.



The direction vector for the line is n1  n2 

i j 6 3 1 1

k 1  16, 31, 3. 5

Now find a point of intersection of the planes. 6x  3y  z  5 6x  3y  z  5 ⇒ x  y  5z  5 ⇒ 6x  6y  30z  30 3y  31z  35 Let y  9, z  2 ⇒ x  4 ⇒ 4, 9, 2. x  4  16t, y  9  31t, z  2  3t

http://librosysolucionarios.net

Section 10.5

70. Writing the equation of the line in parametric form and substituting into the equation of the plane we have:

72. Writing the equation of the line in parametric form and substituting into the equation of the plane we have: 54  2t  31  3t  17, t  0

1 2

Substituting t   12 into the parametric equations for the line we have the point of intersection 1, 1, 0. The line does not lie in the plane. 74. Point: Q0, 0, 0

Substituting t  0 into the parametric equations for the line we have the point of intersection 4, 1, 2. The line does not lie in the plane.

76. Point: Q3, 2, 1

Plane: 8x  4y  z  8

Plane: x  y  2z  4

Normal to plane: n  8, 4, 1

Normal to plane: n  1, 1, 2

Point in plane: P1, 0, 0

Point in plane: P4, 0, 0

\

\

Vector: PQ  1, 0, 0

Vector: PQ  1, 2, 1

PQ  n  8  8 \

D

n

81

9

P  5,0, 3 is a point in 4x  4y  9z  7. Q  0, 0, 2 is a point in 4x  4y  9z  18. \

PQ  5, 0, 1

PQ  n1 

11 113



PQ  1, 1, 2



i PQ  u  1 2 \

\

D



6

6

P  2, 0, 0 is a point in 2x  4z  4. Q  5, 0, 0 is a point in 2x  4z  10.

PQ  n1  \

11113 113

P  0, 3, 2 is a point on the line let t  0.

1 6

80. The normal vectors to the planes are n1  2, 0, 4 and n2  2, 0, 4. Since n1  n2, the planes are parallel. Choose a point in each plane.

\

82. u  2, 1, 2 is the direction vector for the line. \

n

6

PQ  3, 0, 0, D 

\

n1

PQ  n  1  \

D

78. The normal vectors to the planes are n1  4, 4, 9 and n2  4, 4, 9. Since n1  n2, the planes are parallel. Choose a point in each plane.

D

495

x  4  2t, y  1  3t, z  2  5t

x  1  4t, y  2t, z  3  6t 21  4t  32t  5, t 

Lines and Planes in Space

n1

6 20



35 5

84. The equation of the plane containing Px1, y1, z1 and having normal vector n  a, b, c is ax  x1  by  y1  cz  z1  0. You need n and P to find the equation.

j k 1 2  0, 2, 1 1 2

PQ  u 5 5   9 u 3

86. x  a: plane parallel to yz-plane containing a, 0, 0 y  b: plane parallel to xz-plane containing 0, b, 0 z  c: plane parallel to xy-plane containing 0, 0, c

88. (a) t v represents a line parallel to v. (b) u  t v represents a line through the terminal point of u parallel to v. (c) su  t v represent the plane containing u and v.

http://librosysolucionarios.net

496

Chapter 10

Vectors and the Geometry of Space

90. On one side we have the points 0, 0, 0, 6, 0, 0, and 1, 1, 8. n1 

    i j 6 0 1 1

k 0  48j  6k 8

On the adjacent side we have the points 0, 0, 0, 0, 6, 0, and 1, 1, 8. n2 

i j 0 6 1 1

z

(− 1, − 1, 8)

k 0  48i  6k 8

n1  n2  cos   n1 n2

6 4 2

36 1  2340 65

y

6

(6, 0, 0)

x

  arccos

(0, 6, 0)

(0, 0, 0) 4

6

1  89.1 65

92. False. They may be skew lines. (See Section Project)

Section 10.6

Surfaces in Space

2. Hyperboloid of two sheets

4. Elliptic cone

Matches graph (e)

6. Hyperbolic paraboloid

Matches graph (b)

8. x  4

10. x2  z 2  25

z

Plane parallel to the yz-coordinate plane

Matches graph (a)

The y-coordinate is missing so we have a cylindrical surface with rulings parallel to the y-axis. The generating curve is a circle.

4

z 4 x

2

4

y

6 4

8 x 8

12. z  4  y 2

14. y 2  z 2  4

The x-coordinate is missing so we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a parabola. z 8

y

16. z  ey

y2 z2  1 4 4 The x-coordinate is missing so we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a hyperbola.

The x-coordinate is missing so we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is the exponential curve. z

4

20

z 8

4

8

12

15

5

y

10

x

5 3

5 x

5

y

http://librosysolucionarios.net

x

1

2

3

4

y

Section 10.6

Surfaces in Space

497

18. y2  z2  4 (b) From 0, 10, 0:

(a) From 10, 0, 0:

(c) From 10, 10, 10:

z

z

z 3

y y 3

3

y

x

20.

x2 y2 z2   1 16 25 25

5 4 3 2 1

Ellipsoid x2 y2   1 ellipse 16 25

xy-trace:

x2 z2   1 ellipse 16 25

xz-trace:

y2 1 4 Hyperboloid of two sheets xy-trace: none

22. z 2  x 2 

z

5

4

3

2

1

xz-trace: z 2  x2  1 hyperbola

1 2 3 4 5

y

yz-trace: z2 

x

yz-trace: y2  z2  25 circle

24. z  x2  4y2

z 5

5

5

x

y2  1 hyperbola 4

x2 y2   1 ellipse 9 36

z  ± 10 :

26. 3z  y 2  x 2

28. x2  2y 2  2z 2

Elliptic paraboloid

Hyperbolic paraboloid

Elliptic Cone

xy-trace: point 0, 0, 0

xy-trace: y  ± x

xy-trace: x  ± 2 y

xz-trace: z  x2 parabola

1 xz-trace: z  3 x2

xz-trace: x  ± 2 z

yz-trace: z  4y2 parabola

yz-trace: z 

yz-trace: point: 0, 0, 0

 13 y2

z

z

z

5

28 24 20

4

5 x 10 x

3

2

1

1

2

10

5

y

y

y

x

9x2  y2  9z2  54x  4y  54z  4  0

30.

z

4

9x2  6x  9  y2  4y  4  9z2  6z  9  81  4  81 9x  32   y  22  9z  32  4 2

x  32  y  22 z  32   1 49 4 49

1

x

2 3 4 5

y

Hyperboloid of one sheet with center 3, 2, 3. 32. z  x2  0.5y 2

34. z 2  4y  x 2 z  ± 4y 

z

36. x2  y 2  ez lnx2  y2  z

x2

z

z

4

−4

8 4

−8

4 −3

−3

−4

−2 4 1 2 x

8 1 2

y

x

4

−4 −8

x 3

y

http://librosysolucionarios.net

4 y

y

498

Chapter 10

38. z 

Vectors and the Geometry of Space

x 8  x2  y2

z±

z

98 x

2



y  4  x2

1 2 y 9 2

x  0, y  0, z  0 z

2

20

5

10

2 4

4

2

z

4

x

42. z  4  x2

40. 9x 2  4y 2  8z 2  72

y 10 10 x

20

20 y x

44. z  4  x2  y2

4

y

46. x2  z 2  ry 2 and z  ry  3y; therefore,

z

y  2z

4 3

3

x2  z 2  9y 2.

z0 −3 3

y

3 x

1 48. y2  z2  rx 2 and z  rx  4  x2 ; therefore, 2 1 y 2  z 2  4  x2, x 2  4y 2  4z 2  4. 4 52. x 2  z 2  cos2 y



x2  y 2  e2z.



60. z 

y sin y dy

0





 2 sin y  y cos y

0

56. About x-axis: y2  z2  r x 2

54. The trace of a surface is the intersection of the surface with a plane. You find a trace by setting one variable equal to a constant, such as x  0 or z  2.

Equation of generating curve: x  cos y or z  cos y

58. V  2

50. x2  y 2  rz 2 and y  rz  ez; therefore,

 2 2

About y-axis: x2  z2  r y 2 About z-axis: x2  y2  r z 2

x2 y 2  2 4

(a) When y  4 we have z 

z

Focus:

1.0

0, 4, 92

(b) When x  2 we have z2

0.5

π 2

π

y2 , 4z  2  y 2. 4

Focus: 2, 0, 3

y

62. If x, y, z is on the surface, then z2  x2  y2  z  42 z2  x2  y2  z2  8z  16 8z  x2  y2  16 ⇒ z 

x2 y2  2 8 8

Elliptic paraboloid shifted up 2 units. Traces parallel to xy-plane are circles.

http://librosysolucionarios.net



x2 1  4, 4 z  4  x2. 2 2

Section 10.7

Cylindrical and Spherical Coordinates

499

64. z  0.775x2  0.007y2  22.15x  0.54y  45.4 (a)

(b)

z

Year

1980

1985

1990

1995

1996

1997

z

37.5

72.2

111.5

185.2

200.1

214.6

200

Model

37.8

72.0

112.2

185.8

204.5

214.7

150

250

100

10 20

100 200

y

x

(c) For y constant, the traces parallel to the xz-plane are concave downward. That is, for fixed y (public assistance), the rate of increase of z (Medicare) is decreasing with respect to x (worker’s compensation).

(d) The traces parallel to the yz-plane (x constant) are concave upward. That is, for fixed x (worker’s compensation), the rate of increase of z (Medicare) is increasing with respect to y (public assistance).

66. Equating twice the first equation with the second equation, 2x2  6y2  4z2  4y  8  2x2  6y2  4z2  3x  2 4y  8  3x  2 3x  4y  6, a plane

Section 10.7 2.

Cylindrical and Spherical Coordinates

4, 2 , 2, cylindrical

4.



6,  4 , 2, cylindrical

x  4 cos

 0 2

x  6 cos 

y  4 sin

 4 2

y  6 sin 

 4   32   32 4

 

z  2

0, 4, 2, rectangular

8.  22, 22, 4, rectangular r   22 2   22  2  4

  arctan1  

 4

z4

4,  4 , 4, cylindrical 14. z  x2  y2  2 rectangular equation z  r2  2

6.

cylindrical equation

32, 32, 2 10. 23, 2, 6, rectangular

y  sin

3  1 2

r  32  22  13



1 5  3 6

  arctan

23  arctan 23

z  1

z1



3 0 2

12. 3, 2, 1, rectangular

r  12  4  4



x  cos

z1 0, 1, 1, rectangular

z2

  arctan 

1, 32, 1, cylindrical

13, arctan 23, 1, cylindrical

 4,  , 1 , cylindrical 6



16. x2  y2  8x

rectangular equation

r 2  8r cos  r  8 cos  cylindrical equation

http://librosysolucionarios.net

500

Chapter 10

Vectors and the Geometry of Space 20. r 

18. z  2

z 2

22. r  2 cos 

Same x2  y2 

z 3

x2  y 2 

r 2  2r cos 

z 2

x2  y2  2x x2  y 2  2x  0

z2 0 4

x  12  y 2  1

z

z

4 2

1

2

3

3

y

x

−2

−2 2

2

−2 y 2

x

3 x

26. 1, 1, 1, rectangular

24. z  r 2 cos2  z

  12  12  12  3

x2

 4

  arctan 1 

z

9

  arccos



3,

1 3 2 x

1 2 3 4 5 6

30. 4, 0, 0, rectangular

  42  02  02  4

 42  210    arctan 1  4 2   arccos 5  2 210, , arccos , spherical 4 5





2

22

 32.

   arccos 0 

12, 34, 9 , spherical

 2

4, , 2 , spherical



34.

9, 4 , , spherical

x  12 sin

 3 cos  2.902 9 4

x  9 sin  cos

 0 4

y  12 sin

 3 sin  2.902 9 4

y  9 sin  sin

 0 4

z  12 cos

  11.276 9

z  9 cos   9 0, 0, 9, rectangular

2.902, 2.902, 11.276, rectangular

36.



 1 , arccos , spherical 4 3

y

28.  2, 2, 42 , rectangular 22

1 3

6, , 2 , spherical  x  6 sin cos   6 2  y  6 sin sin   0 2  z  6 cos  0 2 6, 0, 0, rectangular

38. (a) Programs will vary. (b) , ,   5, 1, 0.5

x, y, z  1.295, 2.017, 4.388

http://librosysolucionarios.net

y

Section 10.7 40. x2  y2  3z2  0

42. x  10

rectangular equation

  10 csc  sec  spherical equation

  4  cos  2

14

44.  

cos  

1 2



 3

rectangular equation

 sin  cos   10

x2  y2  z2  4z2 2

Cylindrical and Spherical Coordinates

2

cos2



(cone) spherical equation

3 4

46.  

 2

48.   2 sec 

 cos   2

z x2  y2  z2 z 0 x2  y2  z2 z0 cos  

y tan   x y 1  x xy0

z2 z 3

xy-plane

z

z

1

2

3

3

3 3

y

x

2 −3

−3

−3 y

3 x

3 −3

x

3

y

−2 −3

50.   4 csc  sec  

52.

4 sin  cos 

3,  4 , 0, cylindrical

54.

  22  22  22

  32  02  3

 sin  cos   4



x4 z

 4

  arccos

6



4

12  34







2 3 22, , , spherical 3 4



y

6

6

2 3

  arccos

0   9 2

3,  4 , 2 , spherical

4

2, 23, 2, cylindrical

x

56.

4, 3 , 4, cylindrical

58.

4, 2 , 3, cylindrical

  42  42  42

  42  32  5

  3

  2

  arccos



1 2



 4

  42, , , spherical 3 4



  arccos



60.

4, 18 , 2 , spherical r  4 sin



3 5

 3 5, , arccos , spherical 2 5



http://librosysolucionarios.net

 4 2

 18

z  4 cos

 0 2

4, 18 , 0, cylindrical

501

502

Chapter 10

Vectors and the Geometry of Space

62.

18, 3 , 3 , spherical r   sin   18 sin



64.

 9 3



r  7 sin

5 6



z  5 cos   5

  93 3





Spherical

68. 6, 2, 3

6.325, 0.322, 3

7.000, 0.322, 2.014

70. 7.317, 6.816, 6

10, 0.75, 6

11.662, 0.750, 1.030

72. 6.115, 1.561, 4.052

6.311, 0.25, 4.052

7.5, 0.25, 1

74.  32, 32, 3

6, 0.785, 3

6.708, 0.785, 2.034

76. 0, 5, 4

5, 1.571, 4

6.403, 1.571, 0.896

78. 1.732, 1, 3

2, 116, 3

3.606, 2.618, 0.588

Note: Use the cylindrical coordinate 2, 80. 2.207, 7.949, 4

82.  

5 ,3 6





8.25, 1.3, 4

 4

3 72  4 2

7 2 2, 4 ,  7 2 2, cylindrical

Cylindrical

Rectangular

3 72  4 2

 4

z  7 cos

0,  56, 5, cylindrical

 9, , 93 , cylindrical 3

7, 4 , 34, spherical

66.

r  5 sin   0

 3

z   cos   18 cos



5,  56, , spherical

84.  

9.169, 1.3, 2.022

 4

Plane

Cone

Matches graph (e)

Matches graph (a)

86.   4 sec , z   cos   4 Plane Matches graph (b) 90.   a Sphere

88. r  a Cylinder with z-axis symmetry

  b Plane perpendicular to xy-plane

  b Vertical half-plane

z  c Plane parallel to xy-plane

  c Half-cone

92. 4x2  y 2  z 2

94. x2  y 2  z

(a) 4r 2  z 2, 2r  z

(a) r 2  z

(b) 42 sin2  cos2   2 sin2  sin2   2 cos2 ,

(b) 2 sin2    cos ,  sin2   cos ,

1 4 sin2   cos 2 , tan2   , 4



cos  ,   csc  cot  sin2 

1 1 tan   ,   arctan 2 2 98. y  4

96. x2  y 2  16

(a) r sin   4, r  4 csc 

(a) r 2  16, r  4 (b)

2

  16,   16  0,  sin   4 sin   4  0,   4 csc  sin2

2

sin2

(b)  sin  sin   4,   4 csc  csc 

http://librosysolucionarios.net

Review Exercises for Chapter 10

100. 

  ≤  ≤ 2 2

104. 0 ≤  ≤ 2

102. 0 ≤  ≤ 2 2 ≤ r ≤ 4

0 ≤ r ≤ 3

  ≤  ≤ 4 2

z 2 ≤ r 2  6r  8

0 ≤ z ≤ r cos 

503

0 ≤  ≤ 1

z

z z

4 3

4 3

2

−5

−4

y

5 4

x

−2

−2

5

x

y

4

y

2

2 x

106. Cylindrical: 0.75 ≤ r ≤ 1.25, z  8 108. Cylindrical 1 2

110.   2 sec  ⇒  cos   2 ⇒ z  2 plane

z

≤ r ≤ 3

  4 sphere

4

0 ≤  ≤ 2

The intersection of the plane and the sphere is a circle.

 9  r2 ≤ z ≤ 9  r2

−4 y

4 x −4

Review Exercises for Chapter 10 2. P  2, 1, Q  5, 1 R  2, 4 \

4. v  v cos  i  v sin  j 

\

1 1 cos 225 i  sin 225 j 2 2

(a) u  PQ  7, 0  7i, v  PR  4, 5  4i  5j 

(b) v  42  52  41

2

4

i

2

4

j

(c) 2u  v  14i  4i  5j  18i  5j 6. (a) The length of cable POQ is L.

y

\

OQ  9i  yj

O

L  292  y2 ⇒



9

θ

\

Tension: T  c  OQ   c81  y 2

P

250 250 81  y 2 ⇒ T  y L24  81 Domain: L > 18 inches cy  250 ⇒ T 

(c)

L

2

19

20

21

22

23

24

25

T

780.9

573.54

485.36

434.81

401.60

377.96

360.24

(d) The line T  400 intersects the curve at

1000

18 in.

250L L2  324

L

L  23.06 inches. 18

Q

500 lb

Also,

(b)

x

−9

L2  81  y 4

25 0

http://librosysolucionarios.net

(e) lim T  250 L→

The maximum tension is 250 pounds in each side of the cable since the total weight is 500 pounds.

504

Chapter 10

Vectors and the Geometry of Space

8. x  z  0, y  7: 0, 7, 0

12. Center:

10. Looking towards the xy-plane from the positive z-axis. The point is either in the second quadrant x < 0, y > 0 or in the fourth quadrant x > 0, y < 0. The z-coordinate can be any number.

0 2 4, 0 2 6, 4 2 0  2, 3, 2

Radius: 2  02  3  02  2  42  4  9  4  17

x  22  y  32  z  22  17 z

14. x2  10x  25   y 2  6y  9  z 2  4z  4  34  25  9  4

x  52   y  32  z  22  4 Center: 5, 3, 2 Radius: 2

6 4 2

2

y

4 6 8 x

16. v  3  6, 3  2, 8  0  3, 5, 8 (3, −3, 8)

8 7 6 5 4 3 2 1

v

1 2

6

5

Since v and w are not parallel, the points do not lie in a straight line.

1

3

y

4

(6, 2, 0)

x

20. 8

18. v  8  5, 5  4, 5  7  3, 1, 2 w  11  5, 6  4, 3  7  6, 10, 4

z



6, 3, 2 8 48 24 16  6, 3, 2  , , 49 7 7 7 7



22. P  2, 1, 3, Q  0, 5, 1, R  5, 5, 0 \

(a) u  PQ  2, 6, 2  2i  6j  2k, \

v  PR  3, 6, 3  3i  6j  3k (b) u v  23  66  23  36 (c) v 24. u  4, 3, 6, v  16, 12, 24 Since v  4u, the vectors are parallel.

v  9  36  9  54

26. u  4, 1, 5, v  3, 2, 2 u

v0 

⇒ is orthogonal to v.

 2

28. u  1, 0, 3

30. W  F PQ  F PQ  cos   758cos 30

v  2, 2, 1

 3003 ft lb

\

u

v  1

u  10 v  3 cos  

u v  u v

1 310

 83.9

http://librosysolucionarios.net

\

Review Exercises for Chapter 10

<

>

<

>

<

>

In Exercises 32–40, u  3, 2, 1 , v  2, 4, 3 , w  1, 2, 2 .

32. cos  

u v  u v

  arccos

11



34. Work  u

1429

w  3  4  2  5

141129 56.9

   

i 36. u v  3 2

j 2 4

k 1  10i  11j  8k 3

i v u 2 3

j 4 2

k 3  10i  11j  8k 1

Thus, u v   v u.

 

i 38. u v  w  3, 2, 1 1, 2, 1  3 1

   

i u v 3 2 u w

j 2 4

i 3 1

k 1  10i  11j  8k 3

j 2 2

j 2 2

k 1  4i  4j  4k 1

k 1  6i  7j  4k 2

u v  u w  4i  4j  4k  u v  w 5 1 1 40. Area triangle  v w  22  12  (See Exercise 35) 2 2 2

 

2 1 42. V  u v w  0 2 0 1



46. u v 





i 2 3

j 5 1

0 1  25  10 2



k 1  21i  11j  13k 4

(a) x  21t, y  1  11t, z  4  13t y1 z4 x   21 11 13

(a) x  1  t, y  2  t, z  3  t (b) x  1  y  2  z  3

Direction numbers: 21, 11, 13

(b)

44. Direction numbers: 1, 1, 1

48. P  3, 4, 2, Q  3, 4, 1, R  1, 1, 2 \

\

PQ  0, 8, 1, PR  4, 5, 4

 

i n  PQ PR  0 4 \

\

j 8 5

k 1  27i  4j  32k 4

27x  3  4 y  4  32z  2  0 27x  4y  32z  33

http://librosysolucionarios.net

505

506

Chapter 10

Vectors and the Geometry of Space 52. Q5, 1, 3 point

50. The normal vectors to the planes are the same, n  5, 3, 1.

u  1, 2, 1 direction vector

Choose a point in the first plane, P  0, 0, 2. Choose a point in the second plane, Q  0, 0, 3.

P  1, 3, 5 point on line \

PQ  6, 2, 2

\

PQ  0, 0, 5



  

\

 

i j k PQ u  6 2 2  2, 8, 14 1 2 1 \

PQ n 5 35 5    D  n 7 35 35

\

D

54. y  z 2

PQ u 264  211  6 u 58. 16x 2  16y 2  9z 2  0

56. y  cos z Since the x-coordinate is missing, we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is y  cos z.

Since the x-coordinate is missing, we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a parabola in the yz-coordinate plane.

Cone xy-trace: point 0,0, 0 xz-trace: z  ±

z

z

z±

yz-trace:

4

2

4y 3

z  4, x 2  y 2  9

1 2

3

z 4

y −2

x

4

x

2

2

y −3

−3 x

60.

4x 3

x2 y2 z2   1 25 4 100

3

2 3

y

62. Let y  r x  2x and revolve the curve about the x-axis.

z 12

Hyperboloid of one sheet xy-trace:

64.

−5

y2 x2  1 25 4

xz-trace:

z2 x2  1 25 100

yz-trace:

z2 y2  1 4 100

y

5

x

43, 34, 3 2 3 , rectangular 



(a) r 

 43  34

(b)  

 43  34  3 2 3





2

2

2

2



3

2

,   arctan3 



2



30

2

, 

 33 , z , 3 2

23, 2 , 3 2 3 , cylindrical 

 3 ,   arccos , 3 10





30 

2

http://librosysolucionarios.net



3 , , arccos , spherical 3 10

Review Exercises for Chapter 10

100. 

  ≤  ≤ 2 2

104. 0 ≤  ≤ 2

102. 0 ≤  ≤ 2 2 ≤ r ≤ 4

0 ≤ r ≤ 3

  ≤  ≤ 4 2

z 2 ≤ r 2  6r  8

0 ≤ z ≤ r cos 

503

0 ≤  ≤ 1

z

z z

4 3

4 3

2

−5

−4

y

5 4

x

−2

−2

5

x

y

4

y

2

2 x

106. Cylindrical: 0.75 ≤ r ≤ 1.25, z  8 108. Cylindrical 1 2

110.   2 sec  ⇒  cos   2 ⇒ z  2 plane

z

≤ r ≤ 3

  4 sphere

4

0 ≤  ≤ 2

The intersection of the plane and the sphere is a circle.

 9  r2 ≤ z ≤ 9  r2

−4 y

4 x −4

Review Exercises for Chapter 10 2. P  2, 1, Q  5, 1 R  2, 4 \

4. v  v cos  i  v sin  j 

\

1 1 cos 225 i  sin 225 j 2 2

(a) u  PQ  7, 0  7i, v  PR  4, 5  4i  5j 

(b) v  42  52  41

2

4

i

2

4

j

(c) 2u  v  14i  4i  5j  18i  5j 6. (a) The length of cable POQ is L.

y

\

OQ  9i  yj

O

L  292  y2 ⇒



9

θ

\

Tension: T  c  OQ   c81  y 2

P

250 250 81  y 2 ⇒ T  y L24  81 Domain: L > 18 inches cy  250 ⇒ T 

(c)

L

2

19

20

21

22

23

24

25

T

780.9

573.54

485.36

434.81

401.60

377.96

360.24

(d) The line T  400 intersects the curve at

1000

18 in.

250L L2  324

L

L  23.06 inches. 18

Q

500 lb

Also,

(b)

x

−9

L2  81  y 4

25 0

http://librosysolucionarios.net

(e) lim T  250 L→

The maximum tension is 250 pounds in each side of the cable since the total weight is 500 pounds.

504

Chapter 10

Vectors and the Geometry of Space

8. x  z  0, y  7: 0, 7, 0

12. Center:

10. Looking towards the xy-plane from the positive z-axis. The point is either in the second quadrant x < 0, y > 0 or in the fourth quadrant x > 0, y < 0. The z-coordinate can be any number.

0 2 4, 0 2 6, 4 2 0  2, 3, 2

Radius: 2  02  3  02  2  42  4  9  4  17

x  22  y  32  z  22  17 z

14. x2  10x  25   y 2  6y  9  z 2  4z  4  34  25  9  4

x  52   y  32  z  22  4 Center: 5, 3, 2 Radius: 2

6 4 2

2

y

4 6 8 x

16. v  3  6, 3  2, 8  0  3, 5, 8 (3, −3, 8)

8 7 6 5 4 3 2 1

v

1 2

6

5

Since v and w are not parallel, the points do not lie in a straight line.

1

3

y

4

(6, 2, 0)

x

20. 8

18. v  8  5, 5  4, 5  7  3, 1, 2 w  11  5, 6  4, 3  7  6, 10, 4

z



6, 3, 2 8 48 24 16  6, 3, 2  , , 49 7 7 7 7



22. P  2, 1, 3, Q  0, 5, 1, R  5, 5, 0 \

(a) u  PQ  2, 6, 2  2i  6j  2k, \

v  PR  3, 6, 3  3i  6j  3k (b) u v  23  66  23  36 (c) v 24. u  4, 3, 6, v  16, 12, 24 Since v  4u, the vectors are parallel.

v  9  36  9  54

26. u  4, 1, 5, v  3, 2, 2 u

v0 

⇒ is orthogonal to v.

 2

28. u  1, 0, 3

30. W  F PQ  F PQ  cos   758cos 30

v  2, 2, 1

 3003 ft lb

\

u

v  1

u  10 v  3 cos  

u v  u v

1 310

 83.9

http://librosysolucionarios.net

\

Review Exercises for Chapter 10

<

>

<

>

<

>

In Exercises 32–40, u  3, 2, 1 , v  2, 4, 3 , w  1, 2, 2 .

32. cos  

u v  u v

  arccos

11



34. Work  u

1429

w  3  4  2  5

141129 56.9

   

i 36. u v  3 2

j 2 4

k 1  10i  11j  8k 3

i v u 2 3

j 4 2

k 3  10i  11j  8k 1

Thus, u v   v u.

 

i 38. u v  w  3, 2, 1 1, 2, 1  3 1

   

i u v 3 2 u w

j 2 4

i 3 1

k 1  10i  11j  8k 3

j 2 2

j 2 2

k 1  4i  4j  4k 1

k 1  6i  7j  4k 2

u v  u w  4i  4j  4k  u v  w 5 1 1 40. Area triangle  v w  22  12  (See Exercise 35) 2 2 2

 

2 1 42. V  u v w  0 2 0 1



46. u v 





i 2 3

j 5 1

0 1  25  10 2



k 1  21i  11j  13k 4

(a) x  21t, y  1  11t, z  4  13t y1 z4 x   21 11 13

(a) x  1  t, y  2  t, z  3  t (b) x  1  y  2  z  3

Direction numbers: 21, 11, 13

(b)

44. Direction numbers: 1, 1, 1

48. P  3, 4, 2, Q  3, 4, 1, R  1, 1, 2 \

\

PQ  0, 8, 1, PR  4, 5, 4

 

i n  PQ PR  0 4 \

\

j 8 5

k 1  27i  4j  32k 4

27x  3  4 y  4  32z  2  0 27x  4y  32z  33

http://librosysolucionarios.net

505

506

Chapter 10

Vectors and the Geometry of Space 52. Q5, 1, 3 point

50. The normal vectors to the planes are the same, n  5, 3, 1.

u  1, 2, 1 direction vector

Choose a point in the first plane, P  0, 0, 2. Choose a point in the second plane, Q  0, 0, 3.

P  1, 3, 5 point on line \

PQ  6, 2, 2

\

PQ  0, 0, 5



  

\

 

i j k PQ u  6 2 2  2, 8, 14 1 2 1 \

PQ n 5 35 5    D  n 7 35 35

\

D

54. y  z 2

PQ u 264  211  6 u 58. 16x 2  16y 2  9z 2  0

56. y  cos z Since the x-coordinate is missing, we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is y  cos z.

Since the x-coordinate is missing, we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a parabola in the yz-coordinate plane.

Cone xy-trace: point 0,0, 0 xz-trace: z  ±

z

z

z±

yz-trace:

4

2

4y 3

z  4, x 2  y 2  9

1 2

3

z 4

y −2

x

4

x

2

2

y −3

−3 x

60.

4x 3

x2 y2 z2   1 25 4 100

3

2 3

y

62. Let y  r x  2x and revolve the curve about the x-axis.

z 12

Hyperboloid of one sheet xy-trace:

64.

−5

y2 x2  1 25 4

xz-trace:

z2 x2  1 25 100

yz-trace:

z2 y2  1 4 100

y

5

x

43, 34, 3 2 3 , rectangular 



(a) r 

 43  34

(b)  

 43  34  3 2 3





2

2

2

2



3

2

,   arctan3 



2



30

2

, 

 33 , z , 3 2

23, 2 , 3 2 3 , cylindrical 

 3 ,   arccos , 3 10





30 

2

http://librosysolucionarios.net



3 , , arccos , spherical 3 10

Problem Solving for Chapter 10

66.

81,  56, 273, cylindrical

68.

  6561  2187  543

12,  2 , 23, spherical 

r 2  12 sin

5  6



2754 33   arccos 21  3 

  arccos



23

2

⇒ r  63

 2

z   cos   12 cos

543,  56, 3 , spherical

23  6

63,  2 , 6, cylindrical

70. x 2  y 2  z 2  16 (a) Cylindrical: r 2  z 2  16 (b) Spherical:   4

Problem Solving for Chapter 10



x

2. f x 

t 4  1 dt

0 y

(a)

(b) f x  x 4  1 f 0  1  tan 

4 2 −4



x

−2

2

4

 4

−2

u

−4

(c) ±

22,  22 

1 2

i  j 

(d) The line is y  x: x  t, y  t.

4. Label the figure as indicated.

S

R

\

PR  a  b a

\

SQ  b  a

a  b b  a  b 2  a 2  0, because

a  b in a rhombus. \

22, 22 

P

Q

b

\

6. n  PP0   n  PP0 

n + PP0

Figure is a square. → Thus, PP0  n and the points P form a circle of radius

n in the plane with center at P.

n − PP0

n

n

P0

P

http://librosysolucionarios.net

507

508

Chapter 10



Vectors and the Geometry of Space

r



 r 2  x2 dx  2 r 2x 

8. (a) V  2

0

x3 3



r 0

4  r 3 3

(b) At height z  d > 0, x2 y2 d2  2 2 1 2 a b c x2 y2 d 2 c2  d 2  21 2 2 a b c c2 x2 y2  2 2  1. 2   d  b c  d 2 2 2 c c

a2

c2

Area  



a c c d b c c d   cab c 2

2

2

2

2

2

2

2

2

2

 d 2

ab 2 2 2 c  d  dd 0 c c

V2 

2ab 2 d3 cd 2 c 3





c 0

4  abc 3 10. (a) r  2 cos 

(b) z  r 2 cos 2 z2  x2  y2

Cylinder

Hyperbolic paraboloid

1 12. x  t  3, y  t  1, z  2t  1; Q  4, 3, s 2 (a) u  2, 1, 4 direction vector for line P  3, 1, 1 point on line \

PQ  1, 2, s  1 \

PQ u  \

D (b)



i 1 2



j k 2 s  1  7  si  6  2sj  5k 1 4

PQ u 7  s2  6  2s2  25  21

u

(c) Yes, there are slant asymptotes. Using s  x, we have

10

Ds  −11

10



−4

The minimum is D 2.2361 at s  1.

y±

1 21 5 21

105

21

5x2  10x  110 

5 21

x  12  21 → ±

215 x  1

s  1 slant asymptotes.

http://librosysolucionarios.net

x2  2x  22

Problem Solving for Chapter 10 14. (a) The tension T is the same in each tow line. 6000i  Tcos 20  cos20i  Tsin 20  sin20 j  2T cos 20 i ⇒ T

6000

3192.5 lbs 2 cos 20

(b) As in part (a), 6000i  2T cos  ⇒ T

3000 cos 

Domain: 0 <  < 90 (c)

(d)



10

20

30

40

50

60

T

3046.3

3192.5

3464.1

3916.2

4667.2

6000.0

10,000

0

90 0

(e) As  increases, there is less force applied in the direction of motion. 16. (a) Los Angeles: 4000, 118.24 , 55.95  Rio de Janeiro: 4000, 43.22 , 112.90  (b) Los Angeles: x  4000 sin 55.95 cos118.24  y  4000 sin 55.95 sin118.24  z  4000 cos 55.95

1568.2, 2919.7, 2239.7 Rio de Janeiro: x  4000 sin 112.90 cos43.22  y  4000 sin 112.90 sin43.22  z  4000 cos 112.90

2685.2, 2523.3, 1556.5 (c) cos  

u v 1568.22685.2  2919.72523.3  2239.71556.5 

u v

40004000

 91.18 1.59 radians (d) s  40001.59 6366 miles —CONTINUED—

http://librosysolucionarios.net

509

510

Chapter 10

Vectors and the Geometry of Space

16. —CONTINUED— (e) For Boston and Honolulu: a. Boston: 4000, 71.06 , 47.64  Honolulu: 4000, 157.86 , 68.69  b. Boston: x  4000 sin 47.64 cos71.06  y  4000 sin 47.64 sin71.06  z  4000 cos 47.64

959.4, 2795.7, 2695.1 Honolulu: x  4000 sin 68.69 cos157.86  y  4000 sin 68.69 sin157.86  z  4000 cos 68.69

3451.7, 1404.4, 1453.7 (f) cos  

u v 959.43451.7  2795.71404.4  2695.11453.7 

u v

40004000

 73.5 1.28 radians (g) s  40001.28 5120 miles 18. Assume one of a, b, c, is not zero, say a. Choose a point in the first plane such as d1a, 0, 0. The distance between this point and the second plane is D 

20. Essay.

ad1a  b0  c0  d2 a2  b2  c2

d1  d2

a2  b2  c2



d1  d2

a2  b2  c2

.

http://librosysolucionarios.net

C H A P T E R 1 0 Vectors and the Geometry of Space Section 10.1 Vectors in the Plane

. . . . . . . . . . . . . . . . . . . . 227

Section 10.2 Space Coordinates and Vectors in Space . . . . . . . . . . 232 Section 10.3 The Dot Product of Two Vectors . . . . . . . . . . . . . . 238 Section 10.4 The Cross Product of Two Vectors in Space . . . . . . . . 241 Section 10.5 Lines and Planes in Space . . . . . . . . . . . . . . . . . 244 Section 10.6 Surfaces in Space . . . . . . . . . . . . . . . . . . . . . . 249 Section 10.7 Cylindrical and Spherical Coordinates . . . . . . . . . . . 252 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

http://librosysolucionarios.net

C H A P T E R 1 0 Vectors and the Geometry of Space Section 10.1

Vectors in the Plane

Solutions to Odd-Numbered Exercises 3. (a) v  4  3, 2  2  7, 0

1. (a) v  5  1, 3  1  4, 2 (b)

(b)

y

y

5

4

4

2

(− 7, 0)

3

(4, 2)

−8

2

v

−6

−4

−2

v

1

−4

x

1

x

−2

2

3

4

5

5. u  5  3, 6  2  2, 4

7. u  6  0, 2  3  6, 5

v  1  1, 8  4  2, 4

v  9  3, 5  10  6, 5

uv

uv

9. (b) v  5  1, 5  2  4, 3

11. (b) v  6  10, 1  2  4, 3

y

(a) and (c).

y

(a) and (c). (5, 5)

6 4

4

(10, 2)

2

(4, 3)

x

−4

(1, 2)

2

v

2

10

(6, −1)

(− 4, − 3)

v x

2

4

13. (b) v  6  6, 6  2  0, 4 (a) and (c).

15. (b) v 

 12  32 , 3  43    1, 53 

(a) and (c).

y

y

( 12 , 3(

(6, 6)

3

6

4

2

(−1, 53 (

2

(0, 4)

( 32 , 43(

v

v (6, 2)

−2

x

−1

1

2

x 4

2

17. (a) 2v  4, 6

6

(b) 3v  6, 9 y

y

4 6

(4, 6)

v −8

2v

4

(2, 3)

−4

x

4

− 3v −4

(2, 3) 2

v

−8

x 2

4

6

(− 6, − 9)

—CONTINUED— 227

http://librosysolucionarios.net

228

Chapter 10

Vectors and the Geometry of Space

17. —CONTINUED— (c)

  7, 21 2 

7 2v

2 3

(d)

v

y

 43 , 2

y

(7, 212 (

12

(2, 3)

3 8

v 2

7 v 2

( 43 , 2(

4

1

(2, 3) v

x 4

19.

2 v 3

8

x

12

1

21.

y

2

3

y

u −u u−v −v

x

x

23. (a)

2 3u

 23 4, 9 

 83, 6

3 3 25. v  2 2i  j  3i  2 j

  3,  32 

(b) v  u  2, 5  4, 9  2, 14 (c) 2u  5v  24, 9  52, 5  18, 7

y

3

1

v = 2u x

2

3

u −1 3 u 2

−2 −3

27. v  2i  j  2i  2j

29. u1  4  1

y

v = u + 2w

 4i  3j  4, 3

u2  2  3

4

2w

u1  3

v

2

u2  5 Q  3, 5

x

u

4

6

−2

31. v  16  9  5

33. v  36  25  61

39. u 

37. u  32  122  153



u 3 12 3, 12 v  ,  153 153 153 u 



1717, 41717

v

35. v  0  16  4

 32  52 2

2



34

2



u 5 3 2, 5 2 3 ,   u 34 2 34 34

unit vector

http://librosysolucionarios.net





33434, 53434 unit vector

Section 10.1

41. u  1, 1, v  1, 2

 21 , v  2, 3

43. u  1,

(a) u  1  1  2 (a) u 

(b) v  1  4  5 u  v  0, 1

(c)

(c)

1 u  1, 1 u 2

(d)

1 v  1, 2 v 5

  1 (e)

uv  0, 1 u  v



uv u  v

2

 27

9  494 

85

2



2 1 u  1, u 5 2

 uu   1

v v

(f)

5

u  v  3, u  v 

 uu   1 (e)

1  41 

(b) v  4  9  13

u  v  0  1  1 (d)

Vectors in the Plane

1 v  2, 3 v 13

 vv   1

 1 (f)



7 2 uv  3, u  v 85 2

 uu  vv   1 u  2, 1

45.

1 u  1, 1 u 2

47.

u  5 2.236 4

v  5, 4

uu  22 1, 1 v   22, 22 

v  41 6.403 u  v  7, 5 u  v  74 8.602 u  v ≤ u  v u 1   3, 3 u 23

49. 2

51. v  3cos 0 i  sin 0 j  3i  3, 0

uu  13  3, 3 v   1, 3 

53. v  2cos 150i  sin 150j   3i  j    3, 1

55.

ui v uv

32 32 i j 2 2

2  23 2 i  3 2 2 j

http://librosysolucionarios.net





229

230 57.

Chapter 10

Vectors and the Geometry of Space

u  2cos 4i  2sin 4j

59. A scalar is a real number. A vector is represented by a directed line segment. A vector has both length and direction.

v  cos 2i  sin 2j u  v  2 cos 4  cos 2 i  2 sin 4  sin 2j 61. To normalize v, you find a unit vector u in the direction of v: u

v . v

For Exercises 63–67, au  bw  ai  2j  bi  j  a  bi  2a  bj. 63. v  2i  j. Therefore, a  b  2, 2a  b  1. Solving simultaneously, we have a  1, b  1.

65. v  3i. Therefore, a  b  3, 2a  b  0. Solving simultaneously, we have a  1, b  2.

67. v  i  j. Therefore, a  b  1, 2a  b  1. Solving simultaneously, we have a  23 , b  13 . 71. f x  25  x2

69. y  x 3, y  3x 2  3 at x  1. (a) m  3. Let w  1, 3, then

fx 

w 1 1, 3. ± w 10

x 25  x2



3 at x  3. 4

3 (a) m   4 . Let w  4, 3, then

1 (b) m   3 . Let w  3, 1, then

1 w  ± 4, 3. w 5

1 w ± 3, 1. w 10

4 (b) m  3. Let w  3, 4, then

1 w  ± 3, 4 w 5

73.

u

2

2

i

2

2

j

75. Programs will vary.

u  v  2 j v  u  v  u  

2

2

i

2

2

j

77. F1  2, F1  33 F2  3, F2  125 F3  2.5, F3  110 R  F1  F2  F3 1.33

R  F1 F2 F3 132.5 79. (a) 180cos 30i  sin 30j  275i  430.88i  90j Direction:   arctan

90 430.88  0.206  11.8

(b) M  275  180 cos 2  180 sin 2 sin   275180  180 cos 

  arctan

Magnitude: 430.882  902  440.18 newtons —CONTINUED—

http://librosysolucionarios.net

Section 10.1

Vectors in the Plane

231

79. —CONTINUED— (c)

(d)



0

30

60

90

120

150

180

M

455

440.2

396.9

328.7

241.9

149.3

95



0

11.8

23.1

33.2

40.1

37.1

0

500

(e) M decreases because the forces change from acting in the same direction to acting in the opposite direction as  increases from 0 to 180.

50

M

α

0

180

0

180 0

0

81. F1  F2  F3  75 cos 30 i  75 sin 30j  100 cos 45i  100 sin 45 j  125 cos 120 i  125 sin 120 j 

75 125 3 j i   502  7523  502  125 2 2 2

R  F1  F2  F3 228.5 lb

R  F1 F2 F3 71.3 83. (a) The forces act along the same direction.   0.

(b) The forces cancel out each other.   180.

(c) No, the magnitude of the resultant can not be greater than the sum. 85. 4, 1, 6, 5, 10, 3 y

y

6 4

4

(1, 2)

4

6

(6, 5) (1, 2)

x 8

−4

−4 −2 −2

4

6

(8, 4)

(1, 2)

(10, 3)

2

(3, 1) 2

6

(8, 4)

4

2

(3, 1) 2

8

6

(8, 4)

2

(− 4, −1)

y

8

8

x

−2 −2

8

−4

→ 87. u  CB  ucos 30 i  sin 30 j → v  CA  vcos 130 i  sin 130 j

−4

y

A

Vertical components: u sin 30  v sin 130  2000 Horizontal components: u cos 30  v cos 130  0

50°

130° 30° B

v

u C

x

30°

Solving this system, you obtain u 1305.5 and v 1758.8. 89. Horizontal component  v cos   1200 cos 6 1193.43 ft sec Vertical component  v sin   1200 sin 6 125.43 ft sec

http://librosysolucionarios.net

x

(3, 1)

4

6

8

10

232

Chapter 10

Vectors and the Geometry of Space

u  900 cos 148 i  sin 148 j

91.

v  100 cos 45 i  sin 45 j u  v  900 cos 148  100 cos 45 i  900 sin 148  100 sin 45 j  692.53 i  547.64 j

  arctan

547.64 692.53  38.34.

38.34 North of West.

u  v  692.532  547.642  882.9 kmhr. 93. F1  F2  F3  0 3600j  T2cos 35i  sin 35 j  T3cos 92i  sin 92j  0 T2 cos 35  T3 cos 92  0 T2 cos 35  T3 sin 92  3600 T3 cos 92 T cos 92 ⇒ 3 sin 35  T3 sin 92  3600 and T30.97495  3600 ⇒ T3  3692.48 cos 35 cos 35 Finally, T2  157.32 T2 

95. Let the triangle have vertices at 0, 0, a, 0, and b, c. Let u be the vector joining 0, 0 and b, c, as indicated in the figure. Then v, the vector joining the midpoints, is v

y

(b, c)

a 2 b  a2 i  2c j

( a +2 b , 2c (

u v

b 1 c 1  i  j  bi  cj  u 2 2 2 2

x

(0, 0)

( 2a , 0(

(a, 0)

97. w  uv  vu  u v cos v i  v sin v j  v u cos ui  u sin u j  u v cos u  cos vi  sin u  sin v j



 2u v cos

   cos

tan w







 v u  v cos 2 2 u  v  tan u  v 2 u  v cos 2 2

 

u

sin

u  v u  v u  v u  v cos i  sin cos j 2 2 2 2











Thus, w  u  v2 and w bisects the angle between u and v. 99. True

101. True

103. False



a i  bj  2 a

Section 10.2 1.

Space Coordinates and Vectors in Space

(2, 1, 3)

z

3.

z 6 5 4 3

(5, − 2, 2) − 2 (−1, 2, 1) 4

1 4

3

2

3 2 1

2 3 4

1 3

2 −2 −3

x y

(5, − 2, − 2)

x

http://librosysolucionarios.net

1 2 3

y

Section 10.2 5. A2, 3, 4

Space Coordinates and Vectors in Space

7. x  3, y  4, z  5: 3, 4, 5

233

9. y  z  0, x  10: 10, 0, 0

B1, 2, 2 11. The z-coordinate is 0.

13. The point is 6 units above the xy-plane.

15. The point is on the plane parallel to the yz-plane that passes through x  4.

17. The point is to the left of the xz-plane.

19. The point is on or between the planes y  3 and y  3.

21. The point x, y, z is 3 units below the xy-plane, and below either quadrant I or III.

23. The point could be above the xy-plane and thus above quadrants II or IV, or below the xy-plane, and thus below quadrants I or III. 25. d  5  02  2  02  6  02

27. d  6  12  2  22  2  42

 25  4  36  65

 25  0  36  61

29. A0, 0, 0, B2, 2, 1, C2, 4, 4

31. A1, 3, 2, B5, 1, 2, C1, 1, 2

AB  4  4  1  3 AC  4  16  16  6 BC  0  36  9  35 BC2  AB2  AC2

AB  16  4  16  6 AC  4  16  16  6 BC  36  4  0  210 Since AB  AC, the triangle is isosceles.

Right triangle

35.

33. The z-coordinate is changed by 5 units:

0, 0, 5, 2, 2, 6, 2, 4, 9

2, 0, 0  0, 6, 0  1, 3, 0 2 Radius: 10

37. Center: 0, 2, 5

39. Center:

Radius: 2

x  02  y  22  z  52  4 x  2

y2



z2

5  22, 92 3, 7 2 3  32, 3, 5

x  12  y  32  z  02  10

 4y  10z  25  0

x2  y 2  z2  2x  6y  0

x2  y2  z2  2x  6y  8z  1  0

41.

x2  2x  1  y2  6y  9  z2  8z  16  1  1  9  16 x  12  y  32  z  42  25 Center: 1, 3, 4 Radius: 5

http://librosysolucionarios.net

234

Chapter 10

Vectors and the Geometry of Space

43.

9x2  9y2  9z2  6x  18y  1  0

45. x2  y2  z2 ≤ 36 Solid ball of radius 6 centered at origin.

2 1 x 2  y2  z2  x  2y   0 3 9

x

2



2 1 1 1 x  y2  2y  1  z2     1 3 9 9 9



x  31

2

 y  12  z  02  1

13, 1, 0

Center:

Radius: 1 47. (a) v  2  4 i  4  2 j  3  1k

49. (a) v  0  3 i  3  3 j  3  0k

 2i  2j  2k  2, 2, 2 (b)

 3i  3k  3, 0, 3 (b)

z

z

− 3, 0, 3

5

5

4

4

−2, 2, 2

3

3

−3

2 −2

1

−2

1

1

1

2

−3

2

1 2

3

1

2 3

y

4

2

3

x

3

4

y

x

53. 5  4, 3  3, 0  1  1, 0, 1

51. 4  3, 1  2, 6  0  1, 1, 6 1, 1, 6  1  1  36  38

1, 0, 1  1  1  2



1 6 1 1, 1, 6  , , 38 38 38 38

Unit vector:

55. (b) v  3  1i  3  2j  4  3k  4i  j  k  4, 1, 1



12, 0, 12

Unit vector:

57. q1, q2, q3  0, 6, 2  3, 5, 6 Q  3, 1, 8

(a) and (c). z 5 4

(3, 3, 4) (−1, 2, 3)

3

(0, 0, 0) 2 −2

v

(4, 1, 1) 2

2 4

4

y

x

59. (a) 2v  2, 4, 4

(b) v  1, 2, 2 z

z 5

3

4

2

3

2, 4, 4

2

−3

1 2 3

1

1

2 3

2

4 x

y

x

−3

−2

− 1, −2, − 2

−2

−2

−2 −3

—CONTINUED—

http://librosysolucionarios.net

2

3

Section 10.2

Space Coordinates and Vectors in Space

235

59. —CONTINUED— (c)

3 2

v

 32 , 3, 3

(d) 0v  0, 0, 0 z

z 3

3 2 −3

−2

−3

2 3 , 2

−2

0, 0, 0 1

2 y

3

−2

x

−2

1

2 3

−3

3, 3

−3

−2

1

−1

1

2

y

3

−2

x

−3

−3

61. z  u  v  1, 2, 3  2, 2, 1  1, 0, 4 63. z  2u  4v  w  2, 4, 6  8, 8, 4  4, 0, 4  6, 12, 6 67. (a) and (b) are parallel since 6, 4, 10  23, 2, 5 2 and  2, 43 ,  10 3   3 3, 2, 5.

65. 2z  3u  2z1, z2, z3  31, 2, 3  4, 0, 4 2z1  3  4 ⇒ z1 

7 2

2z2  6  0 ⇒ z2  3 2z3  9  4 ⇒ z3  52 z

 72 , 3, 52 

69. z  3i  4j  2k

71. P0, 2, 5, Q3, 4, 4, R2, 2, 1 \

(a) is parallel since 6i  8j  4k  2z.

PQ  3, 6, 9 \

PR  2, 4, 6 3, 6, 9  32 2, 4, 6 \

\

Therefore, PQ and PR are parallel. The points are collinear. 73. P1, 2, 4, Q2, 5, 0, R0, 1, 5

75. A2, 9, 1, B3, 11, 4, C0, 10, 2, D1, 12, 5

\

\

PQ  1, 3, 4

AB  1, 2, 3

\

\

PR  1, 1, 1 \

CD  1, 2, 3

\

\

AC  2, 1, 1

Since PQ and PR are not parallel, the points are not collinear.

\

BD  2, 1, 1 \

\

\

\

Since AB  CD and AC  BD , the given points form the vertices of a parallelogram. 77. v  0

79.

v  1, 2, 3 v  1  4  9  14

u  2, 1, 2

83.

u  4  1  4  3 (a)

1 u  2, 1, 2 u 3

(b) 

u 1   2, 1, 2 u 3

u  3, 2, 5

85.

u  9  4  25  38 (a)

1 u  3, 2, 5 u 38

(b) 

u 1  3, 2, 5 u 38

http://librosysolucionarios.net

81.

v  0, 3, 5 v  0  9  25  34

87. Programs will vary.

236

Chapter 10

Vectors and the Geometry of Space

c v  2c, 2c, c

89.

91. v  10

c v  4c 2  4c 2  c 2  5



 0,

9c2  25 c±

93. v 



u 1 1  10 0, , u 2 2 ,

10



5 3



 

3 u 3 2 2 1 1  , ,  1, 1, 2 u 2 3 3 3 2



95. v  2 cos± 30j  sin± 30k

v  3, 6, 3

97.

 3 j ± k   0, 3, ± 1

2 3v

2

 2, 4, 2

4, 3, 0  2, 4, 2  2, 1, 2

z

−2

0,

1

−2

10

2 2



3, 1

−1 1 y

−1

2 x

0,

−2

3, −1

99. (a)

(b) w  au  bv  ai  a  bj  bk  0

z

a  0, a  b  0, b  0 1

Thus, a and b are both zero. v

u

1

1 y

x

(c) ai  a  bj  bk  i  2j  k

(d) a i  a  bj  bk  i  2j  3k

a  1, b  1

a  1, a  b  2, b  3

wuv

Not possible

101. d  x2  x12   y2  y12  z2  z12

103. Two nonzero vectors u and v are parallel if u  cv for some scalar c.

105. (a) The height of the right triangle is h  L2  182. The vector PQ is given by

Q (0, 0, h)

\

\

PQ  0, 18, h. L

The tension vector T in each wire is 24 T  c0, 18, h where ch   8. 3 8 Hence, T  0, 18, h and h

(0, 18, 0) (0, 0, 0)

18

P

8 8L 8 182  L2  182  T  T  182  h2  h L2  182 L2  182 (b)

L

20

25

30

35

40

45

50

T

18.4

11.5

10

9.3

9.0

8.7

8.6

—CONTINUED—

http://librosysolucionarios.net

Section 10.2

30

v  cos i  cos j  cos k

L = 18

v  3 cos   1 cos   T=8 0

3 1  3 3

100 0

v

x  18 is a vertical asymptote and y  8 is a horizontal asymptote.

3

3

i  j  k 

z 0.6

8L  (d) lim  L→18 L2  182

0.4

(

3 , 3

3 , 3

8L 8  lim 8 L→  L2  182 L →  1  18L2

0.2

0.6 x

\

109. AB  0, 70, 115, F1  C10, 70, 115 \

AC  60, 0, 115, F2  C2 60, 0, 115 \

AD  45, 65, 115, F3  C3 45, 65, 115 F  F1  F2  F3  0, 0, 500 Thus:  60C2  45C3 

0

 65C3 

0

C2  C3  500

104 28 112 Solving this system yields C1  69 , C2  23, and C3   69 . Thus:

F1  202.919N F2  157.909N F3  226.521N 111. dAP  2dBP x2  y  12  z  12  2x  12  y  22  z 2

x2  y2  z2  2y  2z  2  4x2  y2  z2  2x  4y  5 0  3x2  3y2  3z2  8x  18y  2z  18 6 







16 1 8 16 2 1  9   x2  x   y2  6y  9  z2  z  9 9 3 9 3 9



4 44  x 9 3 Sphere; center:

( y

0.4

0.4

(e) From the table, T  10 implies L  30 inches.

115C1 

3 3

0.2

lim

70C1

237

107. Let  be the angle between v and the coordinate axes.

105. —CONTINUED— (c)

Space Coordinates and Vectors in Space



2



 y  32  z 

1 3



2

43, 3,  31 , radius: 2 311 

http://librosysolucionarios.net



3

3

1, 1, 1

238

Chapter 10

Vectors and the Geometry of Space

Section 10.3

The Dot Product of Two Vectors

1. u  3, 4, v  2, 3

3. u  2, 3, 4, v  0, 6, 5

(a) u  v  32  43  6

(a) u

(b) u  u  33  44  25

(b) u  u  22  33  44  29

(c)

u2

 25

(c) u2  29

(d) u  vv  62, 3  12, 18 (e) u

(e) u  2v  2u 7.

(a) u  v  21  10  11  1

 v  22  4

u  3240, 1450, 2235 v  2.22, 1.85, 3.25

(b) u  u  22  11  11  6

u  v  $17,139.05

(c) u2  6

This gives the total amount that the person earned on his products.

(d) u  v v  v  i  k (e) u  2v  2u

9.

(d) u  v v  20, 6, 5  0, 12, 10

 2v  2u  v  26  12

5. u  2i  j  k, v  i  k

 v  20  36  45  2

 v  2

uv  cos  u v

11. u  1, 1, v  2, 2

u  v  85 cos

  20 3

cos  

 13. u  3i  j, v  2i  4j cos  

uv 2 1   u v 1020 52



  arccos 



1

98.1 52

17. u  3i  4j, v  2j  3k cos  

uv 8 813   u v 513 65



  arccos 

21. u  4, 3, v 



813

116.3 65

12,  32

u cv ⇒ not parallel u  v  0 ⇒ orthogonal

uv 0  0 u v 28

 2

15. u  1, 1, 1, v  2, 1, 1 cos  

2 uv 2   u v 36 3

  arcos

2

3

61.9

19. u  4, 0, v  1, 1 u cv ⇒ not parallel u  v  4 0 ⇒ not orthogonal Neither

23. u  j  6k, v  i  2j  k u c v ⇒ not parallel u  v  8 0 ⇒ not orthogonal Neither

25. u  2, 3, 1, v  1, 1, 1 u cv ⇒ not parallel u  v  0 ⇒ orthogonal

http://librosysolucionarios.net

Section 10.3 27. u  i  2j  2k, u  3 cos 

29. u  0, 6, 4, u  52  213 cos  0

1 3

13

cos  

2 cos  3



3

cos 

2 cos  3

cos2

The Dot Product of Two Vectors

cos2



31. u  3, 2, 2

cos2

1 4 4    1 9 9 9

cos2  cos2  cos2  0 

33. u  1, 5, 2

u  17

cos 

3 ⇒ 0.7560 or 43.3 17

cos 

cos 

2 ⇒ 1.0644 or 61.0 17

cos 

cos 

2 ⇒ 2.0772 or 119.0 17

cos 

35. F1: C1 

50

4.3193 F1

F2: C2 

80

5.4183 F2

2 13

1 30

5 30

u  30 ⇒ 1.7544 or 100.5 ⇒ 0.4205 or 24.1

2 ⇒ 1.1970 or 68.6 30

37. Let s  length of a side. v  s, s, s v  s3

F  F1  F2

cos  cos  cos 

4.319310, 5, 3  5.418312, 7, 5 F 124.310 lb 108.2126 ⇒ 29.48 F

s v

14.1336 ⇒ 96.53 F

s x

\



41. w2  u  w1  6, 7  2, 8  4, 1

0 02  102  102

cos  cos  1 2

y

s

39. OA  0, 10, 10 cos 



z

59.5246 ⇒ 61.39 cos

F cos

s 1  s3 3

 13 54.7

   arccos

 108.2126, 59.5246, 14.1336

cos

9 4  1 13 13

02

 0 ⇒  90

10  102  102

⇒   45

43. w2  u  w1  0, 3, 3  2, 2, 2  2, 1, 1

45. u  2, 3, v  5, 1 (a) w1 

13 5 1 5, 1  , uv v v  26 2 2 2



1 5 (b) w2  u  w1   , 2 2

http://librosysolucionarios.net



239

240

Chapter 10

Vectors and the Geometry of Space 49. u  v  u1, u2, u3 

47. u  2, 1, 2, v  0, 3, 4 (a) w1  

 v1, v2, v3  u1v1  u2v2  u3v3

uv v v 2





11 33 44 0, 3, 4  0, , 25 25 25



(b) w2  u  w1  2, 

51. (a) Orthogonal,  

8 6 , 25 25



 2

(b) Acute, 0 <  <

 2

53. See page 738. Direction cosines of v  v1, v2, v3 are cos 

v1 v v , cos  2 , cos  3 . v v v

(c) Obtuse,

uv v v  u ⇒ u  cv ⇒ u and v are parallel.

55. (a)

2

uv v v  0 ⇒ u  v  0 ⇒ u and v

(b)

2

, , and are the direction angles. See Figure 10.26. 57. Programs will vary.

 <  <  2

are orthogonal. 59. Programs will vary.

61. Because u appears to be perpendicular to v, the projection of u onto v is 0. Analytically, projv u 

uv 2, 3  6, 4 v 6, 4  06, 4  0. v2 6, 42

1 2 63. u  i  j. Want u  v  0. 2 3

65. u  3, 1, 2. Want u  v  0.

v  8i  6j and v  8i  6j are orthogonal to u.

(b) w2  F  w1  48,000 j  8335.1cos 10 i  sin 10 j

67. (a) Gravitational Force F  48,000 j v  cos 10 i  sin 10 j w1 

v  0, 2, 1 and v  0, 2, 1 are orthogonal to u.

 8208.5 i  46,552.6 j

Fv v  F  vv  48,000sin 10v v2

w2 47,270.8 lb

8335.1cos 10 i  sin 10 j w1 8335.1 lb

12 i 

69. F  85

3

2



\

71. PQ  4, 7, 5

j

v  1, 4, 8

v  10i

\

W  PQ

W  F  v  425 ft  lb

 v  72

73. False. Let u  2, 4, v  1, 7 and w  5, 5. Then u  v  2  28  30 and u  w  10  20  30. 75. In a rhombus, u  v. The diagonals are u  v and u  v.

u  v  u  v  u  v  u  u  v  v uuvuuvvv

u−v u u+v v

 u2  v2  0 Therefore, the diagonals are orthogonal.

http://librosysolucionarios.net

Section 10.4

The Cross Product of Two Vectors in Space

77. u  cos , sin , 0, v  cos , sin , 0 The angle between u and v is   . Assuming that  > . Also, cos   

uv cos  cos   sin  sin    cos  cos   sin  sin . u v 11

79. u  v2  u  v  u  v

81. u  v2  u  v  u  v

 u  v  u  u  v  v

 u  v  u  u  v  v

uuvuuvvv

uuvuuvvv

 u2  u  v  u  v  v2

 u2  2u  v  v2

 u2  v2  2u  v

≤ u 2  2u v  v 2 from Exercise 66 ≤ u  v2 Therefore, u  v ≤ u  v.

Section 10.4

The Cross Product of Two Vectors in Space

 

 

i 1. j  i  0 1

i 3. j  k  0 0

j k 1 0  k 0 0

 

j k 1 0 i 0 1

i 5. i  k  1 0

z

z

z

1

1

1

k

x

1

i

−k

1

−1

x

y

     

i 7. (a) u  v  2 3

−1

−j

k

j

j 1

j k 0 0  j 0 1

i

1

1 y

−1

j k 3 4  22, 16, 23 7 2

x

 

i j 3 9. (a) u  v  7 1 1

i

1 −1

k 2  17, 33, 10 5

(b) v  u   u  v  22, 16, 23

(b) v  u   u  v  17, 33, 10

i (c) v  v  3 3

(c) v  v  0

j k 7 2 0 7 2

11. u  2, 3, 1, v  1, 2, 1 i j u  v  2 3 1 2

k 1  i  j  k  1, 1, 1 1

u  u  v  21  31  11  0 ⇒ u  u  v v  u  v  11  21  11  0 ⇒ v  u  v

http://librosysolucionarios.net

y

241

242

Chapter 10

Vectors and the Geometry of Space

13. u  12, 3, 0, v  2, 5, 0

  i j 12 3 2 5

uv u

15. u  i  j  k, v  2i  j  k

 

i uv 1 2

k 0  54k  0, 0, 54 0

 u  v  120  30  054

u

 u  v  12  13  11 0 ⇒ uuv

0 ⇒ uuv

v  u  v  22  13  11

v  u  v  20  50  054

0 ⇒ vuv

0 ⇒ vuv 17.

19.

z 6 5 4 3 2 1

z 6 5 4 3 2 1

v

3

v

1

1 4

j k 1 1  2i  3j  k  2, 3, 1 1 1

2

u 4

4

y

6

x

3

2

u

4

y

6

x

23. u  3i  2j  5k

21. u  4, 3.5, 7 v  1, 8, 4



u  v  70, 23,

57 2

1 3 1 v i j k 2 4 10





140 46 57 uv  , , u  v 24,965 24,965 24,965



uv 



71 11 5 , , 20 5 4





uv 20 71 11 5   , , u  v 7602 20 5 4



 

71 7602

,

44

,

25

7602 7602



25. Programs will vary. 27. u  j

29. u  3, 2, 1

vjk

v  1, 2, 3

 

i uv 0 0

 

j k 1 0 i 1 1

i uv 3 1

A  u  v  i  1

A  u  v  8, 10, 4  180  6 5

31. A1, 1, 1,, B2, 3, 4, C6, 5, 2, D7, 7, 5 \

\

\

AB  1, 2, 3, AC  5, 4, 1, CD  1, 2, 3, BD  5, 4, 1 \

\

\

\

\

Since AB  CD and AC  BD , the figure is a parallelogram. AB and AC are adjacent sides and \

\

 

i AB  AC  1 5 \

\

\

j k 2 1  8, 10, 4 2 3

j k 2 3  10i  14j  6k. 4 1

33. A0, 0, 0, B1, 2, 3, C3, 0, 0 \

\

AB  1, 2, 3, AC  3, 0, 0 \

\

AB  AC 

  i 1 3

j 2 0

k 3  9j  6k 0

1 1 3 A   AB  AC   117  13 2 2 2 \

\

A  AB  AC   332  2 83

http://librosysolucionarios.net

\

Section 10.4 35. A2, 7, 3, B1, 5, 8, C4, 6, 1 \

The Cross Product of Two Vectors in Space

243

37. F  20k

\

AB  3, 12, 5, AC  2, 13, 4

 

i AB  AC  3 2 \

\

1 PQ  cos 40 j  sin 40 k 2 i j k PQ  F  0 cos 40 2 sin 40 2  10 cos 40 i 0 0 20 \

j k 12 5  113, 2, 63 13 4

1 1 Area  AB  AC   16,742 2 2 \



\

\



PQ  F  10 cos 40 7.66 ft  lb \

z

PQ 1 ft 2

40° F

y

x

3 OA  k 2 \

39. (a)

z

F  60sin j  cos k



100

OA



1.5 ft

F

θ

i j k OA  F  0 0 3 2  90 sin i 0 60 sin 60 cos

\

\

OA  F  90 sin

\

180 0

x

22   45

(b) When  45 : OA  F  90 (c) Let T  90 sin .

0

y



2 63.64.

dT  90 cos  0 when  90 . d

This is what we expected. When  90 the pipe wrench is horizontal.

 

1 41. u  v  w  0 0

0 1 0

0 0 1 1

 

2 43. u  v  w  0 0

0 3 0

1 0 6 1

 

1 45. u  v  w  0 1



1 1 0

0 1 2 1



V  u  v  w  2

47. u  3, 0, 0 v  0, 5, 1 w  2, 0, 5 u

 v  w 



  3 0 2

0 5 0

0 1  75 5



V  u  v  w  75 49. u  v  u1, u2, u3 

 v1, v2, v3  u 2v3  u 3v2 i  u 1v3  u 3v1j  u 1v2  u 2v1k

51. The magnitude of the cross product will increase by a factor of 4.

53. If the vectors are ordered pairs, then the cross product does not exist. False.

55. True

http://librosysolucionarios.net

244

Chapter 10

Vectors and the Geometry of Space

57. u  u1, u2, u3 , v  v1, v2, v3 , w  w1, w2, w3  u  v  w 



i u1 v1  w1

j u2 v2  w2



k u3 v3  w3

 u2v3  w3  u3v2  w2 i  u1v3  w3  u3v1  w1 j  u1v2  w2  u2v1  w1k  u2v3  u3v2i  u1v3  u3v1j  u1v2  u2v1k  u2w3  u3w2i 

u1w3  u3w1j  u1w2  u2w1k  u  v  u  w 59. u  u1, u2, u3

 

i j u  u  u1 u 2 u1 u2

k u3  u2u3  u3u2 i  u1u3  u3u1j  u1u2  u2u1k  0 u3

u  v  u2v3  u3v2i  u1v3  u3v1j  u1v2  u2v1k

61.

u  v  u  u2v3  u3v2u1  u3v1  u1v3u2  u1v2  u2v1u3  0 u  v  v  u2v3  u3v2v1  u3v1  u1v3v2  u1v2  u2v1v3  0 Thus, u  v  u and u  v  v. 63. u  v  u v sin  If u and v are orthogonal,    2 and sin   1. Therefore, u  v  u v .

Section 10.5

Lines and Planes in Space

1. x  1  3t, y  2  t, z  2  5t (a)

z

(b) When t  0 we have P  1, 2, 2. When t  3 we have Q  10, 1, 17. \

PQ  9, 3, 15 The components of the vector and the coefficients of t are proportional since the line is parallel to PQ . \

x y

(c) y  0 when t  2. Thus, x  7 and z  12. Point: 7, 0, 12

0, 73, 13 2 1 12 z  0 when t   . Point:  , , 0 5 5 5

1 x  0 when t   . Point: 3

3. Point: (0, 0, 0

5. Point: 2, 0, 3

Direction vector: v  1, 2, 3

Direction vector: v  2, 4, 2

Direction numbers: 1, 2, 3

Direction numbers: 2, 4, 2

(a) Parametric: x  t, y  2t, z  3t

(a) Parametric: x  2  2t, y  4t, z  3  2t

z y (b) Symmetric: x   2 3

(b) Symmetric:

http://librosysolucionarios.net

y z3 x2   2 4 2

Section 10.5

Lines and Planes in Space

9. Points: 5, 3, 2,

7. Point: 1, 0, 1 Direction vector: v  3i  2j  k

23, 23, 1 11 17 i j  3k 3 3

Direction numbers: 3, 2, 1

Direction vector: v 

(a) Parametric: x  1  3t, y  2t, z  1  t

Direction numbers: 17, 11, 9

(b) Symmetric:

y z1 x1   3 2 1

(a) Parametric: x  5  17t, y  3  11t, z  2  9t (b) Symmetric:

x5 y3 z2   17 11 9

13. Point: 2, 3, 4

11. Points: 2, 3, 0, 10, 8, 12 Direction vector: 8, 5, 12

Direction vector: v  k

Direction numbers: 8, 5, 12

Direction numbers: 0, 0, 1

(a) Parametric: x  2  8t, y  3  5t, z  12t

Parametric: x  2, y  3, z  4  t

(b) Symmetric:

z x2 y3   8 5 12

15. Point: (2, 3, 1

17. Li: v  3, 2, 4

Direction vector: v  4i  k Direction numbers: 4, 0, 1 Parametric: x  2  4t, y  3, z  1  t Symmetric:

x2 z1  ,y3 4 1

6, 2, 5 on line

L 2: v  6, 4, 8

6, 2, 5 on line

L 3: v  6, 4, 8

6, 2, 5 not on line

L 4: v  6, 4, 6

not parallel to L1, L 2, nor L 3

Hence, L1 and L 2 are identical.

(a) On line

L1  L 2 and L 3 are parallel.

(b) On line (c) Not on line y 3 (d) Not on line

6 4 2 21 1

19. At the point of intersection, the coordinates for one line equal the corresponding coordinates for the other line. Thus, (i) 4t  2  2s  2, (ii) 3  2s  3, and (iii) t  1  s  1. From (ii), we find that s  0 and consequently, from (iii), t  0. Letting s  t  0, we see that equation (i) is satisfied and therefore the two lines intersect. Substituting zero for s or for t, we obtain the point (2, 3, 1. u  4i  k

(First line)

v  2i  2j  k

(Second line)

cos  

u  v  u v

7 7 17 81   51

17 9 3 17

21. Writing the equations of the lines in parametric form we have x  3t

y2t

z  1  t

x  1  4s

y  2  s

z  3  3s.

17 11 For the coordinates to be equal, 3t  1  4s and 2  t  2  s. Solving this system yields t  7 and s  7 . When using these values for s and t, the z coordinates are not equal. The lines do not intersect.

23. x  2t  3

245

x  2s  7

y  5t  2

ys8

z  t  1

z  2s  1

Point of intersection: 7, 8, 1

z 4

10

8

6

4

2 −2

4

−8

(7, 8, − 1)

x

6

8

10

y

http://librosysolucionarios.net

246

Chapter 10

Vectors and the Geometry of Space

25. 4x  3y  6z  6 (a) P  0, 0, 1, Q  0, 2, 0, R  3, 4, 1 \

\

PQ  0, 2, 1, PR  3, 4, 0

 

i j (b) PQ  PR  0 2 3 4 \

\

k 1  4, 3, 6 0

The components of the cross product are proportional to the coefficients of the variables in the equation. The cross product is parallel to the normal vector. 27. Point: 2, 1, 2

29. Point: 3, 2, 2

n  i  1, 0, 0

Normal vector: n  2i  3j  k

1x  2  0y  1  0z  2  0

2x  3  3y  2  1z  2  0

x20

2x  3y  z  10

31. Point: 0, 0, 6

33. Let u be the vector from 0, 0, 0 to 1, 2, 3: u  i  2j  3k

Normal vector: n  i  j  2k

Let v be the vector from 0, 0, 0 to 2, 3, 3: v  2i  3j  3k

1x  0  1y  0  2z  6  0 x  y  2z  12  0

Normal vector: u  v 

x  y  2z  12

  i 1 2

j 2 3

k 3 3

 3i  9j  7k 3x  0  9 y  0  7z  0  0 3x  9y  7z  0 35. Let u be the vector from 1, 2, 3 to 3, 2, 1: u  2i  2k Let v be the vector from 1, 2, 3 to 1, 2, 2: v  2i  4j  k Normal vector:

 12 u  v 

  i 1 2

j k 0 1  4i  3j  4k 4 1

4x  1  3y  2  4z  3  0 4x  3y  4z  10

37. 1, 2, 3, Normal vector: v  k, 1z  3  0, z  3

39. The direction vectors for the lines are u  2i  j  k, v  3i  4j  k.

 

i Normal vector: u  v  2 3

j k 1 1  5i  j  k 4 1

Point of intersection of the lines: 1, 5, 1

x  1  y  5  z  1  0 xyz5 41. Let v be the vector from 1, 1, 1 to 2, 2, 1: v  3i  j  2k Let n be a vector normal to the plane 2x  3y  z  3: n  2i  3j  k

 

Since v and n both lie in the plane p, the normal vector to p is i j 1 vn 3 2 3

k 2  7i  j  11k 1

7x  2  1y  2  11z  1  0 7x  y  11z  5

http://librosysolucionarios.net

Section 10.5 43. Let u  i and let v be the vector from 1, 2, 1 to 2, 5, 6: v  i  7j  7k

247

45. The normal vectors to the planes are n1  5, 3, 1, n2  1, 4, 7, cos 

Since u and v both lie in the plane P, the normal vector to P is:

 

i uv 1 1

Lines and Planes in Space

n1  n2  0. n1 n2

Thus,    2 and the planes are orthogonal.

j k 0 0  7j  7k  7j  k 7 7

y  2  z  1  0 y  z  1 49. The normal vectors to the planes are n1  1, 5, 1 and n2  5, 25, 5. Since n2  5n1, the planes are parallel, but not equal.

47. The normal vectors to the planes are n1  i  3j  6k, n2  5i  j  k,

n1  n2  5  3  6  4 138 .

cos  

n1 n2

46 27

414

4 414138  83.5 .

Therefore,   arccos

51. 4x  2y  6z  12

53. 2x  y  3z  4

55. y  z  5

z

z 6

3

4

2

z 6

−4 6

−1

4

x

6

y

y

6 6

x

3

y

x

57. x  5

59. 2x  y  z  6 z

z

z

3 6

4

2

2

−2 4

6 y

x

−6

5 x

61. 5x  4y  6z  8  0

5

2

y Generated by Maple

63. P1: n  3, 2, 5 P2: n  6, 4, 10

1, 1, 1 on plane 1, 1, 1 not on plane

x

c, 0, 0, 0, c, 0, and 0, 0, c.

1, 1, 1 on plane

P1 and P4 are identical. P1  P4 is parallel to P2.

http://librosysolucionarios.net

1

y

Generated by Maple

65. Each plane passes through the points

P3: n  3, 2, 5 P4: n  75, 50, 125

−1

248

Chapter 10

Vectors and the Geometry of Space

67. The normals to the planes are n1  3i  2j  k and n2  i  4j  2k. The direction vector for the line is

 

i j k n2  n1  1 4 2  7 j  2k. 3 2 1 Now find a point of intersection of the planes. 6x  4y  2y  14

x 2

3 1  t, y   t, z  1  2t 2 2

12  t  2 32  t  1  2t  12, t  23

Substituting t  3 2 into the parametric equations for the line we have the point of intersection 2, 3, 2. The line does not lie in the plane.

x  4y  2z  0  14

7x

69. Writing the equation of the line in parametric form and substituting into the equation of the plane we have:

x 2 Substituting 2 for x in the second equation, we have 4y  2z  2 or z  2y  1. Letting y  1, a point of intersection is 2, 1, 1. x  2, y  1  t, z  1  2t 71. Writing the equation of the line in parametric form and substituting into the equation of the plane we have: x  1  3t, y  1  2t, z  3  t 21  3t  31  2t  10, 1  10, contradiction Therefore, the line does not intersect the plane.

73. Point: Q0, 0, 0 Plane: 2x  3y  z  12  0 Normal to plane: n  2, 3, 1 Point in plane: P6, 0, 0 \

Vector PQ  6, 0 0

PQ  n 12 6 14   D \

n

75. Point: Q2, 8, 4 Normal to plane: n  2, 1, 1

P  10, 0, 0 is a point in x  3y  4z  10. Q  6, 0, 0 is a point in x  3y  4z  6.

Point in plane: P0, 0, 5

PQ  n1  PQ  4, 0, 0, D 

\

\

Vector: PQ  2, 8, 1 D

PQ  n  n

11

6



\

n1

11 6 6

79. The normal vectors to the planes are n1  3, 6, 7 and n2  6, 12, 14. Since n2  2n1, the planes are parallel. Choose a point in each plane. P  0, 1, 1 is a point in 3x  6y  7z  1. Q \

256, 0, 0 is a point in 6x  12y  14z  25.

PQ 

256, 1, 1 \

n1

94

4 2 26  13

26

81. u  4, 0, 1 is the direction vector for the line. Q1, 5, 2 is the given point, and P2, 3, 1 is on the line. Hence, PQ  3, 2, 3 and \

 

i PQ  u  3 4 \

\

D

PQ  n1 27 2 D  

7

77. The normal vectors to the planes are n1  1, 3, 4 and n2  1, 3, 4. Since n1  n2, the planes are parallel. Choose a point in each plane.

Plane: 2x  y  z  5

\

14

j k 2 3  2, 9, 8 0 1

PQ  u 149 2533   u 17

17

27 27 94  2 94 188

83. The parametric equations of a line L parallel to v  a, b, c, and passing through the point Px1, y1, z1 are x  x1  at, y  y1  bt, z  z1  ct.

85. Solve the two linear equations representing the planes to find two points of intersection. Then find the line determined by the two points.

The symmetric equations are x  x1 y  y1 z  z1   . a b c

http://librosysolucionarios.net

Section 10.6

Surfaces in Space

249

(b) Parallel planes

87. (a) Sphere

x  3  y  2  z  5  16 x2  y2  z2  6x  4y  10z  22  0 2

2

4x  3y  z  10 ± 4n  10 ± 426

2

89. (a) z  28.7  1.83x  1.09y Year

1980

1985

1990

1994

1995

1996

1997

z (approx.)

16.16

14.23

9.81

8.60

8.42

8.27

8.23

(b) An increase in x or y will cause a decrease in z. In fact, any increase in two variables will cause a decrease in the third. z

(c) 30

(0, 0, 28.7)

(15.7, 0, 0)

(0, 26.3, 0)

30 x

30

y

91. True

Section 10.6

Surfaces in Space

1. Ellipsoid

3. Hyperboloid of one sheet

Matches graph (c)

5. Elliptic paraboloid

Matches graph (f)

7. z  3

9. y2  z2  9

z

Plane parallel to the xy-coordinate plane

Matches graph (d)

The x-coordinate is missing so we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is a circle.

2

z

2 3 x

2

4 y

11. y  x2

4

7 6

x

y

13. 4x2  y2  4

The z-coordinate is missing so we have a cylindrical surface with rulings parallel to the z-axis. The generating curve is a parabola. z 4

x2 y 2  1 1 4 The z-coordinate is missing so we have a cylindrical surface with rulings parallel to the z-axis. The generating curve is an ellipse. z 3

x

4

3

2 3 4

y

−3 2 3 x

http://librosysolucionarios.net

2

3

y

250

Chapter 10

Vectors and the Geometry of Space

15. z  sin y

z 2

The x-coordinate is missing so we have a cylindrical surface with rulings parallel to the x-axis. The generating curve is the sine curve.

1

3

y

3 4 x

17. x  x2  y2 (a) You are viewing the paraboloid from the x-axis: 20, 0, 0 (b) You are viewing the paraboloid from above, but not on the z-axis: 10, 10, 20 (c) You are viewing the paraboloid from the z-axis: 0, 0, 20 (d) You are viewing the paraboloid from the y-axis: 0, 20, 0

19.

x2 y 2 z2   1 1 4 1 2

Ellipsoid 2

xz-trace: x 2  z 2  1 circle y2



4

4x 2 

y2

x xy-trace:   1 ellipse 1 4

yz-trace:

21. 16x 2  y 2  16z 2  4

z

z2 1

 1 ellipse

y2 4

2

x

y

−2

xy-trace: y 

xy-trace: y  ± x

point 0, 0, 0 yz-trace: y  z 2 y  1:



z2

xy-trace: point 0, 0, 0 xz-trace: z  ± x

yz-trace: z  y 2

1

x

yz-trace: z 

z

z  ± 1: x2 

3

±1

2

y

y2 1 4

z x

−3

3 2

2 3

y

2

1

1 3

4

−2

y

−2 2

2

x

−3

−2

29.

y2 4

Elliptic Cone

3

2

−3

27. z 2  x2 

y  ± 1: z  1  x 2

2

3

−2

x

y 2  4z 2  1 hyperbola 4

xz-trace: z  x2

z

1

3

xz-trace: 4x 2  z 2  1 circle

Hyperbolic paraboloid

xz-trace: x2  z 2  0,

−3

2

y2  1 hyperbola 4

25. x2  y 2  z  0

x2

2 −2

xy-trace: 4x 2 

Elliptic paraboloid

x2

 4z 2  1

Hyperboloid on one sheet 2

yz-trace:

23. x2  y  z 2  0

z 3

16x2  9y2  16z2  32x  36y  36  0

z

16x2  2x  1  9y2  4y  4  16z2  36  16  36

2 1

16x  12  9y  22  16z2  16

x  12 y  22 z2   1 1 169 1

1 2 2

x −2

Ellipsoid with center 1, 2, 0.

http://librosysolucionarios.net

4

y

y

3

y

Section 10.6 31. z  2 sin x

33. z 2  x 2  4y 2

35. x2  y2 

z  ± x2  4y2

z

Surfaces in Space

y±

z 3

251

2z 

2

z4  x

2

2

5

z 4

−2

π x

3

−1

y

1 2 y

x

4 4

x



37. z  4   xy

39. 4x 2  y 2  4z 2  16

z

z±

5

y4  x 2

41. z  2x2  y 2 z2

4

2

2x2  y 2  2

z

x2  y2  1

8 5

4

3 3

6 4

5

x

4

y

−4

−6

z

−8 3

−2 8

6

4

x

−2 −4 −6

2 2 y −2

−8

−2 2

1

x

43. x2  y2  1 4

z0

3

y

2

45. x2  z 2  ry 2 and z  r y  ± 2y; therefore,

z

xz2

y

x2  z 2  4y.

2

3 x

2

3

y

z 47. x2  y 2  rz 2 and y  rz  ; therefore, 2 z2 x2  y 2  , 4x2  4y 2  z 2. 4

2 49. y 2  z 2  rx 2 and y  r x  ; therefore, x 2 2 2 4 2 2 2 y z  , y  z  2. x x

51. x 2  y 2  2z  0

53. Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and intersecting C is called a cylinder.

x2



y2

  2z 

2



Equation of generating curve: y  2z or x  2z



z

4

55. See pages 765 and 766.

57. V  2

x4x  x2 dx

4

0

 2



4x3 x4  3 4

4 0



128 3

3 2

h ( x)

1

x 1

2

p ( x)

http://librosysolucionarios.net

3

4

252

Chapter 10

59. z 

Vectors and the Geometry of Space

x2 y2  2 4

(a) When z  2 we have 2 

x2 y2 x2 y2  , or 1   2 4 4 8

(b) When z  8 we have 8 

x2 y 2 y2 x2  , or 1   . 2 16 32 4

Major axis: 28  42

Major axis: 232  82

Minor axis: 24  4

Minor axis: 216  8

c2



a2



b2,

c2

 4, c  2

c 2  32  16  16, c  4

Foci: 0, ± 2, 2

Foci: 0, ± 4, 8

61. If x, y, z is on the surface, then

63.

y2 z2 x2   1 2 2 3963 3963 39422

 y  22  x2   y  2)2  z2 y2

z

 4y  4  x  y  4y  4  z 2

2

2 4000

x2  z2  8y Elliptic paraboloid 4000

Traces parallel to xz-plane are circles.

y

4000 x

65. z 

y2 x2  2 , z  bx  ay 2 b a bx  ay 



67. The Klein bottle does not have both an “inside” and an “outside.” It is formed by inserting the small open end through the side of the bottle and making it contiguous with the top of the bottle.

y2 x2  2 2 b a





a4b2 1 a2b4 1 2 x  a2 bx   2 y2  ab2y  a2 4 b 4



x  a2b y  ab2  2

a2

2

2 2



y±

b2





a2b ab2 b x  a 2 2

Letting x  at, you obtain the two intersecting lines x  at, y  bt, z  0 and x  at, y  bt  ab2 z  2abt  a2b2.

Section 10.7 1. 5, 0, 2, cylindrical x  5 cos 0  5 y  5 sin 0  0 z2

5, 0, 2, rectangular

Cylindrical and Spherical Coordinates 3.

2, 3 , 2, cylindrical

5.

4, 76, 3, cylindrical

x  2 cos

 1 3

x  4 cos

7  23 6

y  2 sin

  3 3

y  4 sin

7  2 6

z2

 1, 3, 2, rectangular

http://librosysolucionarios.net

z3

 23, 2, 3, rectangular

Section 10.7 9.  1, 3, 4, rectangular

7. 0, 5, 1, rectangular r  02  52  5

z1

2

r  22  22  22

  arctan3 

 3

  arctan1  

1   3  2

 4

z  4

z4

5, 2 , 1, cylindrical

22, 4, 4, cylindrical

2, 3 , 4, cylindrical

13. x2  y2  z2  10 rectangular equation

15. y  x2

rectangular equation

r sin   r cos 

r  z  10 cylindrical equation 2

11. 2, 2, 4, rectangular

2

r

5   0 2

  arctan

Cylindrical and Spherical Coordinates

2

2

sin   r cos2  r  sec 

19.  

17. r  2 x2



y2

2 z

y 1  x 3 x  3 y

3 2 −3

x

3

r 2  2r sin 

2

x2  y2  2y

1

x2  y2  2y  0

−2 x

2

cylindrical equation

21. r  2 sin 

z

 y tan  6 x

x2  y 2  4

2

 6

 tan 

1

x2  y  12  1

2 y −2

z

x  3 y  0

2

2 3

−2

1

y −2

−3

1

2 x

−1 −2

23. r 2  z 2  4 x  2

y2



z2

25. 4, 0, 0, rectangular

z

4

 42  02  02  4

2

  arctan 0  0

1 −2 x

−2 2

1 −1

2

y

  arccos 0 

 2

4, 0, 2 , spherical 27.  2, 23, 4, rectangular

 22   23 2  42  42   arctan  3     arccos

1







 4

2 3

2 2  42, , , spherical 3 4

29.  3, 1, 23 , rectangular

 3  1  12  4   arctan

1 3

  arccos

3

2



 6



 6

4, 6 , 6 , spherical

http://librosysolucionarios.net

2

y

253

254

Chapter 10

Vectors and the Geometry of Space

31.

4, 6 , 4 , spherical x  4 sin

  cos  6 4 6

y  4 sin

  sin  2 4 6

z  4 cos

  22 4

33.

12, 4, 0, spherical  x  12 sin 0 cos 0 4   y  12 sin 0 sin 0 4  z  12 cos 0  12

0, 0, 12, rectangular

 6, 2, 22 , rectangular

5, 4 , 34, spherical

35.

x  5 sin

3  5 cos  4 4 2

y  5 sin

3  5 sin  4 4 2

z  5 cos

3 52  4 2

52, 52,  5 2 2 , rectangular 

39. x2  y2  z2  36 rectangular equation

37. (a) Programs will vary. (b) x, y, z  3, 4, 2

2  36

spherical equation

 , ,   5.385, 0.927, 1.190 43.  2

41. x2  y2  9 rectangular equation

x  2

2 sin2  cos2   2 sin2  sin2   9

y2

z



z2

4

2

2 sin2   9

1 −2

sin   3

x

−2 2

1

2

−1

y

 3 csc  spherical equation

45.  

 6

47.  4 cos 

z 2

z x2  y2  z2 3 z  2 x2  y2  z2 z2 3  2 4 x  y2  z2

cos  

x2  y2  z2 

−2 −1 x

2

−1

4z x2  y2  z2

4 3

x2  y2  z2  4z  0

−2

−1

1

z 5

2

x2  y2  z  22  4

1 2

−2

y x

3

2

1

3x 2  3y 2  z 2  0 49.  csc 

51.

sin   1

4, 4 , 0, cylindrical  42  02  4

x2  y2  1

x2  y2  1



z



1 −2 x

−2 2

−1

1

2

4, 2 , 4, cylindrical  42  42  42 

  arccos 0 

2

1

 4

53.

 2

  4, , , spherical 4 2



y

−2

http://librosysolucionarios.net

 2

4 4 2  4

  arccos



42, 2 , 4 , spherical

2

3

−3

y

Section 10.7

55.

4, 6, 6, cylindrical

57. 12, , 5, cylindrical



 42  62  213

2

13,

122



52

 13

3

5 13

z  10 cos



 3 , arccos , 6 13

36, , 2 , spherical r  sin   36 sin

63.

  36 2

6,  6 , 3 , spherical r  6 sin

 z  cos   36 cos

  0 2

8, 76, 6 , spherical

65.

  33 3

r  8 sin

 6

z  6 cos

36, , 0, cylindrical

  3 3

Spherical

7.810, 0.983, 1.177

69. 4.698, 1.710, 8

7.211, 0.983, 3  5, , 8 9

71. 7.071, 12.247, 14.142

14.142, 2.094, 14.142

20, 23, 4 

73. 3, 2, 2

3.606, 0.588, 2

4.123, 0.588, 1.064

2.833, 0.490, 1.5

3.206, 0.490, 2.058

77. 3.536, 3.536, 5

5, 34, 5

7.071, 2.356, 2.356

79. 2.804, 2.095, 6

3.5, 2.5, 6

6.946, 5.642, 0.528



52, 43, 32



 83  6 2

4, 76, 43, cylindrical

Cylindrical

67. 4, 6, 3

 4 6

7 6

z  8 cos

33,  6 , 3, cylindrical

Rectangular

75.

 0 2

10, 6 , 0, cylindrical

spherical

61.

 6



13, , arccos 135 , spherical

13

  10 2

r  10 sin

  arccos

255

10, 6 , 2 , spherical

59.



  6

  arccos

Cylindrical and Spherical Coordinates

9.434, 0.349, 0.559

[Note: Use the cylindrical coordinates 3.5, 5.642, 6 83.  5

81. r  5

85. r 2  z, x 2  y 2  z

Cylinder

Sphere

Paraboloid

Matches graph (d)

Matches graph (c)

Matches graph (f)

87. Rectangular to cylindrical: r 2  x2  y2 tan  

89. Rectangular to spherical: 2  x2  y2  z2

y x

tan  



zz

  arccos

Cylindrical to rectangular: x  r cos  y  r sin 

y x z x2  y2  z2

Spherical to rectangular: x  sin  cos  y  sin  sin 

zz

z  cos 

http://librosysolucionarios.net



256

Chapter 10

Vectors and the Geometry of Space

91. x2  y2  z2  16

93. x2  y2  z2  2z  0

(a) r 2  z 2  16

(a) r 2  z 2  2z  0, r 2  z  12  1

(b) 2  16,   4

(b) 2  2 cos   0,   2 cos   0,

  2 cos  95. x2  y 2  4y

97. x2  y2  9

(a) r 2  4r sin , r  4 sin 

(a) r 2 cos2   r 2 sin2   9,

(b) 2 sin2   4 sin  sin ,

r2 

 sin  sin   4 sin   0, 

(b) 2 sin2  cos2   2 sin2  sin2   9,

4 sin  ,   4 sin  csc  sin 

2 sin2   2 

99. 0 ≤  ≤

9 cos2   sin2 

 2

9 , cos2   sin2 

9 csc2  cos2   sin2 

101. 0 ≤  ≤ 2

103. 0 ≤  ≤ 2

0 ≤ r ≤ a

0 ≤ r ≤ 2

r ≤ z ≤ a

0 ≤ z ≤ 4

 6

0 ≤  ≤

0 ≤  ≤ a sec 

z z

z a

5

a −a

3

30°

−a

2 1

a

x 2 3

2

3

a

y

x

y y

x

105. Rectangular

107. Spherical

z

0 ≤ x ≤ 10

z

4 ≤  ≤ 6

10

8

0 ≤ y ≤ 10 0 ≤ z ≤ 10

−8 8

10 10

y

x

y

x −8

109. z  sin , r  1 z

y y  y r 1

The curve of intersection is the ellipse formed by the intersection of the plane z  y and the cylinder r  1.

Review Exercises for Chapter 10 1. P  1, 2, Q  4, 1, R  5, 4

3. v  v cos  i  v sin  j  8 cos 120 i  8 sin 120 j

\

(a) u  PQ  3, 1  3i  j,

 4i  43j

\

v  PR  4, 2  4i  2j (b) v  42  22  25 (c) 2u  v  6, 2  4, 2  10, 0  10i

http://librosysolucionarios.net

Review Exercises for Chapter 10 5. 120 cos   100

  arccos tan   y

2 ft

56 y

2 2 ⇒ y y tan 

120 lb 100 lb

θ

10 2 2    3.015 ft tan arccos5 6 11 5 11

7. z  0, y  4, x  5: 5, 4, 0

11. x  32  y  22  z  62 

9. Looking down from the positive x-axis towards the yz-plane, the point is either in the first quadrant  y > 0, z > 0 or in the third quadrant y < 0, z < 0. The x-coordinate can be any number.

152

2

13. x2  4x  4   y 2  6y  9  z 2  4  4  9

15. v  4  2, 4  1, 7  3  2, 5, 10

x  22   y  32  z 2  9 Center: 2, 3, 0 Radius: 3

z

(2, − 1, 3) 3 2 1

z 5

4 3 2

6

5

4

4

3

−2

1 2 3 5

y

x

3

4 5 6

y

x

(4, 4, − 7)

17. v  1  3, 6  4, 9  1  4, 2, 10

19. Unit vector:

w  5  3, 3  4, 6  1  2, 1, 5



u 2 3 5 2, 3, 5   , , u 38 38 38 38



Since 2w  v, the points lie in a straight line. 21. P  5, 0, 0, Q  4, 4, 0, R  2, 0, 6

23. u  7, 2, 3, v  1, 4, 5

\

(a) u  PQ  1, 4, 0  i  4j,

Since u

v  0, the vectors are orthogonal.

\

v  PR  3, 0, 6  3i  6k (b) u v  13  40  06  3 (c) v

v  9  36  45



3 3 52 i  sin j 

i  j 4 4 2



2 2 i  sin j  i  3 j 3 3

25. u  5 cos v  2 cos u v

27. u  10, 5, 15, v  2, 1, 3 u  5v ⇒ u is parallel to v and in the opposite direction.



52  1  3  2

u  5 v  2 cos  

257

u v   52 2 1  3   2  6 52

u v

  arccos

2  6

4

4

 15

http://librosysolucionarios.net

258

Chapter 10

Vectors and the Geometry of Space

29. There are many correct answers. For example: v  ± 6, 5, 0.

<

>

<

>

<

>

In Exercises 31–39, u  3, 2, 1 , v  2, 4, 3 , w  1, 2, 2 . 31. u

u  33  22  11  14   14   u 2

uu w u

33. projuw 

2

2



5 3, 2, 1 14

 



15 10 5 , , 14 14 14



15 5 5 , , 14 7 14

 

35. n  v w  n  5



i 2 1

j 4 2



k 3  2i  j 2





 v w  3, 2, 1 2, 1, 0  4  4

37. V  u

1 n  2i  j n 5 39. Area parallelogram  u v  102  112  82 (See Exercises 36, 38)  285 41. F  ccos 20 j  sin 20 k

z

\

PQ  2k



i PQ F  0 0 \

\



PQ

j k 0 2  2c cos 20 i c cos 20 c sin 20

200  PQ F  2c cos 20

2 ft

70°

F

y

x

100 c cos 20 F

100 cos 20 j  sin 20 k  100 j  tan 20 k cos 20

F  1001  tan2 20  100 sec 20  106.4 lb 43. v  j (a) x  1, y  2  t, z  3 (b) None

45. 3x  3y  7z  4, x  y  2z  3 Solving simultaneously, we have z  1. Substituting z  1 into the second equation we have y  x  1. Substituting for x in this equation we obtain two points on the line of intersection, 0, 1, 1, 1, 0, 1. The direction vector of the line of intersection is v  i  j. (a) x  t, y  1  t, z  1 (b) x  y  1, z  1

http://librosysolucionarios.net

Review Exercises for Chapter 10 49. Q  1, 0, 2

47. The two lines are parallel as they have the same direction numbers, 2, 1, 1. Therefore, a vector parallel to the plane is v  2i  j  k. A point on the first line is 1, 0, 1 and a point on the second line is 1, 1, 2. The vector u  2i  j  3k connecting these two points is also parallel to the plane. Therefore, a normal to the plane is



i v u  2 2

j 1 1

259

2x  3y  6z  6 A point P on the plane is 3, 0, 0. \

PQ  2, 0, 2 n  2, 3, 6



PQ n 8 D  \

k 1 3

 n

7

 2i  4j  2i  2j. Equation of the plane: x  1  2y  0 x  2y  1 51. Q3, 2, 4 point

53. x  2y  3z  6 Plane

P5, 0, 0 point on plane

Intercepts: 6, 0, 0, 0, 3, 0, 0, 0, 2

n  2, 5, 1 normal to plane

z

\

PQ  2, 2, 4

PQ n  \

D

n

3

(0, 0, 2)

30 10  30 3

3

(0, 3, 0)

6 x

1 55. y  z 2

57.

(6, 0, 0)

x2 y2   z2  1 16 9 2

xy-trace:

z 2

2

y2 x2  1 16 9

xz-trace:

x2  z2  1 16

yz-trace:

y2  z2  1 9

y

6 x

y2 x2   z 2  1 16 9

z 2

Hyperboloid of two sheets x2 y2 xy-trace:  1 4 16

−2 5

5

y

x

xz-trace: None yz-trace:

z

Ellipsoid

Plane with rulings parallel to the x-axis

59.

y

y2  z2  1 9

http://librosysolucionarios.net

−4 4 x

5

−2

y

260

Chapter 10

Vectors and the Geometry of Space z

x2  y 2  rz 2

61. (a)

 2z  1

4

2

3

x 2  y 2  2z  2  0 −2 1

2

2

3

y

x

  2

(b) V  2

x 3

0

2

 2

12 x

1

2

 dx

y

3

1 2x  x 3 dx 2

0



 2 x 2 

x4 8

2



2

1

0 x

 4  12.6 cm3

   2

(c) V  2

x 3

1 2 2

 2

1 2

2

1

 dx



3

1

2

3

3

x4 8

2

y

1 2x  x 3 dx 2

 2 x 2   4 

12 x

1

2

1



2 1 2

x

31 225   11.04 cm 3 64 64

63.  22, 22, 2, rectangular (a) r 

 22    22 2  4,   arctan1  3, z  2, 4, 3, 2 , cylindrical 4

(b)    22    22   22  25,   2

65.

2

67.

  1002  502  505



5050 5  arccos 15  63.4 



505,  6 , 63.4 , spherical

25, 34, arccos 55 , spherical 

25,  4 , 34 , spherical r 2  25 sin

 6

  arccos

4

3 2 1 ,   arccos  arccos , 4 5 25

100,  6 , 50 , cylindrical 



2



34

2

⇒ r  25

2

2

2

 4

z   cos   25 cos

25

2

2 3  25 4 2

 252 , , , cylindrical 4 2

69. x2  y 2  2z (a) Cylindrical: r 2 cos2   r 2 sin2   2z, r 2 cos 2  2z (b) Spherical:  2 sin2  cos2   2 sin2  sin2   2 cos ,  sin2  cos 2  2 cos   0,   2 sec 2 cos  csc2

http://librosysolucionarios.net

256

Chapter 10

Vectors and the Geometry of Space

91. x2  y2  z2  16

93. x2  y2  z2  2z  0

(a) r 2  z 2  16

(a) r 2  z 2  2z  0, r 2  z  12  1

(b) 2  16,   4

(b) 2  2 cos   0,   2 cos   0,

  2 cos  95. x2  y 2  4y

97. x2  y2  9

(a) r 2  4r sin , r  4 sin 

(a) r 2 cos2   r 2 sin2   9,

(b) 2 sin2   4 sin  sin ,

r2 

 sin  sin   4 sin   0, 

(b) 2 sin2  cos2   2 sin2  sin2   9,

4 sin  ,   4 sin  csc  sin 

2 sin2   2 

99. 0 ≤  ≤

9 cos2   sin2 

 2

9 , cos2   sin2 

9 csc2  cos2   sin2 

101. 0 ≤  ≤ 2

103. 0 ≤  ≤ 2

0 ≤ r ≤ a

0 ≤ r ≤ 2

r ≤ z ≤ a

0 ≤ z ≤ 4

 6

0 ≤  ≤

0 ≤  ≤ a sec 

z z

z a

5

a −a

3

30°

−a

2 1

a

x 2 3

2

3

a

y

x

y y

x

105. Rectangular

107. Spherical

z

0 ≤ x ≤ 10

z

4 ≤  ≤ 6

10

8

0 ≤ y ≤ 10 0 ≤ z ≤ 10

−8 8

10 10

y

x

y

x −8

109. z  sin , r  1 z

y y  y r 1

The curve of intersection is the ellipse formed by the intersection of the plane z  y and the cylinder r  1.

Review Exercises for Chapter 10 1. P  1, 2, Q  4, 1, R  5, 4

3. v  v cos  i  v sin  j  8 cos 120 i  8 sin 120 j

\

(a) u  PQ  3, 1  3i  j,

 4i  43j

\

v  PR  4, 2  4i  2j (b) v  42  22  25 (c) 2u  v  6, 2  4, 2  10, 0  10i

http://librosysolucionarios.net

Review Exercises for Chapter 10 5. 120 cos   100

  arccos tan   y

2 ft

56 y

2 2 ⇒ y y tan 

120 lb 100 lb

θ

10 2 2    3.015 ft tan arccos5 6 11 5 11

7. z  0, y  4, x  5: 5, 4, 0

11. x  32  y  22  z  62 

9. Looking down from the positive x-axis towards the yz-plane, the point is either in the first quadrant  y > 0, z > 0 or in the third quadrant y < 0, z < 0. The x-coordinate can be any number.

152

2

13. x2  4x  4   y 2  6y  9  z 2  4  4  9

15. v  4  2, 4  1, 7  3  2, 5, 10

x  22   y  32  z 2  9 Center: 2, 3, 0 Radius: 3

z

(2, − 1, 3) 3 2 1

z 5

4 3 2

6

5

4

4

3

−2

1 2 3 5

y

x

3

4 5 6

y

x

(4, 4, − 7)

17. v  1  3, 6  4, 9  1  4, 2, 10

19. Unit vector:

w  5  3, 3  4, 6  1  2, 1, 5



u 2 3 5 2, 3, 5   , , u 38 38 38 38



Since 2w  v, the points lie in a straight line. 21. P  5, 0, 0, Q  4, 4, 0, R  2, 0, 6

23. u  7, 2, 3, v  1, 4, 5

\

(a) u  PQ  1, 4, 0  i  4j,

Since u

v  0, the vectors are orthogonal.

\

v  PR  3, 0, 6  3i  6k (b) u v  13  40  06  3 (c) v

v  9  36  45



3 3 52 i  sin j 

i  j 4 4 2



2 2 i  sin j  i  3 j 3 3

25. u  5 cos v  2 cos u v

27. u  10, 5, 15, v  2, 1, 3 u  5v ⇒ u is parallel to v and in the opposite direction.



52  1  3  2

u  5 v  2 cos  

257

u v   52 2 1  3   2  6 52

u v

  arccos

2  6

4

4

 15

http://librosysolucionarios.net

258

Chapter 10

Vectors and the Geometry of Space

29. There are many correct answers. For example: v  ± 6, 5, 0.

<

>

<

>

<

>

In Exercises 31–39, u  3, 2, 1 , v  2, 4, 3 , w  1, 2, 2 . 31. u

u  33  22  11  14   14   u 2

uu w u

33. projuw 

2

2



5 3, 2, 1 14

 



15 10 5 , , 14 14 14



15 5 5 , , 14 7 14

 

35. n  v w  n  5



i 2 1

j 4 2



k 3  2i  j 2





 v w  3, 2, 1 2, 1, 0  4  4

37. V  u

1 n  2i  j n 5 39. Area parallelogram  u v  102  112  82 (See Exercises 36, 38)  285 41. F  ccos 20 j  sin 20 k

z

\

PQ  2k



i PQ F  0 0 \

\



PQ

j k 0 2  2c cos 20 i c cos 20 c sin 20

200  PQ F  2c cos 20

2 ft

70°

F

y

x

100 c cos 20 F

100 cos 20 j  sin 20 k  100 j  tan 20 k cos 20

F  1001  tan2 20  100 sec 20  106.4 lb 43. v  j (a) x  1, y  2  t, z  3 (b) None

45. 3x  3y  7z  4, x  y  2z  3 Solving simultaneously, we have z  1. Substituting z  1 into the second equation we have y  x  1. Substituting for x in this equation we obtain two points on the line of intersection, 0, 1, 1, 1, 0, 1. The direction vector of the line of intersection is v  i  j. (a) x  t, y  1  t, z  1 (b) x  y  1, z  1

http://librosysolucionarios.net

Review Exercises for Chapter 10 49. Q  1, 0, 2

47. The two lines are parallel as they have the same direction numbers, 2, 1, 1. Therefore, a vector parallel to the plane is v  2i  j  k. A point on the first line is 1, 0, 1 and a point on the second line is 1, 1, 2. The vector u  2i  j  3k connecting these two points is also parallel to the plane. Therefore, a normal to the plane is



i v u  2 2

j 1 1

259

2x  3y  6z  6 A point P on the plane is 3, 0, 0. \

PQ  2, 0, 2 n  2, 3, 6



PQ n 8 D  \

k 1 3

 n

7

 2i  4j  2i  2j. Equation of the plane: x  1  2y  0 x  2y  1 51. Q3, 2, 4 point

53. x  2y  3z  6 Plane

P5, 0, 0 point on plane

Intercepts: 6, 0, 0, 0, 3, 0, 0, 0, 2

n  2, 5, 1 normal to plane

z

\

PQ  2, 2, 4

PQ n  \

D

n

3

(0, 0, 2)

30 10  30 3

3

(0, 3, 0)

6 x

1 55. y  z 2

57.

(6, 0, 0)

x2 y2   z2  1 16 9 2

xy-trace:

z 2

2

y2 x2  1 16 9

xz-trace:

x2  z2  1 16

yz-trace:

y2  z2  1 9

y

6 x

y2 x2   z 2  1 16 9

z 2

Hyperboloid of two sheets x2 y2 xy-trace:  1 4 16

−2 5

5

y

x

xz-trace: None yz-trace:

z

Ellipsoid

Plane with rulings parallel to the x-axis

59.

y

y2  z2  1 9

http://librosysolucionarios.net

−4 4 x

5

−2

y

260

Chapter 10

Vectors and the Geometry of Space z

x2  y 2  rz 2

61. (a)

 2z  1

4

2

3

x 2  y 2  2z  2  0 −2 1

2

2

3

y

x

  2

(b) V  2

x 3

0

2

 2

12 x

1

2

 dx

y

3

1 2x  x 3 dx 2

0



 2 x 2 

x4 8

2



2

1

0 x

 4  12.6 cm3

   2

(c) V  2

x 3

1 2 2

 2

1 2

2

1

 dx



3

1

2

3

3

x4 8

2

y

1 2x  x 3 dx 2

 2 x 2   4 

12 x

1

2

1



2 1 2

x

31 225   11.04 cm 3 64 64

63.  22, 22, 2, rectangular (a) r 

 22    22 2  4,   arctan1  3, z  2, 4, 3, 2 , cylindrical 4

(b)    22    22   22  25,   2

65.

2

67.

  1002  502  505



5050 5  arccos 15  63.4 



505,  6 , 63.4 , spherical

25, 34, arccos 55 , spherical 

25,  4 , 34 , spherical r 2  25 sin

 6

  arccos

4

3 2 1 ,   arccos  arccos , 4 5 25

100,  6 , 50 , cylindrical 



2



34

2

⇒ r  25

2

2

2

 4

z   cos   25 cos

25

2

2 3  25 4 2

 252 , , , cylindrical 4 2

69. x2  y 2  2z (a) Cylindrical: r 2 cos2   r 2 sin2   2z, r 2 cos 2  2z (b) Spherical:  2 sin2  cos2   2 sin2  sin2   2 cos ,  sin2  cos 2  2 cos   0,   2 sec 2 cos  csc2

http://librosysolucionarios.net

Problem Solving for Chapter 10

261

Problem Solving for Chapter 10 abc0

1.

3. Label the figure as indicated.

b  a  b  c  0

a

c

From the figure, you see that

b  a  b  c  0

1 1 SP  a  b  RQ and 2 2 \

b

a  b  b  c

\

1 1 SR  a  b  PQ . 2 2 \

b  c  b c sin A a  b  a b sin C

\

\

\

\

\

Since SP  RQ and SR  PQ , PSRQ is a parallelogram.

Then, Q

sin A b  c  a a b c

a

a  b  a b c 1 2

sin C  . c The other case,

P

R

a− 1b S

1 2

b

2

z 6 5 4 3

\

 

2

sin A sin B  is similar. a b

5. (a) u  0, 1, 1 direction vector of line determined by P1 and P2. D

a+ 1b

P1Q  u u

P2

P1

2, 0, 1  0, 1, 1 2

1 4

3

2

Q

2 3 4

y

x

1, 2, 2 3 32   2 2 2

(b) The shortest distance to the line segment is P1Q  2, 0, 1  5.

 1

7. (a) V  

0

2

z2

2 dz  

2 1 0

1   2

9. (a)   2 sin

1 1 1 Note: basealtitude   1   2 2 2 (b)

z

Torus

2 −3

x2 y2   z: (slice at z  c) a2 b2

3

x2 y2 1 2  ca cb2

(b)   2 cos

At z  c, figure is ellipse of area

V



0

abc  dc 



3

y

z

−3

−2 1

abc2 k 2

y

Sphere

 cacb  abc. k

3 −2

x

 abk2  2 0



1 1 (c) V  abkk  baseheight 2 2 11. From Exercise 64, Section 10.4, u  v  w  z  u  v  z w  u  v  w z.

http://librosysolucionarios.net

1

2 3 x

−2

2

262

Chapter 10

Vectors and the Geometry of Space

13. (a) u  ucos 0 i  sin 0 j  u i

(d)

2.5

Downward force w  j

T

T  Tcos90  i  sin90  j

u 

 Tsin i  cos j

0

60 0

0  u  w  T  u i  j  Tsin i  cos j

(e) Both are increasing functions.

u  sin T

(f)

lim

→ 2

T  and

lim

→ 2

u  .

1  cos T If  30 , u  12T and 1   32T ⇒ T 

2  1.1547 lb 3

and u 



1 2  0.5774 lb 2 3

(b) From part (a), u  tan and T  sec . Domain: 0 ≤ ≤ 90 (c)



0

10

20

30

40

50

60

T

1

1.0154

1.0642

1.1547

1.3054

1.5557

2

u

0

0.1763

0.3640

0.5774

0.8391

1.1918

1.7321

15. Let   , the angle between u and v. Then sin   

u  v v  u  . u v u v

For u  cos , sin , 0 and v  cos , sin , 0, u  v  1 and



i j v  u  cos  sin  cos sin



k 0  sin cos   cos sin k. 0

Thus, sin    v  u  sin cos   cos sin . 17. From Theorem 10.13 and Theorem 10.7 (6) we have PQ  n D \

n



w  u  v  u  v  w  u  v  w. u  v

u  v

u  v

19. a1, b1, c1, and a2, b2, c2 are two sets of direction numbers for the same line. The line is parallel to both u  a1i  b1j  c1k and v  a 2 i  b2 j  c2 k. Therefore, u and v are parallel, and there exists a scalar d such that u  dv, a1i  b1 j  c1k  da2i  b2 j  c2k, a1  a2d, b1  b2d, c1  c2d.

http://librosysolucionarios.net

C H A P T E R 11 Vector-Valued Functions Section 11.1 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . 268 Section 11.2 Differentiation and Integration of Vector-Valued Functions . . . 273 Section 11.3 Velocity and Acceleration

. . . . . . . . . . . . . . . . . . . . 278

Section 11.4 Tangent Vectors and Normal Vectors . . . . . . . . . . . . . . . 283 Section 11.5 Arc Length and Curvature . . . . . . . . . . . . . . . . . . . . 289 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

http://librosysolucionarios.net

C H A P T E R 11 Vector-Valued Functions Section 11.1

Vector-Valued Functions

Solutions to Even-Numbered Exercises 2. rt  4  t 2 i  t 2j  6t k

4. rt  sin t i  4 cos tj  t k

Component functions: f t  4  t

Component functions: f t  sin t

2

gt  t 2

gt  4 cos t

ht  6t

ht  t

Domain: 2, 2

Domain:  , 

6. rt  Ft  Gt  ln t i  5t j  3t 2k  i  4t j  3t 2k  ln t  1i  5t  4tj  3t 2  3t 2k  ln t  1i  t j Domain: 0, 



j

k

t 1 t1

t

i

3 8. rt  Ft  Gt  t 3  t

t2

Domain:  , 1, 1, 





 tt  2 



10. rt  cos t i  2 sin tj (a) r0  i (b) r

4 

2

2

i  2 j

(c) r    cos  i  2 sin  j  cos i  2 sin j (d) r

6  t  r6  cos6  t i  2 sin6  t j  cos6 i  2 sin 6 j

12. rt  t i  t3 2j  et 4k (a) r0  k (b) r4  2i  8j  e1k (c) rc  2  c  2i  c  23 2j  ec2 4k (d) r9  t  r9   9  t i  9  t3 2j  e9t 4k  3i  27j  e9 4k   9  t  3i  9  t3 2  27j  e9t 4  e9 4k 14.





t t3 3 t j  3 t k i   t 3t  2  t  t  t1 t1

rt  t i  3t j  4t k rt   t 2  3t2  4t2  t  9t2  16t2  t1  25t

268

http://librosysolucionarios.net

Section 11.1

Vector-Valued Functions

269

16. rt ut  3 cos t4 sin t  2 sin t6 cos t  t  2t 2  t 3  2t 2, a scalar. The dot product is a scalar-valued function. 18. rt  cos t i  sin t j  t 2k, 1 ≤ t ≤ 1

20. rt  t i  ln tj 

2t k, 0.1 ≤ t ≤ 5 3

x  cos t, y  sin t, z  t 2 x  t, y  ln t, z 

Thus, x2  y 2  1. Matches (c)

2t 3

2 Thus, z  3 x and y  ln x. Matches (a)

22. rt  ti  tj  2k x  t, y  t, z  2 ⇒ x  y (a) 0, 0, 20

(c) 5, 5, 5

(b) 10, 0, 0

z

z y 1

2

3 3

−3

2

1 −3

−2

2

−2

1

−1

−1

2

1

2

3

3 y

1

x

2

26. x  t 2  t, y  t 2  t

24. x  1  t, y  t y  1  x

x  2 cos t

28.

y  2 sin t

y

x2

5

Domain: t ≥ 0

y

−3

x

3

3

−2

 y2  4

4 y

y

3 2

6 5

1

4 −1

3 2

1

x 1

−1

2

3

4

5

1

2

3

1 −1

x

−4 −3 −2 −1

x

−1

4

−2

30. x  2 cos3 t, y  2 sin3 t

2x

2 3



2y

2 3

 cos2 t  sin2 t 1

34. x  3 cos t, y  4 sin t, z 

32. x  t y  2t  5

y2 x2  1 9 16

y  3t Line passing through the points:

x2 3  y2 3  22 3

0, 5, 0,

y 3

−3

2

z 4

4

x

−2

Elliptic helix

6

(0, −5, 0)

t 2

z

( 25 , 0, 152 )

2

52, 0, 152

z

−6

3

−4

2 −2

−2 2

−3

4 x

6

−6

2 4

y

−4 −6

http://librosysolucionarios.net

4 x

4

y

t 2

270

Chapter 11

Vector-Valued Functions

3 36. x  t2, y  2t, z  t 2

38. x  cos t  t sin t y  sin t  t cos t

3 y2 x ,z y 4 4

zt

t

2

1

0

1

2

x

4

1

0

1

4

y

4

2

0

2

4

z

3

 32

0

3 2

3

x2  y 2  1  t 2  1  z 2 or x2  y 2  z 2  1 zt Helix along a hyperboloid of one sheet z 4

z 3

3

−4 −3 −2 −1

2

2

3

y

4

x

2 1 1

2

−1

3

y

4

−2 −3

5 x

40. rt  t i 

3

2

1 t 2 j  t 2k 2

42. rt   2 sin t i  2 cos tj  2 sin tk z

Ellipse

z

Parabola

2 1 1 −1 1 2 x

3

−2

−3

−1

−1 1

1

2

2 −2

3

1

−1

y

x y

−2

−3

1 44. rt  t i  t2 j  t3h 2

(a) ut  r t  2j is a translation 2 units to the left along the y-axis.

z z

1 (b) u t  t2i  t j  t3k has the roles 2 of x and y interchanged. The graph is a reflection in the plane x  y.

5 5

4

z

4

3 2 1 1

1 2 3 4 5

2 3

−2 y

3

5

2

4 3

1

1 2 3

2

2 y −2

3

4 4

5

1

1 2 3

2

5

x

y

3

x

4 5 x

(c) ut  r t  4k is an upward shift 4 units. z

1 (d) u t  ti  t2 j  t3k shrinks the 8 z-value by a factor of 4. The curve rises more slowly.

(e) ut  r t reverses the orientation. z

z

5

5

4

1 2 3

4

3

5

3

2

4

2

1

3

1

2 1 2 3 4 5

1

1

y

2 3

1

4

4

2

5

3

5

5

y

4

x 5 x

http://librosysolucionarios.net

x

1 2 3

5

y

Section 11.1

Vector-Valued Functions

48. y  4  x2

46. 2x  3y  5  0

Let x  t, then y  4  t 2.

1 Let x  t, then y  2t  5. 3

rt  ti  4  t 2 j

1 rt  ti  2t  5j 3

50. x  22  y2  4

52.

Let x  2  2 cos t, y  2 sin t.

x2 y2  1 16 9 Let x  4 cos t, y  3 sin t.

rt  2  2 cos ti  2 sin t j

rt  4 cos ti  3 sin tj

54. One possible answer is rt  1.5 cos t i  1.5 sin tj 

1 tk, 0 ≤ t ≤ 2 

Note that r2  1.5i  2k. 56. r1t  ti,

0 ≤ t ≤ 10 r10  0, r110  10i

r2t  10cos t i  sin tj,

0 ≤ t ≤

r3t  521  ti  521  tj,

 4

r 0  10i, r 4  52i  52 j 2

2

0 ≤ t ≤ 1 r30  52i  52 j, r31  0

(Other answers possible) 58. r1t  ti  t j,

0 ≤ t ≤ 1 y  x 

r2t  1  ti  1  tj,

0 ≤ t ≤ 1  y  x

(Other answers possible) 60. z  x2  y 2, z  4

z

Therefore, x2  y2  4 or

6

x  2 cos t, y  2 sin t, z  4. rt  2 cos ti  2sin tj  4k 2

2

y

x

62. 4x2  4y2  z2  16, x  z2

z 4

1 If z  t, then x  t2 and y  16  4t4  t2. 2 t

1.3

1.2

1

0

1

1.2

x

1.69

1.44

1

0

1

1.44

y

0.85

1.25

1.66

2

1.66

1.25

z

1.3

1.2

1

0

1

1.2

2

2 4 x

1 rt  t2i  16  4t4  t2j  tk 2

http://librosysolucionarios.net

2

y

271

272

Chapter 11

Vector-Valued Functions

64. x2  y 2  z 2  10, x  y  4 Let x  2  sin t, then y  2  sin t

 2

t



x

1

y

3

z

z  21  sin2 t  2 cos t. z

0

 6

 2



3 2

2

5 2

3

2

5 2

2

3 2

1

2



 6

6

0

and

2

2

4

y

4

4 x

6

0

2

 2

rt  2  sin ti  2  sin tj  2 cos tk 66. x2  y 2  z 2  16, xy  4 (first octant)

z 4

Let x  t, then y

4 t

x2  y 2  z2  t 2 

and

16  z 2  16. t2

1 z  t 4  16t 2  16 t

4

y

4

x

8  43 ≤ t ≤ 8  43 t

8  43

1.5

2

2.5

3.0

3.5

8  43

x

1.0

1.5

2

2.5

3.0

3.5

3.9

y

3.9

2.7

2

1.6

1.3

1.1

1.0

z

0

2.6

2.8

2.7

2.3

1.6

0

4 1 rt  ti  j  t 4  16t 2  16k t t 68. x2  y2  et cos t2  et sin t2  e2t  z2



70. lim et i  t→0

sin t j  et k  i  j  k t

z

since

160 120

lim

80

t→0

40 40 120 80

40

x



72. lim t i  t→1

80 120

(L’Hôpital’s Rule)

y

ln t 1 j  2t 2 k  i  j  2k t2  1 2

since lim

sin t cos t  lim 1 t→0 1 t



1 t 74. lim et i  j  2 k 0 t→  t t 1 since

ln t 1 t 1  lim  . (L’Hôpital’s Rule)  1 t→1 2t 2

t→1 t 2

lim et  0, lim

t→ 

http://librosysolucionarios.net

t→ 

1 t  0, and lim 2  0. t→  t  1 t

Section 11.2

Differentiation and Integration of Vector-Valued Functions 78. rt  2et, et, lnt  1

76. rt  t i  t  1 j

Continuous on t  1 > 0 or t > 1: 1, .

Continuous on 1,  3 t

80. rt   8, t,

82. No. The graph is the same because rt  ut  2. For example, if r0 is on the graph of r, then u2 is the same point.

Continuous on 0,  84. A vector-valued function r is continuous at t  a if the limit of rt exists as t → a and lim rt  ra. t→a

The function rt 

ii  jj

t ≥ 0 is not continuous at t  0. t < 0

86. Let rt  x1ti  y1tj  z1tk and ut  x2ti  y2tj  z2tk. Then: lim rt  ut  lim x1tx2t  y1ty2t  z1tz2t t→c

t→c

 lim x1t lim x2t  lim y1t lim y2t  lim z1t lim z2t t→c

t→c

t→c

t→c

t→c

t→c

 lim x1ti  lim y1tj  lim z1tk  lim x2ti  lim y2tj  lim z2tk t→c

t→c

 lim rt  lim ut t→c

t→c

t→c

t→c

t→c

t→c

90. False. The graph of x  y  z  t 3 represents a line.

88. Let f t 

1,1,

if t ≥ 0 if t < 0

and rt  f ti. Then r is not continuous at c  0, whereas, r  1 is continuous for all t.

Section 11.2

Differentiation and Integration of Vector-Valued Functions

2. rt  ti  t 3 j, t0  1 xt  t, yt  t 3

1 4. rt  t 2i  j, t0  2 t xt  t 2, yt 

y  x3 r1  i  j

x

rt  i  3t 2j rt0 is tangent to the curve. y 4 3

r

x

−4 −3 −2

1 −2

2

3

y

4 2

r

−3 −4

1 y2

rt0 is tangent to the curve.

r' (1, 1)

1

1 t

1 r2  4i  j 2 1 rt  2t i  2 j t 1 r2  4 i  j 4

r1  i  3j

2

273

1

r' x 8 −1

http://librosysolucionarios.net

274

Chapter 11

Vector-Valued Functions

3 8. rt  ti  t 2 j  k, t0  2 2

6. rt  t i  4  t 2j (a)

y

y  x 2, z 

5

r(1)

rt  i  2tj

3

r(1.25)

2

r (1.25) − r (1)

1

3 r2  2 i  4 j  k 2

x −3

−1 −1

3

r2  i  4j

r1  i  3j

(b)

z

r1.25  1.25i  2.4375j

2 −2

r1.25  r1  0.25i  0.5625j

−4 −2

2

rt  i  2tj

(c)

3 2

x

4

r

−6

−4

r 1  i  2j

y

r' −6

r1.25  r1 0.25i  0.5625j   i  2.25j 1.25  1 0.25 This vector approximates r1. t2 1 10. rt  i  16tj  k t 2

12. rt  4 t i  t2 t j  ln t2 k rt 

1 rt   2 i  16j  tk t 14. rt  sin t  t cos t, cos t  t sin t, t 2

rt  t sin t, t cos t, 2t

t



i  2t t 

t2 2 t

j  2t k

16. rt  arcsin t, arccos t, 0

rt 

18. rt  t2  ti  t2  tj

2

1 1 t ,  1 1 t , 0 2

2

20. rt  8 cos ti  3 sin tj

(a) rt  2t  1i  2t  1 j

(a) rt  8 sin ti  3 cos tj

r t  2 i  2j

r t  8 cos t i  3 sin tj

(b) rt  rt  2t  12  2t  12  8t

(b) rt  rt  8 sin t8 cos t  3 cos t 3 sin t  55 sin t cos t

22. rt  ti  2t  3j  3t  5k (a) rt  i  2j  3k r t  0 (b) rt  rt  0

24. rt  et, t2, tant

(a) rt  et, 2t, sec2 t

r t  et, 2, 2 sec2 t tan t

(b) rt  rt  e2t  4t  2 sec4 t tan t

http://librosysolucionarios.net

Section 11.2 rt  t i  t 2j  e0.75t k, t0 

26.

Differentiation and Integration of Vector-Valued Functions

1 4

rt  i  2tj  0.75e0.75t k r

0.1875 k

   1 r 4

( 1) 1 r'' ( 4 ) r'' 4

−2

1 3  i  j  e316k 2 4

−2 −1 1 2

−1

1 2 y

x



1 12  2

2

−1

14  i  12 j  0.75e 2

z

( 1) 1 r' ( 4 ) r' 4

3  e316 4

 2

275

−2

20  9e 5 9  e38  4 16 4

38

1 r14  4i  2j  3e316k  r1 4 20  9e38 rt  2i  r

9 0.75t e k 16

14  2 i  169 e

316k

 14   2  169 e r

2

316



2



81 e 4  256

38



1024  81e38

16

r14 1  32j  9e316k  r14 1024  81e38

28.

rt 

1 i  3tj t1

rt  

r     sin i  1  cos j

30.

r   1  cos i  sin j

1 i  3j t  12

r2n  1   0, n any integer Smooth on 2n  1 , 2n  1 

Not continuous when t  1 Smooth on  , 1, 1,  32. rt  rt 

2t 2t2 i j 3 8t 8  t3

34. rt  et i  et j  3tk rt  et i  et j  3k 0

16  4t3 32t  2t 4 i 3 j 3 2 t  8 t  82

1 36. rt  t i  t 2  1 j  tk 4 rt 

r is smooth for all t:  , 

rt 0 for any value of t.

1 1 i  2tj  k 0 4 2 t

r is smooth for all t > 0: 0, 

r is not continuous when t  2. Smooth on  , 2, 2, . 38. rt  ti  2 sin tj  2 cos tk 1 ut  i  2 sin tj  2 cos tk t (a) rt  i  2 cos tj  2 sin tk

(b) rt  2 sin tj  2 cos tk

(c) rt  ut  1  4 sin2 t  4 cos2 t  5

(d) 3rt  ut  3t 

Dtrt  ut  0, t 0







1 i  4 sin tj  4 cos tk t

Dt3rt  ut  3 

—CONTINUED—

http://librosysolucionarios.net



1 i  4 cos tj  4 sin tk t2

276

Chapter 11

Vector-Valued Functions





38. —CONTINUED— (e) rt ut 

i t 1t

j k 2 sin t 2 cos t 2 sin t 2 cos t

 2 cos t

1t  t j  2 sin t t  1t k



Dtrt  ut  2 sin t



1t  t  2 cos t  t1  1 j 2



 2 cos t t 





1 1  2 sin t 1  2 t t

k

(f) rt  t2  4 1 t Dtrt  t 2  4122t  t 2  4 2 rt  t 2 i  tj

40.

1.0

rt  2t i  j rt  rt  2t 3  t rt  t 4  t 2, rt  4t 2  1 cos 

2t 3



0

−0.5

t

t 4  t 2 4t 2  1

 arccos

t 4

2t 3  t  t 2 4t 2  1

22 .

 0.340  19.47maximum at t  0.707



for any t. 2

42. rt  lim

t→0

 lim

rt  t  rt t

 t  t i  t 3 t j  2t  tk   t i  3t j  2tk t

t→0

3 3  t  t  t t  t t  lim i j  2k t→0 t t



 lim

t

 lim



t→0

t→0



44.



t t  t  t



i

 

3t j  2k t  ttt



1 3 i j  2k  t  tt t  t  t

3 1 i  2 j  2k t 2 t

8 4t 3 i  6tj  4 tk dt  t 4 i  3t 2 j  t 32 k  C 3

46.





1 ln t i  j  k dt  t ln t  ti  ln tj  t k  C t

(Integration by parts)

48.



et i  sin tj  cos tk dt  et i  cos tj  sin tk  C

http://librosysolucionarios.net

Section 11.2

50.



52.

 1



3 t k dt  t i  t 3j  

2

54.

ti  etj  tetk dt 

0

 t2 i

1

2

1



 t4 j 4

1 1



 34t k

1

43

1

 2 i  e j  t  1e k t2

277

et et sin t  cos ti  cos t  sin t j  C 2 2

et sin t i  et cos t j dt 

1

Differentiation and Integration of Vector-Valued Functions

2

2

2

t

t

0

0

0

0

56. rt 

 2i  e2  1j  e2  1k



3t 2 j  6 tk dt  t 3 j  4t 32 k  C

r0  C  i  2j rt  i  2  t 3j  4t32k

58. rt  4 cos ti  3 sin tk rt  4 sin t i  3 cos tk  C1 r0  3k  3k  C1 ⇒ C1  0 rt  4 cos t i  3 sin t k  C2 r0  4i  C2  4j ⇒ C2  4j  4i rt  4 cos t  4i  4 j  3 sin tk

60. rt  r1 





1 1 1 1 i  2 j  k dt  arctan t i  j  ln t k  C 1  t2 t t t



i  j  C  2i ⇒ C  2  ij 4 4





rt  2 



1  arctan t i  1  j  ln tk 4 t





62. To find the integral of a vector-valued function, you integrate each component function separately. The constant of integration C is a constant vector.

64. The graph of ut does not change position relative to the xy-plane.

66. Let rt  x1ti  y1tj  z1tk and ut  x2ti  y2tj  z2tk. rt ± ut  x1t ± x2ti   y1t ± y2t j  z1t ± z2t k Dtrt ± ut  x1t ± x2t i   y1t ± y2t j  z1t ± z2t k  x1ti  y1tj  z1tk ± x2ti  y2tj  z2tk  rt ± ut 68. Let rt  x1ti  y1tj  z1tk and ut  x2ti  y2tj  z2tk. rt ut   y1tz2t  z1ty2t i  x1tz2t  z1tx2t j  x1ty2t  y1tx2t k Dtrt ut   y1tz2t  y1tz2t  z1ty2t  z1ty2t i  x1tz2t  x1tz2t  z1tx2t  z1tx2t j 

x1ty2t  x1ty2t  y1tx2t  y1tx2t k   y1tz2t  z1ty2ti  x1tz2t  z1tx2t j  x1ty2t  y1tx2tk 

 y1tz2t  z1ty2ti  x1tz2t  z1tx2t j  x1ty2t  y1tx2t k  rt ut  rt ut

http://librosysolucionarios.net

278

Chapter 11

Vector-Valued Functions

70. Let rt  xti  ytj  ztk. Then rt  xti  ytj  ztk. rt  rt   ytzt  ztyti  xtzt  ztxt j  xtyt  ytxtk Dtrt  rt   ytzt  ytzt  ztyt  ztyti  xtzt  xtzt  ztxt  ztxt j 

xtyt  xtyt  ytxt  ytxtk   ytzt  ztyti  xtzt  ztxt j  xtyt  ytxtk  rt  rt 72. Let rt  xti  ytj  ztk. If rt  rt is constant, then:

74. False Dtrt  ut  rt  ut  rt  ut

x2t  y 2t  z 2t  C

(See Theorem 11.2, part 4)

Dtx2t  y 2t  z2t  DtC 2xtxt  2ytyt  2ztzt  0 2xtxt  ytyt  ztzt  0 2rt  rt  0 Therefore, rt  rt  0.

Section 11.3

Velocity and Acceleration

2. rt  6  t i  t j

4. rt  t2i  t3j

y

y 8 7 6 5 4 3 2 1

vt  rt  2ti  3t2j

vt  rt   i  j at  rt  0

at  rt  2i  6tj

4

v

x  6  t, y  t, y  6  x

(3, 3)

x

2

x  y23

x  t2, y  t3

2

4

At 1, 1, t  1.

a

v

(1, 1) x

−1

v1  2i  3j

2 3 4 5 6 7

8

a1  2i  6j y

8. rt  et, et

6. rt  3 cos ti  2 sin tj vt  3 sin ti  2 cos tj

vt  rt  et, et

at  3 cos ti  2 sin tj

at  rt 

et,

2

et 1

x  3 cos t, y  2 sin t,

x2 y2   1 Ellipse 9 4

At 3, 0, t  0.

At 1, 1, t  0. v0  1, 1  i  j

3

a0  3i

1 −2

−1

−1

a0  1, 1  i  j

v a 1

x 2

a

1 1 x  et  t, y  et, y  e x

y

v0  2j

v (1, 1)

(3, 0)

−3

10. rt  4t i  4tj  2t k vt  4i  4j  2k st  vt  16  16  4  6 at  0

http://librosysolucionarios.net

x 1

2

Section 11.3 1 12. rt  3ti  tj  t2k 4

279

14. rt  t 2 i  tj  2t 32k vt  2ti  j  3 t k

1 vt  3i  j  tk 2 st 

Velocity and Acceleration

st  4t 2  1  9t  4t 2  9t  1

9  1  41t  10  41t 2

at  2i 

2

3 k 2 t

1 at  k 2 16. rt  et cos t, et sin t, et

18. (a)

vt  et cos t  et sin ti  et sin t  et cos tj  et k

rt   t, 25  t 2, 25  t 2 , t0  3



rt  1,

st  e2tcos t  sin t2  e2tcos t  sin t2  e2t

t



3 3 r3  1,  ,  4 4

 et 3 at  2et sin ti  2et cos tj  et k

,

t

25  t 2 25  t 2



3 x  3  t, y  z  4  t 4



3 3 (b) r3  0.1 3  0.1, 4  0.1, 4  0.1 4 4  3.100, 3.925, 3.925 20. at  2i  3k vt 

22. at  cos t i  sin tj, v0  j  k, r0  i



2i  3k dt  2ti  3tk  C

vt 

v0  C  4j ⇒ vt  2ti  4j  3tk rt 



cos t i  sin t j dt  sin t i  cos t j  C

v0  j  C  j  k ⇒ C  k



3 2ti  4j  3tk dt  t2i  4tj  t2k  C 2

vt  sin t i  cos t j  k rt 

3 r0  C  0 ⇒ rt  t2i  4tj  t2k 2



sin t i  cos tj  k dt

 cos ti  sin tj  tk  C

r2  4i  8j  6k

r0  i  C  i ⇒ C  0 rt  cos t i  sin tj  tk r2  cos 2i  sin 2j  2k

24. (a) The speed is increasing. (b) The speed is decreasing. 26. rt  900 cos 45 t i  3  900 sin 45 t  16t 2 j  450 2t i   3  450 2t  16t 2j The maximum height occurs when yt  450 2  32t  0, which implies that t   225 2 16. The maximum height reached by the projectile is y  3  450 2

22516 2  1622516 2



2



50,649  6331.125 feet. 8

The range is determined by setting yt  3  450 2t  16t 2  0 which implies that t

450 2  405,192 39.779 seconds. 32

Range: x  450 2

450

2  405,192

32

 25,315.500 feet

http://librosysolucionarios.net

280

Chapter 11

28. 50 mph  rt 

Vector-Valued Functions

220 ft/sec 3 220 cos 15 t i   5   sin 15 t  16t  j 220 3 3 2

The ball is 90 feet from where it is thrown when x

27 220 cos 15 t  90 ⇒ t  1.2706 seconds. 3 22 cos 15

The height of the ball at this time is y5

27 27 sin 15   16 220 3 22 cos 15  22 cos 15 

2

3.286 feet.

30. y  x  0.005x 2 From Exercise 34 we know that tan is the coefficient of x. Therefore, tan  1,   4 rad  45 . Also 16 sec2  negative of coefficient of x 2 v02 16 2  0.005 or v0  80 ft/sec v02 rt   40 2ti   40 2t  16t 2j. Position function. When 40 2t  60, t

60 3 2  4 40 2

vt  40 2i   40 2  32tj v

3 4 2  40 2 i   40 2  24 2 j  8 25i  2j

Speed 

direction

v 3 4 2   8

32. Wind: 8 mph 



2 25  4  8 58 ftsec

176 ftsec 15



rt  140cos 22 t 



176 i  2.5  140 sin 22 t  16t2j 15

50

0

450 0

When x  375, t 2.98 and y 16.7 feet. Thus, the ball clears the 10-foot fence.

http://librosysolucionarios.net

Section 11.3

Velocity and Acceleration

281

34. h  7 feet,  35 , 30 yards  90 feet rt  v0 cos 35 ti  7  v0 sin 35 t  16t 2 j (a) v0 cos 35 t  90 when 7  v0 sin 35 t  16t 2  4 t 7  v0 sin 35 

v





90 90  16 v0 cos 35 0 cos 35



2

90 v0 cos 35

4

90 tan 35  3  v02 

129,600 v02 cos2 35 129,600 cos2 35 90 tan 35  3

v0 54.088 feet per second (c) xt  90 ⇒ v0 cos 35 t  90

(b) The maximum height occurs when yt  v0 sin 35  32t  0. t

90 2.0 seconds 54.088 cos 35

t

v0 sin 35 0.969 second 32

At this time, the height is y0.969 22.0 feet. 36. Place the origin directly below the plane. Then  0, v0  792 and

α

rt  v0 cos ti  30,000  v0 sin t  16t2j  792ti  30,000  16t2j

30,000

vt  792i  32tj.

α

At time of impact, 30,000 

16t2

0 ⇒

t2

 1875 ⇒ t 43.3 seconds.

(0, 0)

34,295

r43.3  34,294.6i v43.3  792i  1385.6j v43.3  1596 ft sec  1088 mph tan 

30,000 0.8748 ⇒ 0.718741.18  34,294.6

38. From Exercise 37, the range is x

v02 sin 2 . 32

Hence, x  150 

v02 4800 sin24  ⇒ v02  ⇒ v0 108.6 ftsec. 32 sin 24

40. (a) rt  tv0 cos i  tv0 sin  16t 2j tv0 sin  16t  0 when t  Range:

x  v0 cos

v0 sin

. 16

v 32sin   v32  sin 2

0

The range will be maximum when

 

dx v2  0 2 cos 2  0 dt 32

2

0

(b) yt  tv0 sin  16t 2 dy v sin

 v0 sin  32t  0 when t  0 . dt 32 Maximum height: y

v 32sin   v 0

sin2

v 2 sin2 v 2 sin2

 16 0 2  0 32 32 64

Minimum height when sin  1, or 

or 2 

2

0

,  rad. 2 4

http://librosysolucionarios.net

. 2

282

Chapter 11

Vector-Valued Functions

42. rt  v0 cos t i  h  v0 sin t  4.9t 2 j  v0 cos 8 t i  v0 sin 8 t  4.9t 2 j x  50 when v0 cos 8 t  50 ⇒ t 

v0 sin 8 

v



50 . For this value of t, y  0: v0 cos 8



50 50  4.9 v0 cos 8 0 cos 8



2

0

50 tan 8 

4.92500 4.950 ⇒ v02  1777.698 v02 cos2 8 tan 8 cos2 8 ⇒ v0 42.2 msec

44. rt  bt  sin t i  b1  cos t j vt  b1  cos t i  sin tj Speed  vt  2b 1  cos t and has a maximum value of 2b when t  , 3 , . . . . 55 mph  80.67 ftsec  80.67 radsec   since since b  1 Therefore, the maximum speed of a point on the tire is twice the speed of the car: 280.67 ftsec  110 mph 46. (a) Speed  v  b22 sin2t  b22 cos2t

(b)

10

 b22sin2t  cos2t  b −10

10

−10

The graphing utility draws the circle faster for greater values of . 48. at  b2 costi  sintj  b2 50. vt  30 mph  44 ftsec



605

vt 44  radsec b 300

n

at  b2

3000

 

44 3000 300 F  mb   32 300 2

θ 2

 605 lb

Let n be normal to the road. n cos  3000 n sin  605 Dividing the second equation by the first: tan 

605 3000

 arctan

605 3000  11.4 .

52. h  6 feet, v0  45 feet per second,  42.5 . From Exercise 47, t

45 sin 42.5  452 sin2 42.5  2326 2.08 seconds. 32

At this time, xt 69.02 feet.

http://librosysolucionarios.net

Section 11.4 54. rt  xti  ytj

Tangent Vectors and Normal Vectors

283

56. r1t  xti  ytj  ztk

yt  mxt  b, m and b are constants.

r2t  r12t

rt  xti  mxt  b j

Velocity: r2t  2r12t

vt  xti  mxtj

Acceleration: r2t  4r12t

st  xt2  mxt2  C, C is a constant.

In general, if r3t  r1t, then: Velocity: r3t  r1t

C Thus, xt  1  m2

Acceleration: r3t  2r1t

xt  0 at  xti  mxtj  0.

Section 11.4 2.

Tangent Vectors and Normal Vectors

rt  t3i  2t2j

rt  6 cos ti  2 sin tj

4.

rt  3t2i  4tj

rt  6 sin ti  2 cos tj

rt  9t  16t 4

Tt  T1 

rt  36 sin2 t  4 cos2 t

2

rt 1 3t2i  4tj  rt 9t4  16t2 1 9  16

Tt 

3 4 3i  4j  i  j 5 5

T

4 6. rt  t2i  tj  k 3

1 j  33i  j 3  3633 43i 1 4  28 

8. rt   t, t, 4  t 2 

rt  2ti  j

rt  1, 1, 

When t  1, rt  r1  2i  j T1 

rt 6 sin ti  2 cos tj  rt 36 sin2 t  4 cos2 t





4 t  1 at 1, 1, 3

.



When t  1, r1  1, 1, 

r1 2i  j 5  2i  j  5 r1 5

T1 

Direction numbers: a  2, b  1, c  0 4 Parametric equations: x  2t  1, y  t  1, z  3

t 4  t 2

T

1 3

Parametric equations: x  t  1, y  t  1,

rt  2 cos t, 2 sin t, 8 sin t cos t





Direction numbers: a  1, b  1, c  

10. rt  2 sin t, 2 cos t, 4 sin2 t

  , r   3, 1, 23 , 6 6

, t  1 at 1, 1, 3 .

21 r1 1  1, 1,   r1 7 3

z

When t 

1 3

t  6 at  1, 3, 1 .

6  rr 6 6  41 3, 1, 23 

Direction numbers: a  3, b  1, c  23 Parametric equations: x  3t  1, y   t  3, z  23 t  1

http://librosysolucionarios.net

1 3

t  3

284

Chapter 11

Vector-Valued Functions

1 12. rt  3 cos ti  4 sin t j  k 2

z 5

1 rt  3 sin t i  4 cos tj  k 2 When t  T

  1 , r  3i  k, 2 2 2



4 3



2



t  2 at 0, 4, 4 .

1 1

 r 2 2 1 1   3i  k  6i  k 2  r 2 2 37 37







x

5 4

4

5

y

Direction numbers: a  6, b  0, c  1 Parametric equations: x  6t, y  4, z  t 

 4

14. rt  et i  2 cos tj  2 sin t k, t0  0 rt  et i  2 sin t j  2 cos t k r0  i  2j, r0  i  2k,  r0  5 T0 

r0 i  2k   r0 5

Parametric equations: xs  1  s, ys  2, zs  2s rt0  0.1  r0  0.1  1  0.1, 2, 20.1  0.9, 2, 0.2 16. r0  0, 1, 0 u0  0, 1, 0 Hence the curves intersect. rt  1, sin t, cos t, r0  1, 0, 1

us  sin s cos s  cos s, sin s cos s  cos s,

1 1 cos 2s  2 2



u0  1, 0, 1 cos 

18.

r0 u0  0 ⇒  r0 u0 2

6 rt  ti  j, t  3 t rt  i 

20.

rt 6 1 Tt  i  2j  rt 1  36 t4 t





t

t4  36

i  t6 j 2



Tt 

72t Tt  4 i 4 j t  363 2 t  363 2

rt sin t i  2 cos tj  rt sin2 t  4 cos2 t

The unit normal vector is perpendicular to this vector and points toward the z-axis: Nt 

12t3

N2 

 4

rt  sin t i  2 cos t j

6 j t2

2

rt  cos ti  2 sin tj  k, t  

2 cos ti  sin tj sin2 t  4 cos2 t

T2 1 3i  2 j   T2 13

http://librosysolucionarios.net

.

Section 11.4 22. rt  4t i  2tj

24. rt  t 2 j  k

vt  4i  2j

vt  2tj

at  O

at  2j

Tt 

1 vt  2i  j  vt 5

Tt 

Tt  O Nt 

Tt is undefined.  Tt

Nt 

28. rt  a costi  b sintj

vt  2ti  2j, v1  2i  2j

vt  a sinti  b costj

at  2i, a1  2i

T1 

v0  bj

vt 1 1 2ti  2j  ti  j  t2  1 vt 4t2  4 1 2

i  j 

2

2

i

2

2

j

2

i

2

2

a0  a2i v0 j  v0

Motion along rt is counterclockwise. Therefore, N0  i. aT  a T  0

1  i  tj t2  1 2

at  a2 costi  b2 sint j

T0 

t 1 i 2 j Tt t2  13 2 t  13 2 Nt   Tt 1 t2  1

N1 

Tt is undefined.  Tt

The path is a line and the speed is variable.

rt  t2i  2tj, t  1

Tt 

2t j vt   j  vt 2t

Tt  O

The path is a line and the speed is constant. 26.

Tangent Vectors and Normal Vectors

aN  a N  a2

j

aT  a T  2 aN  a N  2 30. rt0  t0  sin t0i  1  cos t0j vt0  1  cos t0i  sin t0j at0  2sin t0i  cos t0j T

1  cos t0i  sin t0 j v  v 21  cos t0

Motion along r is clockwise. Therefore, N  aT  a T  aN  a N 

sin t0i  1  cos t0j . 21  cos t0

2 sin t0 2 1  cos t0  21  cos t0 2 2 2

1  cos t0

32. Tt points in the direction that r is moving. Nt points in the direction that r is turning, toward the concave side of the curve.

y a

T N a

http://librosysolucionarios.net

x

285

286

Chapter 11

Vector-Valued Functions

34. If the angular velocity  is halved, aN  a

2

2



a2 . 4

aN is changed by a factor of 14 . rt  2 cos ti  2 sin t j, t0 

36.

 4

38. rt  4ti  4t j  2tk vt  4i  4j  2k

x  2 cos t, y  2 sin t ⇒ x 2  y 2  4

at  0

rt  2 sin ti  2 cos t j 1 Tt  2 sin ti  2 cos tj  sin ti  cos tj 2 Nt  cos ti  sin tj r

y

4  2i  2 j

T

4 

2

N

4 

2

2 2

 i  j

T 1

Tt 

1 v  2i  2j  k v 3

Nt 

T is undefined. T 

aT, aN are not defined.

( 2, 2 )

N x

−1

1 −1

 i  j

40. rt  et sin t i  et cos tj  et k

rt  ti  3t 2j 

42.

vt  et cos t  et sin ti  et sin t  et cos tj  et k

vt  i  6tj  tk

v0  i  j  k

v2  i  12j  2k

at  2et cos ti  2et sin tj  et k

at  6 j  k

a0  2i  k v 1 Tt  cos t  sin ti  sin t  cos tj  k  v 3 1 T0  i  j  k 3

Tt  T2 

2

2

aT  a

i

2

2

1 v  i  6tj  tk v 1  37t 2 1

149

i  12j  2k

1 37ti  6j  k 1  37t 23 2 T  Nt  T  37 1  372

1 Nt  sin t  cos ti  cos t  sin tj 2 N0 

t2 k 2

j



T  3

aN  a N  2

N2  

1 371  37t 2

1 37149

1 5513

74i  6j  k

74i  6j  k

aT  a T  aN  a N 

74 149

37 5513

z 4 2

N x

4

2

4

6

8

T

http://librosysolucionarios.net

37ti  6j  k

y



37 149

Section 11.4

Tangent Vectors and Normal Vectors

287

46. If aT  0, then the speed is constant.

44. The unit tangent vector points in the direction of motion. 48. (a) rt  cos  t   t sin  t, sin  t   t cos  t

vt    sin  t   sin  t   2t cos  t,  cos  t   cos  t   2t sin  t   2t cos t,  2t sin  t at   2 cos  t   3t sin  t,  2 sin  t   3t cos  t Tt 

vt  cos  t, sin  t vt

aT  a T  cos  t 2 cos  t   3t sin  t  sin  t 2 sin  t   3t cos t   2 aN  a2  aT2   41   2t 2   4   3t When t  1, aT   2, aN   3. When t  2, aT   2, aN  2 3. (b) Since aT   2 > 0 for all values of t, the speed is increasing when t  1 and t  2.

50.

rt  ti  t 2 j 

t3 k, t0  1 3

z

1 2

rt  i  2tj  t 2 k

N

B

Tt 

1 1  4t 2  t 4

 i  2t j  t 2 k

x

1 2

T −1 2

1 2t  t 3i  1  t 4j  t  2t 3k Nt  1  4t 2  t 41  t 2  t 4

( 1, 1, 31 )

1

y

1 r1  i  j  k 3 T1  N1 

1 6

 i  2j  k

1 63

3i  3k 

B1  T1 N1 

2

2

i  k

i

j

k

6

6

6

6

3

6

0

2



2

2



3

3

i

3

3

j

3

3

k

3

3

i  j  k

2





1 52. (a) rt  v0 cos t i  h  v0 sin t  gt2 j 2

(b)

60

 100 cos 30 t i  5  100 sin 30 t  16t 2 j  503t i  5  50t  16t 2 j

−20

300 −10

Maximum height  44.0625 Range  279.0325 (c)

vt  503 i  50  32t j Speed  vt  25003  50  32t2 

464t 2

 200t  625at  32j

(d) t Speed

0.5

1.0

1.5

2.0

2.5

3.0

93.04

88.45

86.63

87.73

91.65

98.06

—CONTINUED—

http://librosysolucionarios.net

288

Chapter 11

Vector-Valued Functions

52. —CONTINUED— (e)

Tt 

253i  25  16t j 264t 2  200t  625

Nt 

25  16ti  253 264t 2  200t  625

(f ) 0

1616t  25

aT  a T 

50

3

−50

64t2  200t  625

The speed is increasing when aT and aN have opposite signs.

4003 aN  a N  64t2  200t  625 aTT  aNN  32j 54. 600 mph  880 ft sec rt  880ti  

16t2

56.

vt  r sin ti  r cos t j

 36,000j

vt  r1  r  v

vt  880i  32tj

at  r2 cos ti  r2 sin t j

at  32j Tt 

at  r2

880i  32tj 55i  2tj  164t2  3025 4t2  3025

(a) F  mat  mr2 

Motion along r is clockwise, therefore Nt 

2ti  55j

mv2 GMm 2 GM  , v  , v r r2 r

GMr

1760 4t  3025

aN  a N 

2

9.56420010

m 2 2 mv 2 r    r r

(b) By Newton’s Law:

4t2  3025

64t aT  a T  4t2  3025

58. v 

rt  r cos ti  r sin tj

4

 4.77 mi sec

60. Let x  distance from the satellite to the center of the earth x  r  4000. Then: v

2 x 2 x   t 243600

9.56 x 10

4

9.56 104 4 2x 2  2 2 24 3600 x x3  v

62.

9.56 1042423600 2 ⇒ x  26,245 mi 4 2 226,245  1.92 mi sec  6871 mph 243600 64. a 2  a a

rt  xti  ytj yt  mxt  b, m and b are constants.

 aTT  aNN aTT  aNN

rt  xti  mxt  b j

 aT2T 2  2aTaNT

vt  xti  mxtj

 aT2  aN2





vt  xt2  mxt2  xt 1  m2 Tt 

vt ± i  mj  , constant vt 1  m2

N  aN2N 2

aN2  a2  aT2 Since aN > 0, we have aN  a2  aT2.

Hence, Tt  0.

http://librosysolucionarios.net

Section 11.5

Section 11.5

y

dx dy dz  1,  0,  2t dt dt dt



12 8

1  4t 2 dt

4

0



1 2t1  4t 2  ln 2t  1  4t 4



(4, 16)

16

4





0 4

x

(0, 0)

1

2

3

4

1 865  ln 8  65   16.819 4

4. rt  a cos ti  a sin tj

y a

dx dy  a sin t,  a cos t dt dt s

289

Arc Length and Curvature

2. rt  ti  t 2k

s

Arc Length and Curvature



2

a2 sin2 t  a2 cos2 t dt

a

x

0



2

2



a dt  at

0

0

 2a



2v sin  1 (b) yt  v0 sin t  gt2  0 ⇒ t  0 2 g



1 6. (a) rt  v0 cos ti  v0 sin t  gt2 j 2 1 yt  v0 sin t  gt2 2 yt  v0 sin   gt  0 when t 

Range: xt  v0 cos  v0 sin  . g

Maximum height when sin   1, or  

 . 2

yt  v0 sin   gt xt2  yt2  v02 cos2   v0 sin   gt2  v02 cos2   v02 sin2   2v02g sin t  g2t2



 v02  2v0 g sin t  g 2t2

2v0 sin g

0

v

2

0

 2v0 g sin t  g 2t2



12 dt

Since v0  96 ftsec, we have s 



6 sin 

0

96

2

 6144 sin t  1024t2

v2 2v0 sin   0 sin2  g g

The range xt is a maximum for sin 2  1, or  

(c) xt  v0 cos 

s 





12

.

dt

Using a computer algebra system, s is a maximum for   0.9855  56.5.

http://librosysolucionarios.net

 . 4

290

Chapter 11

Vector-Valued Functions

8. rt  3t, 2 cos t, 2 sin t

10. rt  cos t  t sin t, sin t  t cos t, t2 

dy dz dx  3,  2 sin t,  2 cos t dt dt dt s



dy dz dx  t cos t,  t sin t,  2t dt dt dt

2

32  2 sin t2  2 cos t2 dt

s

0





2

2

2



13 dt  13t



0

0

13



2

2

3

3

2

1

(0, 2, 0) 2

2

3

4

5

2





5 2

0

8

(π2 , 1, π4 ) 2

(1, 0, 0) 1

y

2

2

3

3

y

3

5 x

x

12. rt  sin  ti  cos  tj  t 3 k

14. rt  6 cos

dx dy dz   cos  t,    sin  t,  3t 2 dt dt dt



4t i  2 sin 4t j  tk, 0 ≤ t ≤ 2

(a) r0  6i  6, 0, 0 r2  2j  2k  0, 2, 2

2

 cos  t2    sin  t2  3t 22 dt

distance  62  22  22  44  211  6.633

0 2



t2 2

z

5 4 2

( 32π , 0, 2)

5t 2 dt  5

0

z

s

t cos t2  t sin t2  2t2 dt

0

(b)

 2  9t 4 dt  11.15

r0  6, 0, 0 r0.5  5.543, 0.765, 0.5

0

r1.0  4.243, 1.414, 1.0 r1.5  2.296, 1.848, 1.5 r2.0  0, 2, 2 (c) Increase the number of line segments. (d) Using a graphing utility, you obtain



2

s

rt dt  7.0105.

0



16. rt  4sin t  t cos t, 4cos t  t sin t,



3 2 t 2



t

(a) s 

xu2   yu2  zu2 du

0

t



0



t

4u sin u2  4u cos u2  3u2 du 

0

16u  9u 2 du 



t

0

5 5u du  t 2 2

—CONTINUED—

http://librosysolucionarios.net

Section 11.5

Arc Length and Curvature

291

16. —CONTINUED—

2s5 2s 2s 2s x  4 sin   cos 5 5 5 2s 2s 2s y  4 cos   sin 5 5 5 3s 2s 3 z    2 5 5 3s 2s 2s 2s 2s 2s 2s rs  4 sin   cos i  4 cos   sin j  k 5 5 5 5 5 5 5

(b) t 

2

When s  4:

(c) When s  5:

2 5 5  2 5 5 cos2 5 5  6.956 

x  4 sin





2 5 5  2 5 5 sin2 5 5  14.169 

y  4 cos z





z

35  1.342 5

   4 sin 5

2s 5

2

12  2.4 5

2.291, 6.029, 2.400

6.956, 14.169, 1.342 (d) rs 

85  85 cos85  2.291 8 8 8 y  4 cos   sin  6.029 5 5 5 x  4 sin



4 cos 5

2s 5

2



9  1 35  16 25 25 2

18. rs  3  s i  j rs  i

and

rs  1

Ts  rs Ts  0 ⇒ K  Ts  0

20.

(The curve is a line.)

2s5  2s5 cos2s5 i  4 cos2s5  2s5 sin2s5 j  3s5 k

rs  4 sin

2s5 i  54 cos2s5 j  53 k 4 5 2s 4 5 2s cos i   sin  j Ts  25 2s 5 25 2s 5 4 5 2 10s K   Ts    25 2s 25s Ts  rs 

4 sin 5



22.

rt  t 2j  k vt  2tj Tt  j Tt  0 K

 Tt 0 rt

http://librosysolucionarios.net

292

Chapter 11

24.

rt  t i  t 2 j

Vector-Valued Functions

26.

vt  i  2t j

rt  2 sin  ti   cos  tj

v1  i  2j

rt  4 sin2  t  cos2  t

at  2 j

Tt 

a1  2j Tt 

i  2tj 1  4t 2

Tt 

K

28.

1 5

2i  j



From Exercise 22, Section 11.4, we have:

a sin t i  b cos tj a2 sin2 t  b2 cos2 t

a

N

ab2 cos t i  a2b sin t j a2 sin2 t  b2 cos2 t32

K

ab

Tt a2 sin2 t  b2cos2 t K  rt

a2 sin2 t  b2 cos2 t 

32.

2 4 sin2  t  cos2  t32

30. rt  a t  sin t, a1  cos t

rt  a sin t i  b cos t j

Tt 

2 cos  ti  4 sin  tj 4 sin2  t  cos2  t32

2 a N  v 2 55

rt  a cos t i  b sin  t j

Tt 

2 sin  t i  cos  tj 4 sin2  t  cos2  t

2 Tt 4 sin2  t  cos2  t  K rt 4 sin2  t  cos2  t

1 Nt  2ti  j 1  4t 2 N1 

rt  2 cos ti  sin  tj

a 2 2

at Nt  vt 2

a

2  2



34.

rt  4i  4j  2k

2 4a1  cos t

1 rt  2t2 i  tj  t2 k 2

Tt 

Tt  0

Tt 

 Tt 0 K  rt

K

4ti  j  tk 1  17t2 4i  17tj  k 1  17t232

Tt 289t2  17  1  17t212 rt 1  17t232 

rt  et cos ti  et sin tj  et k rt  et sin t  et cos ti  et cos t  et sin tj  et k 1 sin t  cos ti  cos t  sin tj  k 3 1 Tt  cos t  sin ti  sin t  cos tj 3 Tt 

K



rt  4ti  j  tk

1 Tt  2i  2j  k 3

36.

1  cos t

2a2 21  cos t

ab a2 sin2 t  b2 cos2 t32

rt  4t i  4tj  2tk

1  cos t

Tt  13 cos t  sin t2  sin t  cos t2 2   t rt 3et 3e

http://librosysolucionarios.net

17 1  17t232

Section 11.5

Arc Length and Curvature

293

38. y  mx  b Since y  0, K  0, and the radius of curvature is undefined. 3 42. y  16  x2 4

4 40. y  2x  , x  1 x y  2 

4 , y1  2 x2

y 

9x 16y  9  16y2 16y

y 

8 , y 1  8 x3

y 

K

y  8  8 1   y232 1  432 532

At x  0:

532 1  K 8

y  0 y  

(radius of curvature) K



3 16

1 16  K 3 4x2 3

44. (a) y 

y  ln x,

46.

x2

y 

24x   32

y 

721  x2 x2  33

Center:

y  

y1  1, K

At x  0: y  0

(radius of curvature)

x1

1 y  , x

x2



316 3  1  0232 16

1 x2

y 1  1

1

1  1232



1 1 , r   232  22 K 232

y 

72 8  27 3

The slope of the tangent line at 1, 0 is y1  1.

K

8 83  1  0232 3

Equation of normal line: y   x  1  x  1

r

1 3  K 8

The slope of the normal line is 1. The center of the circle is on the normal line 22 units away from the point 1, 0. 1  x2  0  y2  22

1  x2  x  12  8

0, 38

3 Equation: x2  y  8

2

2x2  4x  2  8

9  64

2x2  2x  3  0 2x  3x  1  0

(b) The circles have different radii since the curvature is different and r

1 . K

x  3 or x  1 Since the circle is below the curve, x  3 and y  2. Center of circle: 3, 2 Equation of circle: x  32   y  22  8 y

2

(1, 0) x

2

4

−2 −4

http://librosysolucionarios.net

6

294

Chapter 11

48.

1 y  x3, 3

x1 y 1  2x

y  x2, y1  1, K

Vector-Valued Functions

y 1  2

2 1 , 1  r   2 1  132 2 K

1 The slope of the tangent line at  1, 3  is y1  1.

The slope of the normal line is 1. 1 Equation of normal line: y  3   x  1 or y  x 

4 3

The center of the circle is on the normal line 2 units away from the point  1, 3 . 1

y

1  x2   13  y  2 2

3

1  x2  x  1 2  2

2

x  12  1

1

x

−2

x  0 or x  2

( 1, 31 ) 1

2

−1

4 Since the circle is above the curve, x  0 and y  3 . 4 Center of circle:  0, 3 

4 Equation of circle: x2   y  3   2 2

52. y  x3, y  3x2, y  6x

y

50. 4

K

3

B A −4

−2

x

2

4



145, 451 , 145 , 1

. 45 4

4

3

4

4

3

(b) lim K  0

−4

x→

1 1 54. y  ln x, y  , y   2 x x



6x 1  9x 432

(a) K is maximum at

−3

K



56. y  cos x



x 1x2  2 1  1x232 x  132

2x2  1 dK  2 dx x  152

(a) K has a maximum when x 

y  sin x y  cos x K

1 2

y  cos x  0 for x    K. 1   y232 1  sin2 x32 2

Curvature is 0 at

.

(b) lim K  0 x→

58. y  cosh x 

ex  ex 2

60. See page 828.

y 

ex  ex  sinh x 2

y 

ex  ex  cosh x 2

K

cosh x  cosh x  1  1 1  sinh x232 cosh2 x32 cosh2 x y 2 http://librosysolucionarios.net

2  K, 0 .

Section 11.5

Arc Length and Curvature

295

y

62. K 

1   y232

At the smooth relative extremum y  0, so K  y . Yes, for example, y  x 4 has a curvature of 0 at its relative minimum 0, 0. The curvature is positive for any other point of the curvature. 64. y1  axb  x, y2 

x x2

y

y1  axb  x, y2 

x , x2

y1  ab  2x, 2 , x  22

y2 

4

y2

We observe that 0, 0 is a solution point to both equations. Therefore, the point P is the origin.

2

y1  2a y2 

y2

P −4

4 x  23

−2

x

2

4

y1 −4

At P, y10  ab and y20 

2 1  . 0  22 2

1 1 Since the curves have a common tangent at P, y10  y20 or ab  2 . Therefore, y10  2 . Since the curves have the same curvature at P, K10  K20.

K10  K20 





y1 0 2a  1   y10232 1  12232 y2 0 12  1   y20232 1  12232



Therefore, 2a  ± 12 or a  ± 14 . In order that the curves intersect at only one point, the parabola must be concave downward. Thus, a

1 4

and

1  2. 2a

b

1 y1  x2  x and 4

y2 

x x2

1 66. y  x 85, 0 ≤ x ≤ 5 4

5

(a)

(b) V 

z

2x

0

4



2

2

2

4

y

4



x

 2

14 x dx 85

5

x135 dx 

0

(shells)

 x185 2 185





5 0

5 185  143.25 cm3 5 36

(rotated about y-axis) 2 6 6 (c) y  x35, y  x25  5 25 25x25 6 25x25 6 K  4 65 32 4 1 x 25x 25 1  x 65 25 25







(d) No, the curvature approaches as x → 0. Hence, any spherical object will hit the sides of the goblet before touching the bottom 0, 0.



32

1

5

0 0

http://librosysolucionarios.net

296

Chapter 11

68. s 

Vector-Valued Functions

c K

1 y  x3 3 y  x 2 y  2x K



2x 1  x 432

When x  1:

K

s

1 2

c

4  2c

12

4 2c ⇒ c  30  

30 4  2

3 3 At x  , K   0.201 2 [1  811632 s

32  cK  30K 2  56.27 mi hr. 4 

70. r  r cos i  r sin j  f  cos  i  f  sin j x  f  cos  y  f  sin  x  f  sin   f  cos  y  f  cos   f   sin  x   f  cos   f sin   f sin   f  cos   f  cos   2 f sin   f  cos  y   f  sin   f cos   f cos   f  sin   f sin   2 f cos   f  sin  K

x2y  yx2 32  f 2  f  f   2 f2  r 2  rr  2r2

x   y 

 f 2   f232

r 2  r 2 32

72. r  

74. r  e

r  1

r  e

r  0

r  e

K

2r 2  rr  r 2  r  r  2

2 32

2  2 1   232

76. At the pole, r  0. K

2r2  rr  r 2 r2  r 232

2r2 2   r 3 r

K

2r 2  rr  r 2  r  2



r 2 32

2e2 1  2e232 2 e

78. r  6 cos 3 r  18 sin 3 At the pole,

    , r  18, 6 6



and K

2



2

r6 18

http://librosysolucionarios.net

1  . 9

Section 11.5 80. xt  t3, xt  3t 2, x t  6t

Arc Length and Curvature

297

5

1 yt  t 2, yt  t, y t  1 2 K

3t 21  t6t

−4

4 0

3t 22  t232 3t 2 3  3 2 32  t 9t 2  132 t  9t  1 

K → 0 as t → ± 1 (b) rt  ti  t2j  t2 k 2

82. (a) rt  3t 2i  3t  t 3j vt  6ti  3  3t 2j

vt  i  2tj  tk

ds d 2s  vt  31  t 2, 2  6t dt dt K aT 

ds  vt  5t2  1 dt

2 31  t 22

d 2s 5t  5t2  1 dt2

d 2s  6t dt 2



ds aN  K dt

2

at  2j  k

2  31  t 22

91  

t2 2

6

K

rt  r t  2 rt3 5t  132

aT 

d 2s 5t  5t2  1 dt2

5

aN  K

 ddsT    dTdt dsdt  ,  Tt Tt d Tdt      rt dsdt vt

84. (a) K  Ts 

(b)

Tt 

rt rt  rt dsdt

rt 

ds Tt dt

r t 

ddt s Tt  dsdt Tt

rt  r t 



i j k rt  r t  vt  at  1 2t t  j  2k 0 2 1

dsdt

2



5 5 5t2  1  5t2  1 5t2  132

by the Chain Rule

2

2

dsdt ddt s Tt  Tt  dsdt Tt  Tt 2

2

2

Since Tt  Tt  0 and

ds  rt, we have: dt

rt  r t  rt2 Tt  Tt rt  r t  rt2Tt  Tt  rt2Tt Tt  rt 21K rt from (a) Therefore,

rt  r t  K. rt 3

rt  r t  (c) K  rt 3

vt  at  rt  r t rt vt at Nt   rt 2 rt 2 rt 2

http://librosysolucionarios.net

298

Chapter 11

Vector-Valued Functions

86. F  ma ⇒ ma 

GmM r r3

a

GM r r3

Since r is a constant multiple of a, they are parallel. Since a  r is parallel to r, r  r  0. Also,

dtd r  r  r  r  r  r  0  0  0. Thus, r  r is a constant vector which we will denote by L.

88.

d r r 1 1 L  r  0  r  L  3r  r  r dt GM r GM r







1 GMr 1 0  r  r  3 r  r  r GM r3 r

  Thus,









1 r  r  r  3 r  r  r r3 r

1 r  r  r  r  r  r  0 r3

r GM   L  rr  is a constant vector which we will denote by e.

90. L  r  r

92. Let P denote the period. Then

Let: r  rcos  i  sin  j r  rsin  i  cos j

Then: r  r 

 r2



P

d dt

drdt  ddr ddt

i

j

k

r cos  r sin  d dt

r sin  r cos  d dt

0 0

d d k and L  r  r  r 2 . dt dt

A

0

dA 1 dt  L P. dt 2

Also, the area of an ellipse is ab where 2a and 2b are the lengths of the major and minor axes. 1

ab  L P 2 P P2 

2 ab L 4 2a 2 2 4 2a 2 2 a  c 2  a 1  e2 L 2 L 2



4 2a 4 ed 4 2ed 3  a 2 L a L 2



4 2 L 2GM  3 4 2 3 a  a  Ka 3 L 2 GM

 

Review Exercises for Chapter 11 2. rt  t i 

1 jk t4

(a) Domain: 0, 4 and 4,  (b) Continuous except at t  4

4. rt  2t  1 i  t 2j  tk (a) Domain:  ,  (b) Continuous for all t

http://librosysolucionarios.net

Review Exercises for Chapter 11

299

6. (a) r0  3i  j (b) r

 2    2 k

(c) rs    3 coss   i  1  sins   j  s   k (d) r  t  r   3 cos  t i  1  sin  t j    tk  3i  j  k  3 cos t  3 i  sin t  t k 8. rt  ti 

t j t1

y

10. rt  2ti  tj  t 2k

4

x  2t, y  t, z  t 2, y  12 x, z  y 2

3

t xt  t, yt  t1

z

2

5

1

x y x1

x −2 −1

2

1

3

4

−2

12. rt  2 cos ti  tj  2 sin tk

t

0

1

1

2

x

0

2

2

4

y

0

1

1

2

z

0

1

1

4

3

x2  z 2  4

3

1 1 14. rt  2 ti  tj  4 t 3k

z

x  2 cos t, y  t, z  2 sin t

4 x

z 6

2

5

x

t

0

2



3

2

x

2

0

2

0

y

0

2



3

2

z

0

2

0

2

4 2π

3 y

2 −3

x

−2

1

1

2

−2

−1

−1 3

1

2

3

−3

y

18. The x- and y-components are 2 cos t and 2 sin t. At

16. One possible answer is: r1t  4ti,

0 ≤ t ≤ 1

r2t  4 cos ti  4 sin tj,

0 ≤ t ≤

r3t  4  t j,

0 ≤ t ≤ 4

t

2

3

, 2

the staircase has made 34 of a revolution and is 2 meters high. Thus, one answer is rt  2 cos ti  2 sin tj 

20. x2  z 2  4, x  y  0, t  x

22. lim t→0

x  t, y  t, z  ± 4  t 2

sint 2t i  e

z

 

 et k  lim t→0

rt  ti  tj  4  t 2 k 3

x 5 y

http://librosysolucionarios.net



2 cos 2t ijk 1

 2i  j  k

rt  ti  tj  4  t 2 k 4

t j

4 tk. 3

y

300

Chapter 11

Vector-Valued Functions

1 24. rt  sin ti  cos tj  t k, ut  sin ti  cos t j  k t (a) rt  cos ti  sin tj  k

(b) rt  sin t i  cos t j

(c) rt ut  2

(d) ut  2rt  sin ti  cos tj 

Dtrt ut  0

1t  2tk 

Dtut  2rt  cos t i  sin tj  



1 2 k t2

(e) rt  1  t 2 Dt rt   (f) rt  ut 

t 1  t 2

1t cos t  t cos t i  1t sin t  t sin tj 

 



1 1 1 1 cos t  2 sin t  t cos t  sin t j Dtrt  ut   sin t  2 cos t  t sin t  cos t i  t t t t 26. The graph of u is parallel to the yz-plane.

28.



30.



t2 ln t i  t ln tj  k dt  t ln t  t i  1  2 ln tj  tk  C 4

tj  t 2k  i  tj  tk dt 

32. rt 



t2  t3i  t 2j  tk dt 

t3  t4 i  t3 j  t2 k  C 3



4

sec t i  tan tj  t 2k dt  ln sec t  tan t i  ln cos t j 

3

2

t3 kC 3

r0  C  3k





rt  ln sec t  tan t i  ln cos t j 

 1

34.

0



1

36.

1

t j  t sin t k dt 

23 t

32 j

t3i  arcsin tj  t2k dt 

t3  3k 3



 sin t  t cos tk

1 0

2  j  sin 1  cos 1k 3

t4 i  t arcsin t  1  t j  t3 k 4

3

1

2

1

2  k 3 38.

rt  t, tan t, et

40.

rt  vt  1, sec2 t, et

rt  3 sinh t, cosh t, 2

vt  1  sec t  e 4

r0  0, 1, 2 direction numbers

2t

rt  at  0, 2 sec t tan t, e  2

rt  3 cosh t, sinh t, 2t, t 0  0

t

Since r0  3, 0, 0, the parametric equations are x  3, y  t, z  2t. rt 0  0.1  r0.1  3, 0.1, 0.2

http://librosysolucionarios.net

Review Exercises for Chapter 11

42. Range  4  

v02 16



v02 sin  cos  16 6 213



3v 2 4  0 104 213

2 13 6

416  v02 ⇒ v0  11.776 ft sec 3 4

44. rt  v0 cos ti  v0 sin t  12 9.8t2 j (b) rt  20 cos 45ti  20 sin 45t  4.9t 2 j

(a) rt  20 cos 30ti  20 sin 30t  4.9t 2 j

20

20

0

0

45

45 0

0

Maximum height  10.2 m; Range  40.8 m

Maximum height  5.1 m; Range  35.3 m (c) rt  20 cos 60ti  20 sin 60t  4.9t 2 j 20

0

45 0

Maximum height  15.3 m; Range  35.3 m (Note that 45 gives the longest range)

46.

rt  1  4t i  2  3tj

rt  2t  1 i 

48.

vt  4 i  3j

vt  2i 

v  5 at  0

vt 

1 Tt  4i  3j 5

2t  14  1 t  12 4 j t  13

Tt 

t  12i  j t  14  1

Nt 

i  t  12j t  14  1

a

T

4 t  13t  14  1

a

N

4t  12 t  13t  14  1

a T0

N

2 j t  12

at 

Nt does not exist

a

2 j t1

does not exist



4 t  1t  14  1

http://librosysolucionarios.net

301

302

Chapter 11

Vector-Valued Functions

rt  t cos ti  t sin t j

50.

vt  rt  t sin t  cos t i  t cos t  sin t j vt  speed  t sin t  cos t2  t cos t  sin t2  t2  1 at  rt  t cos t  2 sin t i  t sin t  2 cos t j Tt 

vt t sin t  cos t i  t cos t  sin t j  vt t2  1

Nt 

 t cos t  sin t i  t sin t  cos t j t2  1 t

at Tt 

t 2  1

t2  2 t 2  1

at Nt 

rt  t  1 i  tj 

52.

1 k t

54. rt  t i  t2j  23 t 3k, x  t, y  t 2, z  23 t 3 When t  2, x  2, y  4, z  16 3 .

1 vt  i  j  2 k t

Direction numbers when t  2, a  1, b  4, c  8

2t 4  1

vt 

a

rt  i  2tj  2t 2k

t2

x  t  2, y  4t  4, z  8t  16 3

at 

2 k t3

Tt 

t 2i  t 2 j  k 2t 4  1

Nt 

i  j  2t 2k 22t 4  1 2 2t 4  1

T  t3

4 t22t 4  1

a N

56. Factor of 4 58. rt  t2i  2tk, 0 ≤ t ≤ 3 rt  2ti  2k



b

s

rt dt 

a



z 6



5

3

4

4t2  4 dt

3 2

0



 ln t2  1  t  tt2  1

3

(0, 0, 0)

−2 1

(9, 0, 6)

0

 ln10  3  310  11.3053

1

2

2 3 4

5 6 7 9 x

http://librosysolucionarios.net

y

Review Exercises for Chapter 11 60.

rt  10 cos ti  10 sin tj

62. rt  ti  t2j  2tk, 0 ≤ t ≤ 2

rt  10 sin ti  10 cos tj

rt  i  2tj  2k, rt  5  4t2

rt  10



s



b

2

303

s

a

10 dt  20

5  4t2 dt

0

5 5 ln 5  ln105  45   6.2638 4 4

 21 

0



2

rt dt 

y z 8 6 4 2

4 3 x

−8 −6 −4 −2

(2, 4, 4)

2

2 4 6 8

−4 −6 −8

1 1

1

2

2

3

4

y

x

64. rt  2sin t  t cos t, 2cos t  t sin t, t, 0 ≤ t ≤

2

66.

xt  2t sin t, 2t cos t, 1, rt  4t2  1



b

s

rt dt 

a



2

4t2  1 dt

rt  et cos t  et sin t i  et sin t  et cos t k rt  et cos t  et sin t2  et sin t  et cos t2  2et

0

 17 

rt  et sin ti  et cos tk, 0 ≤ t ≤

1 ln17  4  4.6468 4

s





rt dt

0



 2



0

68.

rt  2ti  3tj rt 

1 t

i  3j, rt 

1t  9  1 t 9t

1 r t   t 32i 2



j i 1 3 r  r  t 1 32 0  t 2 K

70.

k 0

3 3  t 32k; r  r  32 2 2t

0

32t32 3 rt  r t   3 rt 1  9t32t32 21  9t32

rt  2ti  5 cos tj  5 sin tk rt  2i  5 sin tj  5 cos tk, rt  29 rt  5 cos tj  5 sin tk

i r  r  2 0

r  r  725 K

j k 5 sin t 5 cos t  25i  10 sin tj  10 cos tk 5 cos t 5 sin t

725 25 29 r  r 5    r 3 2932 29  29 29

http://librosysolucionarios.net







et dt  2et

0

 2e  1

298

Chapter 11

Vector-Valued Functions

86. F  ma ⇒ ma 

GmM r r3

a

GM r r3

Since r is a constant multiple of a, they are parallel. Since a  r is parallel to r, r  r  0. Also,

dtd r  r  r  r  r  r  0  0  0. Thus, r  r is a constant vector which we will denote by L.

88.

d r r 1 1 L  r  0  r  L  3r  r  r dt GM r GM r







1 GMr 1 0  r  r  3 r  r  r GM r3 r

  Thus,









1 r  r  r  3 r  r  r r3 r

1 r  r  r  r  r  r  0 r3

r GM   L  rr  is a constant vector which we will denote by e.

90. L  r  r

92. Let P denote the period. Then

Let: r  rcos  i  sin  j r  rsin  i  cos j

Then: r  r 

 r2



P

d dt

drdt  ddr ddt

i

j

k

r cos  r sin  d dt

r sin  r cos  d dt

0 0

d d k and L  r  r  r 2 . dt dt

A

0

dA 1 dt  L P. dt 2

Also, the area of an ellipse is ab where 2a and 2b are the lengths of the major and minor axes. 1

ab  L P 2 P P2 

2 ab L 4 2a 2 2 4 2a 2 2 a  c 2  a 1  e2 L 2 L 2



4 2a 4 ed 4 2ed 3  a 2 L a L 2



4 2 L 2GM  3 4 2 3 a  a  Ka 3 L 2 GM

 

Review Exercises for Chapter 11 2. rt  t i 

1 jk t4

(a) Domain: 0, 4 and 4,  (b) Continuous except at t  4

4. rt  2t  1 i  t 2j  tk (a) Domain:  ,  (b) Continuous for all t

http://librosysolucionarios.net

Review Exercises for Chapter 11

299

6. (a) r0  3i  j (b) r

 2    2 k

(c) rs    3 coss   i  1  sins   j  s   k (d) r  t  r   3 cos  t i  1  sin  t j    tk  3i  j  k  3 cos t  3 i  sin t  t k 8. rt  ti 

t j t1

y

10. rt  2ti  tj  t 2k

4

x  2t, y  t, z  t 2, y  12 x, z  y 2

3

t xt  t, yt  t1

z

2

5

1

x y x1

x −2 −1

2

1

3

4

−2

12. rt  2 cos ti  tj  2 sin tk

t

0

1

1

2

x

0

2

2

4

y

0

1

1

2

z

0

1

1

4

3

x2  z 2  4

3

1 1 14. rt  2 ti  tj  4 t 3k

z

x  2 cos t, y  t, z  2 sin t

4 x

z 6

2

5

x

t

0

2



3

2

x

2

0

2

0

y

0

2



3

2

z

0

2

0

2

4 2π

3 y

2 −3

x

−2

1

1

2

−2

−1

−1 3

1

2

3

−3

y

18. The x- and y-components are 2 cos t and 2 sin t. At

16. One possible answer is: r1t  4ti,

0 ≤ t ≤ 1

r2t  4 cos ti  4 sin tj,

0 ≤ t ≤

r3t  4  t j,

0 ≤ t ≤ 4

t

2

3

, 2

the staircase has made 34 of a revolution and is 2 meters high. Thus, one answer is rt  2 cos ti  2 sin tj 

20. x2  z 2  4, x  y  0, t  x

22. lim t→0

x  t, y  t, z  ± 4  t 2

sint 2t i  e

z

 

 et k  lim t→0

rt  ti  tj  4  t 2 k 3

x 5 y

http://librosysolucionarios.net



2 cos 2t ijk 1

 2i  j  k

rt  ti  tj  4  t 2 k 4

t j

4 tk. 3

y

300

Chapter 11

Vector-Valued Functions

1 24. rt  sin ti  cos tj  t k, ut  sin ti  cos t j  k t (a) rt  cos ti  sin tj  k

(b) rt  sin t i  cos t j

(c) rt ut  2

(d) ut  2rt  sin ti  cos tj 

Dtrt ut  0

1t  2tk 

Dtut  2rt  cos t i  sin tj  



1 2 k t2

(e) rt  1  t 2 Dt rt   (f) rt  ut 

t 1  t 2

1t cos t  t cos t i  1t sin t  t sin tj 

 



1 1 1 1 cos t  2 sin t  t cos t  sin t j Dtrt  ut   sin t  2 cos t  t sin t  cos t i  t t t t 26. The graph of u is parallel to the yz-plane.

28.



30.



t2 ln t i  t ln tj  k dt  t ln t  t i  1  2 ln tj  tk  C 4

tj  t 2k  i  tj  tk dt 

32. rt 



t2  t3i  t 2j  tk dt 

t3  t4 i  t3 j  t2 k  C 3



4

sec t i  tan tj  t 2k dt  ln sec t  tan t i  ln cos t j 

3

2

t3 kC 3

r0  C  3k





rt  ln sec t  tan t i  ln cos t j 

 1

34.

0



1

36.

1

t j  t sin t k dt 

23 t

32 j

t3i  arcsin tj  t2k dt 

t3  3k 3



 sin t  t cos tk

1 0

2  j  sin 1  cos 1k 3

t4 i  t arcsin t  1  t j  t3 k 4

3

1

2

1

2  k 3 38.

rt  t, tan t, et

40.

rt  vt  1, sec2 t, et

rt  3 sinh t, cosh t, 2

vt  1  sec t  e 4

r0  0, 1, 2 direction numbers

2t

rt  at  0, 2 sec t tan t, e  2

rt  3 cosh t, sinh t, 2t, t 0  0

t

Since r0  3, 0, 0, the parametric equations are x  3, y  t, z  2t. rt 0  0.1  r0.1  3, 0.1, 0.2

http://librosysolucionarios.net

Review Exercises for Chapter 11

42. Range  4  

v02 16



v02 sin  cos  16 6 213



3v 2 4  0 104 213

2 13 6

416  v02 ⇒ v0  11.776 ft sec 3 4

44. rt  v0 cos ti  v0 sin t  12 9.8t2 j (b) rt  20 cos 45ti  20 sin 45t  4.9t 2 j

(a) rt  20 cos 30ti  20 sin 30t  4.9t 2 j

20

20

0

0

45

45 0

0

Maximum height  10.2 m; Range  40.8 m

Maximum height  5.1 m; Range  35.3 m (c) rt  20 cos 60ti  20 sin 60t  4.9t 2 j 20

0

45 0

Maximum height  15.3 m; Range  35.3 m (Note that 45 gives the longest range)

46.

rt  1  4t i  2  3tj

rt  2t  1 i 

48.

vt  4 i  3j

vt  2i 

v  5 at  0

vt 

1 Tt  4i  3j 5

2t  14  1 t  12 4 j t  13

Tt 

t  12i  j t  14  1

Nt 

i  t  12j t  14  1

a

T

4 t  13t  14  1

a

N

4t  12 t  13t  14  1

a T0

N

2 j t  12

at 

Nt does not exist

a

2 j t1

does not exist



4 t  1t  14  1

http://librosysolucionarios.net

301

302

Chapter 11

Vector-Valued Functions

rt  t cos ti  t sin t j

50.

vt  rt  t sin t  cos t i  t cos t  sin t j vt  speed  t sin t  cos t2  t cos t  sin t2  t2  1 at  rt  t cos t  2 sin t i  t sin t  2 cos t j Tt 

vt t sin t  cos t i  t cos t  sin t j  vt t2  1

Nt 

 t cos t  sin t i  t sin t  cos t j t2  1 t

at Tt 

t 2  1

t2  2 t 2  1

at Nt 

rt  t  1 i  tj 

52.

1 k t

54. rt  t i  t2j  23 t 3k, x  t, y  t 2, z  23 t 3 When t  2, x  2, y  4, z  16 3 .

1 vt  i  j  2 k t

Direction numbers when t  2, a  1, b  4, c  8

2t 4  1

vt 

a

rt  i  2tj  2t 2k

t2

x  t  2, y  4t  4, z  8t  16 3

at 

2 k t3

Tt 

t 2i  t 2 j  k 2t 4  1

Nt 

i  j  2t 2k 22t 4  1 2 2t 4  1

T  t3

4 t22t 4  1

a N

56. Factor of 4 58. rt  t2i  2tk, 0 ≤ t ≤ 3 rt  2ti  2k



b

s

rt dt 

a



z 6



5

3

4

4t2  4 dt

3 2

0



 ln t2  1  t  tt2  1

3

(0, 0, 0)

−2 1

(9, 0, 6)

0

 ln10  3  310  11.3053

1

2

2 3 4

5 6 7 9 x

http://librosysolucionarios.net

y

Review Exercises for Chapter 11 60.

rt  10 cos ti  10 sin tj

62. rt  ti  t2j  2tk, 0 ≤ t ≤ 2

rt  10 sin ti  10 cos tj

rt  i  2tj  2k, rt  5  4t2

rt  10



s



b

2

303

s

a

10 dt  20

5  4t2 dt

0

5 5 ln 5  ln105  45   6.2638 4 4

 21 

0



2

rt dt 

y z 8 6 4 2

4 3 x

−8 −6 −4 −2

(2, 4, 4)

2

2 4 6 8

−4 −6 −8

1 1

1

2

2

3

4

y

x

64. rt  2sin t  t cos t, 2cos t  t sin t, t, 0 ≤ t ≤

2

66.

xt  2t sin t, 2t cos t, 1, rt  4t2  1



b

s

rt dt 

a



2

4t2  1 dt

rt  et cos t  et sin t i  et sin t  et cos t k rt  et cos t  et sin t2  et sin t  et cos t2  2et

0

 17 

rt  et sin ti  et cos tk, 0 ≤ t ≤

1 ln17  4  4.6468 4

s





rt dt

0



 2



0

68.

rt  2ti  3tj rt 

1 t

i  3j, rt 

1t  9  1 t 9t

1 r t   t 32i 2



j i 1 3 r  r  t 1 32 0  t 2 K

70.

k 0

3 3  t 32k; r  r  32 2 2t

0

32t32 3 rt  r t   3 rt 1  9t32t32 21  9t32

rt  2ti  5 cos tj  5 sin tk rt  2i  5 sin tj  5 cos tk, rt  29 rt  5 cos tj  5 sin tk

i r  r  2 0

r  r  725 K

j k 5 sin t 5 cos t  25i  10 sin tj  10 cos tk 5 cos t 5 sin t

725 25 29 r  r 5    r 3 2932 29  29 29

http://librosysolucionarios.net







et dt  2et

0

 2e  1

304

Chapter 11

Vector-Valued Functions

72. y  ex2

74. y  tan x y  sec2 x

1 1 y   ex2, y  ex2 2 4

K

y 2 32

1  y 

At x  0, K 

y  2 sec2 x tan x

1 x2 e 4  1 1  ex 4



K



32

2 2 25 55 14    ,r . 25 2 5432 532 55

x y 2 32  2 sec2 x 4tan32

1  y 

At x 

1  sec x]

4 45 4  55  , K  32  . and r  4 5 55 25 4

Problem Solving for Chapter 11 4. Bomb: r1t  5000  400t, 3200  16t2

x23  y23  a23

2.

Projectile: r2t  v0 cos t, v0 sin t  16t2

2 13 2 13  y y  0 x 3 3

At 1600 feet: Bomb:

y13 y  13 Slope at Px, y. x

Projectile will travel 5 seconds:

rt  cos3 ti  sin3 tj rt  3 cos2 t sin ti  3 sin2 t cos tj



3200  16t2  1600 ⇒ t  10



5v0 sin   1625  1600 v0 sin  400.

rti  3 cos t sin t Tt 

Horizontal position:

rt  cos ti  sin tj rt

At t  10, bomb is at 5000  40010  9000. At t  5, projectile is at v0 cos 5.

Tt  sin ti  cos tj Q0, 0, 0 origin P

cos3

\



t,

PQ  T 

sin3

Thus, t, 0 on curve.

i cos3 t cos t

5v0 cos  9000



j sin3 t sin t

v0 cos  1800.

k 0 0

Combining,

 cos3 t sin t  sin3 t cos tk

v0 

\

PQ  T D  3 cos t sin t T



K



400 2 v0 sin  ⇒ tan  ⇒ 12.5 . v0 cos 1800 9

1800 1843.9 ftsec cos

Tt 1  rt 3 cos t sin t





1 Thus, the radius of curvature, , is three times the K distance from the origin to the tangent line.

http://librosysolucionarios.net

Problem Solving for Chapter 11

6.

r  1  cos r  sin

 

t

st 



t

 K 

2 sin



d  4 cos 2 2



t



2  2 cos d

 4 cos

t 2

r  r 

2 sin2  1  cos cos   1  cos 2 2

3  3 cos  8 sin3

3  4

2

2 3  sin3 4 sin 2 2 sin2

1   K

4 sin

2

3

s2  9 2  16 cos2

8. (a)





2r2 2 rr2 32r 2 8 sin3





t

1  cos 2  sin2 d 

 16 sin2  16 2 2

r  xi  yj position vector r  r cos i  r sin j dr dr d dr d  cos  r sin sin  r cos i j dt dt dt dt dt



a





d 2r d 2r dr d dr d d  sin  r cos  cos  sin 2 dt dt2 dt dt dt dt dt

 





ddtr sin  drdt cos ddt  drdt cos ddt  r sin ddt  2

2

2

2

 r sin

d 2 i dt2

 r cos

d 2 dt2





ar  a ur  a cos i  sin j 

dt

d 2r 2

 

cos2  2

ddtr sin 2

2

2

d 2r d r dt2 dt

 

dr d d sin cos  r cos2 dt dt dt

2

 

dr d d sin cos  r sin2 dt dt dt



 r cos sin

 

2

dr d d 2 r 2 dr dt dt

urur  a u u

ddtr  rddt  u  2drdt ddt  r ddt u 2

2

2

2

r

2

d 2 dt2

 r cos sin

2

a  a u  a sin i  cos j  2 a  a

2



—CONTINUED—

http://librosysolucionarios.net



d 2 dt2



305

306

Chapter 11

Vector-Valued Functions

10. rt  cos ti  sin tj  k, t 

8. —CONTINUED—

t t i  42,000 sin j (b) r  42,000 cos 12 12

 

r  42,000,

 

1 52 x 32

y 

5 32 x 64

y 

15 12 x 128

K



−1 2 −1 2

2

2

r

r

At t 

875 2  3

−2

x

BTNk

  

15 12 x 128 25 3 x 1 4096

−2

N  cos ti  sin tj

u. 12  u   875 3

2 2    ,T i j 4 4 2 2



N

4    22i 

B

4   k



2

2

j

32

At the point 4, 1, K 

1 8932 120 ⇒ r  7. 32 89 K 120

14. (a) Eliminate the parameter to see that the Ferris wheel has a radius of 15 meters and is centered at 16j. At t  0, the friend is located at r10  j, which is the low point on the Ferris wheel. (b) If a revolution takes t seconds, then

 t  t  t   2 10 10 and so t  20 seconds. The Ferris wheel makes three revolutions per minute. (c) The initial velocity is r2t 0   8.03i  11.47j. The speed is 8.032  11.472 14 msec. The angle of inclination is arctan11.47803 0.96 radians or 55 . (d) Although you may start with other values, t0  0 is a fine choice. The graph at the right shows two points of intersection. At t  3.15 sec the friend is near the vertex of the parabola, which the object reaches when t  t0  

11.47 1.17 sec. 24.9

20

0

30 0

Thus, after the friend reaches the low point on the Ferris wheel, wait t0  2 sec before throwing the object in order to allow it to be within reach. (e) The approximate time is 3.15 seconds after starting to rise from the low point on the Ferris wheel. The friend has a constant speed of r1t  15 msec. The speed of the object at that time is r23.15  8.032  11.47  9.83.15  22 8.03 msec.

http://librosysolucionarios.net

−2

1 −1

T  cos ti  sin tj

Angular component: 0

12. y 

2

T  sin ti  cos tj

d  d 2  , 2 0 dt 12 dt

Radial component: 

z

rt  sin ti  cos tj, rt  1

dr d 2r  0, 2  0 dt dt

Therefore, a  42000

 4

y

C H A P T E R 11 Vector-Valued Functions Section 11.1 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . 39 Section 11.2 Differentiation and Integration of Vector-Valued Functions . . . . 44 Section 11.3 Velocity and Acceleration . . . . . . . . . . . . . . . . . . . . . 48 Section 11.4 Tangent Vectors and Normal Vectors Section 11.5 Arc Length and Curvature

. . . . . . . . . . . . . . . 54

. . . . . . . . . . . . . . . . . . . . .60

Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Problem Solving

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

http://librosysolucionarios.net

C H A P T E R 11 Vector-Valued Functions Section 11.1

Vector-Valued Functions

Solutions to Odd-Numbered Exercises 1 1. rt  5t i  4t j  k t

3. rt  ln t i  et j  t k Component functions: f t  ln t

Component functions: f t  5t

gt  et

gt  4t ht  

ht  t

1 t

Domain: 0, 

Domain:  , 0  0,  5. rt  Ft  Gt   cos t i  sin t j  t k  cos t i  sin t j  2 cos t i  t k Domain: 0, 



i 7. rt  Ft  Gt  sin t 0 Domain:  , 

j cos t sin t



k 0  cos2 t i  sin t cos t j  sin2 t k cos t

1 9. rt  2 t 2 i  t  1j 1 (a) r1  2 i

(b) r0  j 1 1 (c) rs  1  2 s  12i  s  1  1j  2 s  12 i  sj 1 (d) r2  t  r2  2 2  t2i  2  t  1j  2i  j

  2  2t  12 t2i  1  tj  2i  j 1   2 t  2  t2i   tj

1 11. rt  ln t i  j  3t k t 1 (a) r2  ln 2i  j  6k 2 (b) r3 is not defined.

ln3 does not exist.

(c) rt  4  lnt  4i 

1 j  3t  4k t4

(d) r1   t  r1  ln1  ti   ln1   ti 

1 j  31  tk  0i  j  3k 1  t

1 1 t  1j  3tk 39

http://librosysolucionarios.net

40

13.

Chapter 11

Vector-Valued Functions 15. rt  ut  3t  1t 2   14 t 38  4t 3

rt  sin 3ti  cos 3t j  tk rt  sin 3t2  cos 3t2  t 2  1  t 2

 3t 3  t 2  2t 3  4t 3  5t 3  t 2, a scalar. The dot product is a scalar-valued function.

17. rt  t i  2tj  t 2k, 2 ≤ t ≤ 2

19. rt  t i  t 2j  e0.75t k, 2 ≤ t ≤ 2

x  t, y  2t, z  t 2

x  t, y  t 2, z  e0.75t

Thus, z  x 2. Matches (b)

Thus, y  x 2. Matches (d)

21. (a) View from the negative x-axis: 20, 0, 0

(b) View from above the first octant: 10, 20, 10

(c) View from the z-axis: 0, 0, 20

(d) View from the positive x-axis: 20, 0, 0

yt1

y

x2 3

x2 

x 1 3

y

27. x  cos , y  3 sin

25. x  t3, y  t2

23. x  3t

y

y2  1 Ellipse 9 y

7 6 5 4 3 2

y

2 −5 −4 −3 −2 −1

x

4

2 1 x

x

− 3 −2

1 2 3 4 5

2

3

−2 −3

6

−2 −4

29. x  3 sec , y  2 tan

33. x  2 cos t, y  2 sin t, z  t

31. x  t  1 y  4t  2

x2 y2   1 Hyperbola 9 4 y

z  2t  3

x2 y 2  1 4 4

Line passing through the points:

zt

12

0, 6, 5, 1, 2, 3

9 6

Circular helix

z

z

3 −12 −9 −6

x

−3

6

(0, 6, 5)

5

9 12

7

4

−6

3

(2, − 2, 1)

−9

(1, 2, 3)

−12 1 3

3

4 5

6

y −3 3

x

3

y

x

2 37. x  t, y  t 2, z  3 t 3

35. x  2 sin t, y  2 cos t, z  et x2  y 2  4

y  x 2, z 

z

z 6

2 3 3x

(2, 4, 163 )

4

6

z  et

2

t

−3 3 x

3

y

2

1

0

1

2

x

2

1

0

1

2

y

4

1

0

1

4

z

 16 3

 23

0

2 3

16 3

http://librosysolucionarios.net

2 x

−2

5

y

−4 −6

(− 2, 4, − 163 )

Section 11.1 3 2 1 t k 39. rt   t 2 i  tj  2 2

Parabola

41. rt  sin t i 

z −3

−2

−2

1

−1

 23 cos t  21 t j  12 cos t  23k 



Helix

−3

z 2

2 3

2 −2

x

Vector-Valued Functions

−2

−1 1

x

y

−3

2

−4

3

−5

4 y

z

43.

(a)



z

(b)

z 2π

π



−2

−2

−3

2

1

x

y

π −2

−2 −2

−2

1

2 x





π −2

−2

2

2 2

2

x

y

The helix is translated 2 units back on the x-axis. (d)

y

x

The height of the helix increases at a faster rate. (e)

z

z

2 −2

π x

2 −2

π

−6

−6

y

2π 6 6

x

The axis of the helix is the x-axis.

y

The radius of the helix is increased from 2 to 6. 47. y  x  22

45. y  4  x

Let x  t, then y  t  22.

Let x  t, then y  4  t. rt  ti  4  t j

rt  ti  t  22 j

49. x2  y 2  25

51.

Let x  5 cos t, then y  5 sin t.

x2 y2  1 16 4 Let x  4 sec t, y  2 tan t.

rt  5 cos ti  5 sin t j

rt  4 sec t i  2 tan tj

53. The parametric equations for the line are

z 8 7 6 5 4 3 2 1

x  2  2t, y  3  5t, z  8t. One possible answer is rt  2  2t i  3  5t j  8tk. 4 x

55. r1t  t i,

z

(c)

3

2

(0, 8, 8)

1 4 5 6 7 8

(2, 3, 0)

y

0 ≤ t ≤ 4 r10  0, r14  4i

r2t  4  4ti  6tj,

0 ≤ t ≤ 1 r20  4i, r21  6j

r3t  6  t j,

0 ≤ t ≤ 6 r30  6j, r36  0

(Other answers possible)

http://librosysolucionarios.net

2

y

The orientation of the helix is reversed.

41

42

Chapter 11

Vector-Valued Functions 59. z  x2  y 2, x  y  0

0 ≤ t ≤ 2  y  x2

57. r1t  ti  t 2j,

Let x  t, then y  x  t and z  x2  y 2  2t 2. Therefore,

r2t  2  ti, 0 ≤ t ≤ 2 r3t  4  tj, 0 ≤ t ≤ 4

x  t, y  t, z  2t 2.

(Other answers possible)

rt  ti  tj  2t2k z

(

2, −

(−

2, 4 ) 5

−3

1

2

2, 4)

2,

2

y

3

3 x

61. x2  y 2  4, z  x2

z

x  2 sin t, y  2 cos t

4

z  x2  4 sin2 t t

6

0

4

2

3

4



−3 3

x

0

1

2

2

2

y

2

3

2

0

 2

2

z

0

1

2

4

2

0

y

3

x

0

rt  2 sin t i  2 cos tj  4 sin2 tk 63. x2  y 2  z 2  4, x  z  2

z

Let x  1  sin t, then z  2  x  1  sin t and

x2



y2



z2

 4.

3

1  sin t2  y 2  1  sin t2  2  2 sin2 t  y 2  4 y 2  2 cos2 t,

−3

y  ± 2 cos t

3

3

x  1  sin t, y  ± 2 cos t

−3

z  1  sin t

2

t



x

0

y

0

z

2



6

1 2 ±

6

2

0

6

2

1

3 2

2

± 2

3 2

1

y

x

±

6

2 1 2

rt  1  sin t i  2 cos tj  1  sin t k and rt  1  sin t i  2 cos tj  1  sin t k

0 0

65. x2  z2  4, y 2  z2  4

z

Subtracting, we have x2  y 2  0 or y  ± x.

3

(0, 0, 2)

Therefore, in the first octant, if we let x  t, then x  t, y  t, z  4  t 2. rt  ti  tj  4  t2 k

4 x

http://librosysolucionarios.net

3

2 4

(2, 2, 0)

y

Section 11.1

67. y2  z2  2t cos t2  2t sin t2  4t2  4x2



69. lim t i  t→2

Vector-Valued Functions

t2  4 1 1 j  k  2i  2j  k t 2  2t t 2



z

since

16

t2  4 2t  lim  2. (L’Hôpital’s Rule) t→2 t 2  2t t→2 2t  2

12

lim

8 4

7

6

4

5

8

x



71. lim t 2 i  3t j  t→0

12

16

y

1  cos t k 0 t



73. lim t→0

since lim t→0

1t i  cos t j  sin t k

does not exist since lim t→0

1  cos t sin t  lim  0. t→0 1 t

1 does not exist. t

(L’Hôpital’s Rule)

1 75. rt  t i  j t

77. rt  t i  arcsin t j  t  1k Continuous on 1, 1

Continuous on  , 0, 0,  79. rt  et, t 2, tan t

81. See the definition on page 786.

Discontinuous at t 



Continuous on 

 n

2



 n ,  n

2 2



83. rt  t2i  t  3j  tk (a) st  rt  2k  t2i  t  3j  t  3k (b) st  rt  2i  t2  2i  t  3j  tk (c) st  rt  5j  t2i  t  2j  tk 85. Let rt  x1t  y1tj  z1tk and ut  x2ti  y2tj  z2tk. Then: lim rt  ut  lim  y1tz2t  y2tz1t i  x1tz2t  x2tz1t j  x1ty2t  x2ty1t k t→c

t→c

 lim y1t lim z2t  lim y2t lim z1t i  lim x1t lim z2t  lim x2t lim z1t j t→c

t→c

t→c

t→c

t→c

t→c

t→c

 lim x1t lim y2t  lim x2t lim y1t k t→c

t→c

t→c

t→c

t→c

 lim x1ti  lim y1tj  lim z1tk  lim x2ti  lim y2tj  lim z2tk t→c

t→c

t→c

t→c

t→c

 lim rt  lim ut t→c

t→c

87. Let rt  xti  ytj  ztk. Since r is continuous at t  c, then lim rt  rc.

89. True

t→c

rc  xci  ycj  zck ⇒ xc, yc, zc are defined at c. r  xt2   yt2  zt2 lim r  xc2   yc2  zc2  rc t→c

Therefore, r is continuous at c.

http://librosysolucionarios.net

t→c

43

44

Chapter 11

Vector-Valued Functions

Section 11.2

Differentiation and Integration of Vector-Valued Functions

1. rt  t 2i  t j, t0  2

3. rt  cos ti  sin t j, t0 

y

4

xt  t 2, yt  t

(4, 2)

xt  cos t, yt  sin t

r′

2

x  y2

r x

2

r2  4i  2j

4

6

r′

x



1

rt  sin t i  cos t j

rt0 is tangent to the curve.

r

2   i

rt0 is tangent to the curve.

7. rt  2 cos ti  2 sin t j  t k, t0 

5. rt  t i  t 2j (a)

y

rt  2 sin ti  2 cos tj  k

6 16

1

4 16

r 2

2 16

r 4

1

r 4

1

r 2

2 16

4 16

6 16

32  2j  32 k

r

32  2i  k

8 16

(0, − 2, 32π )



1 1 1  i j r 4 4 16 r r

r

1

x

(b)

3 2

x2  y 2  4, z  t

8 16

z



r′

12  21 i  41 j

r π −2

 

1 1 1 3 r  i j 2 4 4 16

2 x

1 2

y

rt  i  2tj

(c)

r

14  i  21 j

r12  r14 14i  316j 3  i j 12  14 14 4 This vector approximates r 14 . 9. rt  6ti  7t 2j  t 3k rt  6i  14tj  3t 2k 13. rt  et i  4 j rt  e i t

11. rt  a cos3 ti  a sin3 tj  k rt  3a cos2 t sin t i  3a sin2 t cos tj 15. rt  t sin t, t cos t, t rt  sin t  t cos t, cos t  t sin t, 1

1 17. rt  t3i  t2j 2 (a) rt  3t2i  tj

(0, 1)

r

 r j 2

−4

r2  4i  j

y

x2  y2  1

8

−2

rt  2t i  j

 2

(b) rt  rt  3t26t  t  18t3  t

r t  6t i  j

http://librosysolucionarios.net

Section 11.2

Differentiation and Integration of Vector-Valued Functions 1 1 21. rt  t2i  tj  t3k 2 6

19. rt  4 cos ti  4 sin tj (a) rt  4 sin ti  4 cos tj

1 (a) rt  ti  j  t2k 2

r t  4 cos t i  4 sin tj (b) rt  rt  4 sin t4 cos t  4 cos t4 sin t

r t  i  tk

0

1 t3 (b) rt  rt  t1  10  t2t  t  2 2

23. rt  cos t  t sin t, sin t  t cos t, t (a) rt  sin t  sin t  t cos t, cos t  cos t  t sin t, 1  t cos t, t sin t, 1 rt  cos t  t sin t, sin t  t cos t, 0 (b) rt  rt  t cos tcos t  t sin t  t sin tsin t  t cos t  t 25.

rt  cos ti  sin tj  t 2k, t0  

1 4

z

r′′

rt    sin ti   cos tj  2tk

 41 

r 

2 

i

2

2 

2

r′′

1 j k 2

x

r14   22   22   21  



2

2

2

2



1  4

4 2

1

r′ r′

2

r14 1   2  i  2  j  k r1 4 4 2  1 rt    2 cos ti   2 sin tj  2k

 41  

r 

2  2

2

r 41  

i

2  2

2  2

2

2

j  2k

  2

2  2

2

  2  2

2

 4  4

1 r14    2  2i  2  2j  4k r14 2  4  4 27. rt  t 2i  t 3j

r   2 cos3 i  3 sin3 j

29.

rt  2t i  3t 2j r0  0 Smooth on  , 0, 0, 

r   6 cos2 sin i  9 sin2 cos j r

n2  0

Smooth on

31. r     2 sin i  1  2 cos j r   1  2 cos i  1  2 sin j r  0 for any value of Smooth on  , 

n2, n 2 1, n any integer.

1 33. rt  t  1i  j  t 2k t 1 rt  i  2 j  2tk 0 t r is smooth for all t 0:  , 0,  0, 

http://librosysolucionarios.net

y

45

46

Chapter 11

Vector-Valued Functions

35. rt  t i  3t j  tan tk rt  i  3j  sec2 tk 0 r is smooth for all t

 2n  1  n  . 2 2



Smooth on intervals of form 

   n ,  n 2 2



37. rt  ti  3tj  t 2 k, ut  4ti  t 2j  t 3k (a) rt  i  3j  2tk

(b) r t  2k

(c) rt  ut  4t 2  3t 3  t 5

(d) 3rt  ut  t i  9t  t 2j  3t 2  t 3k

Dt rt  ut  8t  9t 2  5t 4

Dt 3rt  ut  i  9  2tj  6t  3t 2k

(e) rt ut  2t 4i  t 4  4t 3j  t 3  12t 2k

(f) rt  10t 2  t 4  t 10  t 2

Dt rt ut  8t 3i  12t 2  4t 3j  3t 2  24tk

Dt rt 

10  2t 2

10  t 2

rt  3 sin t i  4 cos tj

39.

π

rt  3 cos ti  4 sin tj rt  rt  9 sin t cos t  16 cos t sin t  7 sin t cos t cos 

rt  rt 7 sin t cos t  rt rt 9 sin2 t  16 cos2 t 9 cos2 t  16 sin2 t

9 sin

 arccos

2

 1.855 maximum at t  3.927  1.287 minimum at t  2.356

7 sin t cos t t  16 cos2 t9 cos2 t  16 sin2 t

−1

7 0



54 and t  0.7854 .

34 and t  5.49874.

   1.571 for t  n , n  0, 1, 2, 3, . . . 2 2 41. rt  lim

t→0

rt  t  rt t

3t  t  2 i  1  t  t2 j  3t  2i  1  t 2j t→0 t

 lim

3t i  2tt  t 2j t→0 t

 lim

 lim 3i  2t  tj  3i  2tj t→0

43.



47.



49.



2t i  j  k dt  t 2i  tj  t k  C

45.



2t  1i  4t 3j  3 t k dt  t 2  ti  t 4j  2t 32k  C

sec2 t i 



1 2 i  j  t 32k dt  ln ti  tj  t 52k  C t 5



1 j dt  tan t i  arctan t j  C 1  t2

http://librosysolucionarios.net

Section 11.2



1

51.

  2 j  t k

8t i  t j  k dt  4t 2i

0



1

t2

0

2

53.

1

1

0

0

0

55. rt 

2

0

2



 a cos t j



4e2t i  3et j dt  2e2t i  3et j  C

0

2



 tk

 ai  aj 

0

57. rt 

 k 2



32j dt  32t j  C1

r0  2i  3j  C  2i ⇒ C  3j

r0  C1  600 3 i  600j

rt 

rt  600 3 i  600  32tj

2e2ti

47

1  4i  j  k 2



a cos ti  a sin tj  k dt  a sin t i

Differentiation and Integration of Vector-Valued Functions

 3  1j et

rt 



600 3 i  600  32tj dt

 600 3 ti  600t  16t 2j  C r0  C  0 rt  600 3 t i  600t  16t 2j

59. rt 



1 2 2 tet i  etj  k dt   et i  etj  t k  C 2

1 1 r0   i  j  C  i  j  k ⇒ C  i  2j  k 2 2 1 2 2  et i  et  2j  t  1k rt  1  et i  et  2j  t  1k  2 2







2



61. See “Definition of the Derivative of a Vector-Valued Function” and Figure 11.8 on page 794.

63. At t  t0, the graph of ut is increasing in the x, y, and z directions simultaneously.

65. Let rt  xti  ytj  ztk. Then crt  cxti  cytj  cztk and Dt crt  cxti  cytj  cztk  c xti  ytj  ztk  crt. 67. Let rt  xti  ytj  ztk, then f trt  f txti  f tytj  f tztk. Dt f trt  f txt  ftxt i  f tyt  ftyt j  f tzt  ftzt k  f t xti  ytj  ztk  ft xti  ytj  ztk  f trt  ftrt 69. Let rt  xti  ytj  ztk. Then r f t  x f ti  y f tj  z f tk and Dt r f t  x f t fti  y f t ftj  z f t ftk

(Chain Rule)

 ft x f ti  y f tj  z f tk  ftr f t.

http://librosysolucionarios.net

48

Chapter 11

Vector-Valued Functions

71. Let rt  x1ti  y1tj  z1tk, ut  x2ti  y2tj  z2tk, and vt  x3ti  y3tj  z3tk. Then: rt  ut  vt  x1t y2tz3t  z2ty3t  y1tx2tz3t  z2tx3t  z1tx2ty3t  y2tx3t Dtrt  ut  vt  x1ty2tz 3t  x1ty2tz 3t  x1ty2tz 3t  x1ty3tz 2t  x1ty3tz2t  x1ty3tz2t  y1tx2tz 3t  y1tx2tz 3t  y1tx2tz3t  y1tz2tx3t  y1tz2tx3t  y1tz2tx3t  z1tx2ty3t  z1tx2ty3t  z1tx2ty3t  z1ty2tx3t  z1ty2tx3t  z1ty2tx3t  x1t y2tz3t  y3tz2t  y1tx2tz3t  z2tx3t  z1tx2ty3t  y2tx3t 

x1t y2tz3t  y3tz2t  y1tx2tz3t  z2tx3t  z1tx2ty3t  y2tx3t  x1t y2tz3t  y3tz2t  y1tx2tz3t  z2tx3t  z1tx2ty3t  y2tx3t  rt  ut  vt  rt   ut  vt  rt  ut  vt 73. False. Let rt  cos t i  sin tj  k. rt  2 d  rt  0 dt rt  sin t i  cos tj  rt  1

Section 11.3

Velocity and Acceleration

1. rt  3t i  t  1j

3. rt  t2 i  t j

y

vt  rt  3i  j

2

at  rt  0

v

(3, 0)

x

x x  3t, y  t  1, y   1 3 At 3, 0, t  1.

4 −2 −4

6

vt  rt  2t i  j

4

at  rt  2i

2

(4, 2)

x  t2, y  t, x  y 2 −2

v2  4i  j

−4

a2  2i 7. rt  t  sin t, 1  cos t

vt  rt  2 sin t i  2 cos tj

vt  rt  1  cos t, sin t

at  rt  2 cos ti  2 sin tj

at  rt  sin t, cos t

x  2 cos t, y  2 sin t, x2  y 2  4

x  t  sin t, y  1  cos t (cycloid)

At  2, 2 , t  . 4

At  , 2, t  .

v   2 i  2j 4



a

  2 i  2j 4



v   2, 0  2i a   0, 1  j y 4

y 2

3

v

(π , 2)

2)

2,

π

a x

−3

v

a

(

3

−3

http://librosysolucionarios.net



v a x

2

At 4, 2, t  2.

v1  3i  j, a1  0

5. rt  2 cos t i  2 sin t j

y

x

4

6

8

Section 11.3

vt  i  2j  3k

vt  i  2tj  t k

st   vt  1  4  9  14

st  1  4t 2  t 2  1  5t 2

at  0

at  2j  k

13. rt  t i  tj  9  t 2 k vt  i  j  st 

17. (a)

t 9  t 2

15. rt  4t, 3 cos t, 3 sin t vt  4, 3 sin t, 3 cos t  4i  3 sin tj  3 cos tk

k

st  16  9 sin2 t  9 cos2 t  5

1  1  9 t t  189 tt 2

2

at  

2

at  0, 3 cos t, 3 sin t  3 cos tj  3 sin tk

2

9 k 9  t 232



t3 ,t 1 4 0



rt  1, 2t,



3t 2 4



3 4



rt  t, t 2,

r1  1, 2,



(b) r1  0.1  1  0.1, 1  20.1,

 1 3  t 4 4

19. at  i  j  k, v0  0, r0  0

21. at  tj  t k, v1  5j, r1  0



i  j  k dt  t i  tj  t k  C

vt 

v0  C  0, vt  t i  tj  tk, vt  t i  j  k rt 



ti  tj  tk dt 

r0  C  0, rt 



1 3  0.1 4 4

 1.100, 1.200, 0.325

x  1  t, y  1  2t, z 

vt 

t2 k 2

11. rt  t i  t 2j 

9. rt  t i  2t  5j  3t k

Velocity and Acceleration



t2 t2 j kC 2 2

tj  tk dt 

1 9 1 1 v1  j  k  C  5j ⇒ C  j  k 2 2 2 2

t2 i  j  k  C 2

vt 

t2 i  j  k, 2

rt 

r2  2i  j  k  2i  2j  2k



t2  29 j  t2  21 k 2



2



t6  29 t j  t6  21 t k  C 3

3

r1 

14 1 14 1 j kC0 ⇒ C j k 3 3 3 3

rt 

t6  29 t  143 j  t6  21 t  31 k

r2 

17 2 j k 3 3

3

3

23. The velocity of an object involves both magnitude and direction of motion, whereas speed involves only magnitude. 25. rt  88 cos 30 ti  10  88 sin 30 t  16t 2 j



t2 9 t2 1  j  k dt 2 2 2 2

50

 44 3 t i  10  44t  16t 2j

0

300 0

http://librosysolucionarios.net

49

50

Chapter 11

Vector-Valued Functions









1 v v 27. rt  v0 cos ti  h  v0 sin t  gt 2 j  0 t i  3  0 t  16t 2 j 2 2 2 v0 v t  300 when 3  0 t  16t 2  3. 2 2 t







300 2 v0 300 2 300 2 ,  16 v0 v0 v0 2



2

 0, 300 

300232 0 v02

v02  30032, v0  9600  40 6, v0  40 6  97.98 ftsec The maximum height is reached when the derivative of the vertical component is zero. yt  3 

tv0 40 6  16t 2  3  t  16t 2  3  40 3t  16t 2 2 2

yt  40 3  32t  0 t

40 3 5 3  32 4

Maximum height: y

5 4 3  3  40 3 5 4 3  16 5 4 3

29. xt  tv0 cos  or t 





2

 78 feet

x v0 cos

yt  tv0 sin   16t 2  h y









x2 16 x v0 sin   16 2  h  tan x  sec2 x2  h v0 cos v0 cos2 v02

31. rt  ti  0.004t2  0.3667t  6j, or (a) y  0.004x2  0.3667x  6

(b)

18

0

120 0

(c) y  0.008x  0.3667  0 ⇒ x  45.8375 and

(d) From Exercise 29,

y45.8375  14.4 feet.

tan  0.3667 ⇒  20.14

16 sec2 4000 16 sec2   0.004 ⇒ v02  v02 0.004 cos2 ⇒ v0  67.4 ftsec.



33. 100 mph  100 (a) rt  (b)

miles hr

feet ftsec 5280 mile 3600 sechour  440 3

440 cos t i   3 

sin t  16t j

440 3 3 0

0

Graphing these curves together with y  10 shows that 0  20 .

100

0

2

500 0

—CONTINUED—

http://librosysolucionarios.net

Section 11.3

Velocity and Acceleration

33. —CONTINUED— (c) We want xt 

cos t ≥ 400

440 3

and

yt  3 

sin t  16t

440 3

2

≥ 10.

From xt, the minimum angle occurs when t  3011 cos . Substituting this for t in yt yields: 3

30 30  16

sin

440 3 11 cos 11 cos 400 tan 

2

 10

14,400 sec2  7 121

14,400 1  tan2   400 tan  7  0 121 14,400 tan2  48,400 tan  15,247  0 tan 

48,400 ± 48,4002  414,40015,247 214,400

 tan1

1,464,332,800

48,400  28,800  19.38



35. rt  v cos t i  v sin t  16t 2 j (a) We want to find the minimum initial speed v as a function of the angle . Since the bale must be thrown to the position 16, 8, we have 16  v cos t 8  v sin t  16t 2. t  16v cos  from the first equation. Substituting into the second equation and solving for v, we obtain: 8  v sin  12 512

16 16  16

v cos v cos

1 sin  512 2 cos v cos2



2



sin 1 2 1 v2 cos2 cos sin 1 cos2 2 sin cos  cos2  2 1  2 v cos 512 512





512 2 sin cos  cos2 512 . We minimize f    2 sin cos  cos2 v2 

f   512

2 cos2  2 sin2  2 sin cos 2 sin cos  cos2 2

f   0 ⇒ 2 cos2   sin2   0 tan2   2

 1.01722  58.28

Substituting into the equation for v, v  28.78 feet per second. (b) If  45 , 16  v cos t  v

2

2

t

8  v sin t  16t2  v From part (a), v 2 





2

2

t  16t2

512





2 22 22  22



2



512  1024 ⇒ v  32 ftsec. 12

http://librosysolucionarios.net

51

52

Chapter 11

Vector-Valued Functions

37. rt  v0 cos t i  v0 sin t  16t 2 j

v0 sin t  16t2  0 when t  0 and t 

v0 sin . 16

The range is x  v0 cos t  v0 cos 

v0 sin v02 sin 2 .  16 32

Hence, x

12002 1 ⇒  1.91 . sin2   3000 ⇒ sin 2  32 15

39. (a)  10 , v0  66 ftsec

(b)  10 , v0  146 ftsec

rt  66 cos 10 ti  0  66 sin 10 t  16t  j

rt  146 cos 10 ti  0  146 sin 10 t  16t 2 j

rt  65ti  11.46t  16t 2j

rt  143.78ti  25.35t  16t 2j

Maximum height: 2.052 feet

Maximum height: 10.043 feet

Range: 46.557 feet

Range: 227.828 feet

2

5

0

15

50

0

0

300 0

(c)  45 , v0  66 ftsec

(d)  45 , v0  146 ftsec

rt  66 cos 45 ti  0  66 sin 45 t 

16t 2

j

rt  146 cos 45 ti  0  146 sin 45 t  16t 2 j

rt  46.67ti  46.67t  16t 2j

rt  103.24ti  103.24t  16t 2j

Maximum height: 34.031 feet

Maximum height: 166.531 feet

Range: 136.125 feet

Range: 666.125 feet

40

0

200

200

0

0

800 0

(e)  60 , v0  66 ftsec

(f )  60 , v0  146 ftsec

rt  66 cos 60 ti  0  66 sin 60 t 

16t 2

j

rt  146 cos 60 ti  0  146 sin 60 t  16t 2 j

rt  33ti  57.16t  16t 2j

rt  73ti  126.44t  16t 2j

Maximum height: 51.074 feet

Maximum height: 249.797 feet

Range: 117.888 feet

Range: 576.881 feet 300

60

0

140 0

0

600 0

http://librosysolucionarios.net

Section 11.3

Velocity and Acceleration

41. rt  v0 cos t i  h  v0 sin t  4.9t 2 j  100 cos 30 ti  1.5  100 sin 30 t  4.9t 2 j 1 The projectile hits the ground when 4.9t2  100 2 t  1.5  0 ⇒ t  10.234 seconds.

The range is therefore 100 cos 30 10.234  886.3 meters. The maximum height occurs when dydt  0. 100 sin 30  9.8t ⇒ t  5.102 sec The maximum height is y  1.5  100 sin 30 5.102  4.95.1022  129.1 meters. 43. rt  b t  sin t i  b1  cos t j vt  b  cos ti  b sin t j  b 1  cos ti  b sin tj at  b 2 sin ti  b 2 cos t j  b 2sin ti  cos t j  vt  2 b 1  cos t  at  b 2 (a)  vt  0 when t  0, 2 , 4 , . . . .

45.

(b)  vt is maximum when t  , 3 , . . . , then  vt  2b .

vt  b sin t i  b cos t j rt  vt  b2 sin t cos t  b2 sin t cos t  0 Therefore, rt and vt are orthogonal.

47. at  b 2 cos ti  b 2 sin tj  b 2cos ti  sin tj   2rt at is a negative multiple of a unit vector from 0, 0 to cos t, sin t and thus at is directed toward the origin. 49.  at  2b 1  m32 F  m 2b 

1 2 2  10 32

 4 10 radsec  vt  b  8 10 ftsec 1 1 51. To find the range, set yt  h  v0 sin t  2 gt 2  0 then 0   2 gt 2  v0 sin t  h. By the Quadratic Formula, (discount the negative value)

t

v0 sin  v0 sin 2  412gh v0 sin  v02 sin2  2gh  . 212g g

At this time, xt  v0 cos

v

0

v sin  2gh

v cos .

sin  sin  2gh g v

sin  v02 sin2  2gh v cos  0 v0 sin  g g





v02

2

0

2

2

0

2

2

0

http://librosysolucionarios.net

53

54

Chapter 11

Vector-Valued Functions

53. rt  xti  ytj  ztk Position vector vt  xti  ytj  ztk Velocity vector at  xti  ytj  ztk Acceleration vector Speed   vt  xt2  yt2  zt2  C, C is a constant. d xt2  yt2  zt2  0 dt 2xtxt  2ytyt  2ztzt  0 2xtxt  ytyt  ztzt  0 vt  at  0 Orthogonal 55. rt  6 cos t i  3 sin tj (a) vt  rt  6 sin t i  3 cos t j

(b)

vt  36 sin2 t  9 cos2 t  34 sin2 t  cos2 t  33

sin2

t

0

 4

 2

2 3



Speed

3

3 10 2

6

3 13 2

3

t1

at  vt  6 cos t i  3 sin t j (c)

(d) The speed is increasing when the angle between v and a is in the interval

6

−9

0, 2 .

9

−6

The speed is decreasing when the angle is in the interval

2 ,  . Section 11.4

Tangent Vectors and Normal Vectors

1. rt  t2i  2tj

rt  4 cos ti  4 sin tj

3.

rt  2ti  2j, rt  4t2  4  2t2  1 Tt 

rt 1 2ti  2j  ti  j  rt 2 t2  1 t2  1

rt  4 sin ti  4 cos tj rt  16 sin2 t  16 cos2 t  4 Tt 

2 2 1 i  j  i j T1  2 2 2

T

5. rt  t i  t 2j  tk

rt  sin ti  cos tj rt

4   22 i  

2

2

j

7. rt  2 cos t i  2 sin tj  tk

rt  i  2tj  k

rt  2 sin t i  2 cos tj  k

When t  0, r0  i  k, t  0 at 0, 0, 0.

When t  0, r0  2j  k, t  0 at 2, 0, 0.

T0 

2 r0  i  k r0 2

T0 

5 r0  2j  k r0 5

Direction numbers: a  1, b  0, c  1

Direction numbers: a  0, b  2, c  1

Parametric equations: x  t, y  0, z  t

Parametric equations: x  2, y  2t, z  t

http://librosysolucionarios.net

Section 11.4

Tangent Vectors and Normal Vectors

9. rt  2 cos t, 2 sin t, 4 rt  2 sin t, 2 cos t, 0 When t  T

     2, 2, 0, , r 4 4



t  4 at  2, 2, 4 .

4  rr 4 4  21  2, 2, 0

Direction numbers: a   2, b  2, c  0 Parametric equations: x   2t  2, y  2t  2, z  4





2 11. rt  t, t 2, t 3 3

z 18 15 12 9 6 3 3 6 9 −3

rt  1, 2t, 2t 2  When t  3, r3  1, 6, 18, t  3 at 3, 9, 18. T3 

1 r3  1, 6, 18  r3 19

x

12

15 18

y

Direction numbers: a  1, b  6, c  18 Parametric equations: x  t  3, y  6t  9, z  18t  18 13. rt  ti  ln tj  t k, 1 1 k rt  i  j  t 2t

15. r4  2, 16, 2

t0  1

u8  2, 16, 2

1

 r1  i  j  2 k

Hence the curves intersect.

rt i  j  1 2k 2 2 1   i j k T1   rt 1  1  1 4 3 3 3



rt  1, 2t,

1 Tangent line: x  1  t, y  t, z  1  t 2

us 

rt 0  0.1  r1.1  1.1i  0.1j  1.05k cos 

 1.1, 0.1, 1.05

17.

1 rt  ti  t2j, t  2 2

Tt  T2  N2 





14, 2, 13s , u8  14, 2, 121  2 3

r4  u8 16.29167  ⇒  1.2

r4 u8 16.29513

rt  6 cos ti  6 sin tj  k, t 

19.

3 4

rt  6 sin ti  6 cos tj

rt  i  tj Tt 



1 1 , r4  1, 8, 2 2

rt i  tj  rt 1  t2

Tt 

rt  sin ti  cos tj rt

Tt  cos t i  sin t j, Tt  1

t 1 i 2 j t 2  13 2 t  13 2 N

2 1 i  3 2 j 53 2 5

34 

2

2

5 T2 25 1 2i  j   i j T2 5 5 5

http://librosysolucionarios.net

i

2

2

j

55

56

Chapter 11

Vector-Valued Functions 23. rt  4t 2 i

21. rt  4t i vt  4i

vt  8t i

at  O

at  8i

Tt 

4i vt  i  vt 4

Tt 

Tt  O

Tt  O Nt 

Tt is undefined.  Tt

Nt 

The path is a line and the speed is constant.

1 1 25. rt  t i  j, vt  i  2 j, v1  i  j, t t 2 at  3 j, a1  2j t Tt 

vt 1 1  i  2j  t 2i  j  vt t 4  1 t t 4  1

T1 

2 1 i  j  i  j 2 2



t2



 1 2

1 t 4  1

i  j 

2

2

Tt is undefined.  Tt

The path is a line and the speed is variable.

27. rt  et cos ti  et sin tj vt  etcos t  sin ti  etcos t  sin tj at  et2 sin ti  et2 cos tj At t 

2  1 v , T  i  j  i  j. 2  v 2 2

Motion along r is counterclockwise. Therefore,

2t 3 2t i 4 j 4 3 2 Tt t  1 t  13 2 Nt    Tt 2t t 4  1

N1 

8ti vt  i  vt 8t

N

1 2

i  j  

aT  a  T  2e 2 aN  a  N  2e 2

i  t 2j

i  j

aT  a  T   2 aN  a  N  2 29. rt0  cos t0  t0 sin t0i  sin t0  t0 cos t0j vt0   2t0 cos t0i   2t0 sin t0j at0  2cos t0  t0 sin t0i   t0 cos t0  sin t0j Tt0 

v  cos t0i  sin t0j  v

Motion along r is counterclockwise. Therefore Nt0  sin t0i  cos t0j. aT  a  T  2 aN  a  N  2 t0  3t0

http://librosysolucionarios.net

2

2

i  j.

Section 11.4 31. rt  a cos ti  a sin tj

Tangent Vectors and Normal Vectors

57

33. Speed: vt  a The speed is constant since aT  0.

vt  a sin ti  a cos tj at  a 2 cos ti  a 2 sin tj Tt 

vt  sin ti  cos tj vt

Nt 

Tt  cos ti  sin tj Tt

aT  a  T  0 aN  a  N  a 2

35.

1 rt  ti  j, t0  2 t x  t, y 

Tt 

t2i  j t 4  1

Nt 

i  t 2j t 4  1

at  0

y

17

17 17

17

Tt 

14 v 1  i  2j  3k  i  2j  3k v 14 14

Nt 

T is undefined. T 

aT, aN are not defined.

3

2

N

1 r2  2i  j 2

N2 

vt  i  2j  3k

1 ⇒ xy  1 t

1 j t2

rt  i 

T2 

37. rt  ti  2t j  3tk

1 1

2, 2

T 1

2

x 3

4i  j  i  4j

39. rt  ti  t 2j 

t2 k 2

rt  4ti  3 cos tj  3 sin t k

41.

vt  4i  3 sin tj  3 cos tk

vt  i  2tj  tk v1  i  2j  k

v

at  2j  k

at  3 cos t j  3 sin t k

1 v Tt   i  2tj  tk v 1  5t 2 T1 

6

6

N1 

a

i  2j  k

T Nt   T  30

30

2  4i  3j

Tt 

5t i  2j  k 1  5t 23 2 5ti  2j  k  5 51  5t 2 2 1  5t

5i  2j  k

56 aT  a  T  6 aN  a  N 

30

2  3k

T

v 1  4i  3 sin tj  3 cos tk v 5

2  514i  3j Nt 

T  cos tj  sin tk T 

z

T

 N  k 2



N 3

aT  a  T  0

2π 4π

aN  a  N  3

6 x

http://librosysolucionarios.net

3

y

58

Chapter 11

43. Tt 

rt rt

Nt 

Tt Tt

Vector-Valued Functions

If at  aTTt  aNNt, then aT is the tangential component of acceleration and aN is the normal component of acceleration. 45. If aN  0, then the motion is in a straight line. 47. rt   t  sin  t, 1  cos  t The graph is a cycloid. (a) rt   t  sin  t, 1  cos  t

y

vt     cos  t,  sin  t t = 21

at   2 sin  t,  2 cos  t Tt 

vt 1  1  cos  t, sin  t vt 21  cos  t

Nt 

Tt 1  sin  t, 1  cos  t Tt 21  cos  t

t=1

t = 23 x

aT  a  T 

1  2 sin  t  2 sin  t1  cos  t   2 cos  t sin  t  21  cos  t 21  cos  t

aN  a  N 

1  21  cos  t  221  cos  t 2 sin2  t   2 cos  t1  cos  t   21  cos  t 21  cos  t 2

2 2 2 2 2 1 When t  : aT   , aN  2 2 2 2

When t  1: aT  0, aN   2 2 2 2 2 3 When t  : aT   , aN  2 2 2

(b) Speed: s  vt  21  cos  t

 2 sin  t ds   aT dt 21  cos  t 2 2 1 When t  : aT  > 0 ⇒ the speed in increasing. 2 2

When t  1: aT  0 ⇒ the height is maximum. 2 2 3 < 0 ⇒ the speed is decreasing. When t  : aT   2 2

http://librosysolucionarios.net

Section 11.4

Tangent Vectors and Normal Vectors

t  rt  2 cos ti  2 sin tj  k, t0  2 2

49.

z

3

1 rt  2 sin ti  2 cos tj  k 2

2



217 1 Tt  2 sin ti  2 cos t j  k 17 2



−1

( 0, 2, π2 ) y

x

2  2j  4 k

T

2  2 1717 2i  21 k 

N

2  j





T

−2

2

r



N 1

Nt  cos ti  sin tj

  T B 2 2

B

1

−2

17

17

4i  k





i j k    4 17 17  17 i  417 k  17i  4k N   0 2 17 17 17 17 17 0 1 0



51. From Theorem 11.3 we have: rt  v0t cos  i  h  v0t sin  16t2 j vt  v0 cos i  v0 sin  32tj at  32 j Tt  Nt 

v0 cos  i  v0 sin  32t j v02 cos2  v0 sin  32t2

v0 sin  32ti  v0 cos j v02 cos2  v0 sin  32t2

aT  a  T  aN  a  N 

(Motion is clockwise.)

32v0 sin  32t v02 cos2  v0 sin  32t2 v0

2

cos2

32v0 cos  v0 sin  32t2

Maximum height when v0 sin  32t  0; (vertical component of velocity) At maximum height, aT  0 and aN  32. 53. rt  10 cos 10 t, 10 sin 10 t, 4  4t, 0 ≤ t ≤ (a)

1 20

rt  100 sin10 t, 100 cos10 t, 4 rt  1002 sin210 t  1002 cos210 t  16  1002  16  4625 2  1  314 mi hr

(b) aT  0 and aN  1000 2 aT  0 because the speed is constant. 55. rt  a cos t i  a sin tj From Exercise 31, we know a

 T  0 and a  N  a 2.

(a) Let 0  2 . Then

(b) Let a0  a 2. Then

a  N  a 0  a2   4a 2

2

2

or the centripetal acceleration is increased by a factor of 4 when the velocity is doubled.

a  N  a0 2 

a2  12 a 2

2

or the centripetal acceleration is halved when the radius is halved.

http://librosysolucionarios.net

59

60

Chapter 11

57. v 

Vector-Valued Functions

9.56410010 

4

4.83 mi sec

59. v 

9.56438510

4



4.67 misec

61. Let Tt  cos  i  sin  j be the unit tangent vector. Then Tt 

d T d T d d d    sin i  cos j M . dt d dt dt dt

M  sin  i  cos  j  cos  2 i  sin  2 j and is rotated counterclockwise through an angle of 2 from T. If ddt > 0, then the curve bends to the left and M has the same direction as T. Thus, M has the same direction as

If ddt < 0, then the curve bends to the right and M has the opposite direction as T. Thus,

T , T 

N

N

which is toward the concave side of the curve. y

T T 

again points to the concave side of the curve. y

T T φ

φ

M

M

N

x

x

63. Using a  aTT  aNN, T  T  O, and T  N  1, we have: v  a  vT  aTT  aNN  vaTT  T  vaNT  N  vaNT  N v  a  v aNT  N  v aN v  a . v

Thus, aN 

Section 11.5

Arc Length and Curvature

1. rt  ti  3tj

3. rt  a cos3 ti  a sin3 tj

dx dy dz  1,  3, 0 dt dt dt



dx dy  3a cos2 t sin t,  3a sin2 t cos t dt dt

4

s

1  9 dt

0

s4

2

3a cos2 tsin t2  3a sin2 t cos t2 dt

0





4

 10

2

 12a

dt

0





sin t cos t dt

0



 10t

4 0

 4 10

 3a

2



0

y

y

(4, 12) 12 a

8 x

−a

a

4 −a

(0, 0)

x

4

8

12

http://librosysolucionarios.net

2



2 sin 2t dt  3a cos 2t

0

 6a

Section 11.5



Arc Length and Curvature



1 5. (a) rt  v0 cos ti  h  v0 sin t  gt2 j 2





1  100 cos 45 ti  3  100 sin 45 t  32t2 j 2  50 2ti  3  50 2t  16t2 j (b) vt  50 2i  50 2  32tj 50 2  32t  0 ⇒ t 

25 2 16

Maximum height: 3  50 2

2516 2  16 2516 2  81.125 ft



2

(c) 3  50 2t  16t2  0 ⇒ t 4.4614 Range: 50 24.4614 315.5 feet



4.4614

(d) s 

50 22  50 2  32t2dt 362.9 feet

0

7. rt  2ti  3tj  tk

z

(4, − 6, 2)

dx dy dz 2  3, 1 dt dt dt



2

(0, 0, 0)

2

s

22  32  12 dt

2

x

2





14 dt  14 t

0

2 0

 2 14

9. rt  a cos ti  a sin tj  btk

11. rt  t 2i  tj  ln tk

dx dy dz  a sin t,  a cos t, b dt dt dt s



y −2

0



4

2

dx dy dz 1  2t,  1,  dt dt dt t s

0



2

2t2  12 

1

2





a2  b2 dt  a2  b2 t

0

0

3

 2 a2  b2



1

3

z

(a, 0, 2π b)

3

a2 sin2 t  a2 cos2 t  b2 dt



4t 4  t 2  1

πb

x

(a, 0, 0)

y

13. rt  t i  4  t 2j  t 3k,

2

dt

4t 4  t 2  1 dt t2

1

2π b

1t 

0 ≤ t ≤ 2

(a) r0  0, 4, 0, r2  2, 0, 8 distance  22  42  82  84  2 21 9.165 —CONTINUED—

http://librosysolucionarios.net

t

dt 8.37

61

62

Chapter 11

Vector-Valued Functions

13. —CONTINUED— (b)

r0  0, 4, 0 r0.5  0.5, 3.75, .125 r1  1, 3, 1 r1.5  1.5, 1.75, 3.375 r2  2, 0, 8 distance 0.52  .252  .1252  .52  .752  .8752  0.52  1.252  2.3752  0.52  1.752  4.6252

0.5728  1.2562  2.7300  4.9702 9.529 (c) Increase the number of line segments. (d) Using a graphing utility, you obtain 9.57057. 15. rt  2 cos t, 2 sin t, t



t

(a) s 

xu2   yu2  zu2 du

s

(b)

5

0

t

t



2 sin u2  2 cos u2  12 du

x  2 cos

0 t



t





5 du  5 u

0

(c) When s  5:

s5, y  2 sin s5, z  s5

0

rs  2 cos

 5t

s5i  2 sin s5j  s5 k

x  2 cos 1 1.081 y  2 sin 1 1.683 z1

1.081, 1.683, 1.000 When s  4:

4

x  2 cos y  2 sin z

4 5

5

4 5

0.433 1.953

1.789

0.433, 1.953, 1.789 (d) rs 

17.

 25 sin s5  25 cos s5  15  45  51  1

rs  1  rs  Ts 

2

2

2



2

i

2





s i 1

2

2

j

2



2

and

2







19. rs  2 cos

s j

rs 

12  21  1

rs  rs rs

Ts  0 ⇒ K  Ts  0

2

s5i  2 sin s5 j  s5 k

Ts  rs  

2 5



sin

s5i  25 cos s5j  15 k



2 s 2 s i  sin j Ts   cos 5 5 5 5 (The curve is a line.)

K   Ts 

http://librosysolucionarios.net

2 5

Section 11.5

21.

rt  4t i  2tj

23.

vt  4i  2j

1 rt  t i  j t vt  i 

1 Tt  2i  j 5

2 j t3

at 

 Tt 0 K rt

(The curve is a line.)

a1  2j Tt 

t 2i  j t 4  1

Nt 

1 i  t 2j t 4  112

N1  K

rt  4 cos2 ti  4 sin2 t j

27.

i  j

a N 2  v 2 2

rt  a cos ti  a sin t j rt  a sin ti  a cos tj

Tt  sin2 ti  cos2 tj

Tt  sin ti  cos tj

K

Tt   cos ti  sin t j

Tt 2 1   rt 8 4

K

rt  et cos t i  et sin tj

Tt  Tt  K

t

1

K

From Exercise 21, Section 11.4, we have: a

N  3t K

1

3t at Nt  42 2 v

t

t

Tt 1 2 t  e  rt 2et 2 t2 k 2

rt  i  2t j  tk

Tt 

t

cos t  sin ti  sin t  cos t j

rt  ti  t 2j 

Tt 

t

1 sin t  cos ti  cos t  sin tj 2 2

Tt

1   rt a a

31. rt  cos t  t sin t, sin t  t cos t

rt  e sin t  e cos t i  e cos t  e sin tj t

33.

1 2

rt  8 sin2 ti  8 cos2 tj Tt  2 cos2 ti  2 sin2 t j

29.

1 j t2

v1  i  j

Tt  0

25.

Arc Length and Curvature

i  2tj  tk 1  5t 2 5t i  2j  k 1  5t 232 Tt  rt

35.

rt  4ti  3 cos tj  3 sin tk rt  4i  3 sin tj  3 cos tk 1 Tt  4i  3 sin tj  3 cos tk 5 1 Tt  3 cos tj  3 sin tk 5 K

3 Tt 35   rt 5 25

5 5 1  5t 2   1  5t 232 1  5t 2

http://librosysolucionarios.net

63

64

Chapter 11

Vector-Valued Functions

37. y  3x  2

39. y  2x2  3

Since y  0, K  0, and the radius of curvature is undefined.

y  4x y  4 K

4 4  0.057 1  4232 1732

1732 1  17.523 K 4

41. y  a2  x2 x y  a2  x2 y 

43. (a) Point on circle:

2 , 0  Equation: x   2

y  0

r

1 1a  K 1  0232 a 1 a K

 y2  1

1 . K

(radius of curvature)

1 1 2 45. y  x  , y  1  2, y  3 x x x

Radius of curvature  12. Since the tangent line is horizontal at 1, 2, the normal line is vertical. The center of the circle is 12 unit above the point 1, 2 at 1, 52.

5 Circle: x  12  y  2



2

1  4

y  ex,

x0

y  ex,

y  ex

y0  1,

y0  1

47.

2 2 1  0232

K

1 1 1 1   , r   2 2 1  1232 232 2 2 K

The slope of the tangent line at 0, 1 is y0  1. The slope of the normal line is 1. Equation of normal line: y  1  x or y  x  1 The center of the circle is on the normal line 2 2 units away from the point 0, 1.

4

(1, 2) −6

2

(b) The circles have different radii since the curvature is different and

1 y  a

K

2 , 1

Center:

 2x2  a2 a2  x232

At x  0:

(radius of curvature)

0  x 2  1  y2  2 2

6

x2  x2  8

−4

x2  4 x  ±2 Since the circle is above the curve, x  2 and y  3. Center of circle: 2, 3 Equation of circle: x  22   y  32  8 6

(0, 1)

−6 0

http://librosysolucionarios.net

3

Section 11.5

65

51. y  x  12  3, y  2x  1, y  2

y

49.

Arc Length and Curvature

π

K x

π

B

2 2  1  2x  1232 1  4x  1232

(a) K is maximum when x  1 or at the vertex 1, 3.

A

(b) lim K  0 x→ 

−2π

2 2 53. y  x23, y  x13, y   x43 3 9



55. y  x  13  3

 

29x43 6 K  13 23 1  49x2332 x 9x  432 (a) K ⇒

 as x ⇒ 0. No maximum



x→ 

y

y  6x  1 K

(b) lim K  0

57. K 

y  3x  12

y  6x  1  0 at x  1. 1  y232 1  9x  1432

Curvature is 0 at 1, 3.



b

59. s 

1   y 

2 32

rt dt

61. The curve is a line.

a

The curvature is zero when y  0. 63. Endpoints of the major axis: ± 2, 0 Endpoints of the minor axis: 0, ± 1 x2  4y2  4 2x  8yy  0 y   y  K

x 4y

4y1  x4y 4y  x2y  4y2  x2 1    3 16y2 16y2 16y3 4y

14y3

1  x4y232



16 16 16   16y2  x232 12y2  432 16  3x232

Therefore, since 2 ≤ x ≤ 2, K is largest when x  ± 2 and smallest when x  0. 65. f x  x4  x2 (a) K 





2 6x2  1 16x  16x4  4x2  132 6

1 (b) For x  0, K  2. f 0  0. At 0, 0, the circle of curvature has radius 2 . Using the symmetry of the graph of f, you obtain

x2  y 

1 2



2

1  . 4

For x  1, K   2 5 5. f 1  0. At 1, 0, the circle of curvature has radius 5

2



1 . K

Using the graph of f, you see that the center of curvature is  0, 12 . Thus, x2

1  y 2



2

5  . 4

2

f −3

3

To graph these circles, use y

1 ± 2



1  x2 and 4

y

1 ± 2



5  x2. 4

—CONTINUED—

http://librosysolucionarios.net

−2

66

Chapter 11

Vector-Valued Functions

65. —CONTINUED— (c) The curvature tends to be greatest near the extrema of f, and K decreases as x → ± . However, f and K do not have the same critical numbers. 2

Critical numbers of f: x  0, ±

2

± 0.7071

5

−3

3

Critical numbers of K: x  0, ± .7647, ± 0.4082

−2

67. (a) Imagine dropping the circle x2   y  k2  16 into the parabola y  x2. The circle will drop to the point where the tangents to the circle and parabola are equal.

y

and x2   y  k2  16 ⇒ x2  x2  k2  16

y  x2

Taking derivatives, 2x  2 y  ky  0

 y  ky  x ⇒ y 

15

and y  2x. Hence,

10

x . yk

−10

−5

x 5

10

Thus, 1 x  2x ⇒ x  2x y  k ⇒ 1  2x2  k ⇒ x2  k   . yk 2 Thus,

21

x2  x2  k2  x2  

2

 16 ⇒ x2  15.75.

1 Finally, k  x2  2  16.25, and the center of the circle is 16.25 units from the vertex of the parabola. Since the radius of the circle is 4, the circle is 12.25 units from the vertex.

(b) In 2-space, the parabola z  y2 or z  x2 has a curvature of K  2 at 0, 0. The radius of the largest sphere that will 1 touch the vertex has radius  1K  2 .

69. Given y  f x: K  R

y 1   y 232 1 K

The center of the circle is on the normal line at a distance of R from x, y. 1 Equation of normal line: y  y0   x  x0 y

x  x    y1x  x 

2

0

2

0



x  x02 1 



1   y232 y

Thus, x0, y0  x  yz, y  z. For y  ex, y  ex, y  ex, z 

1   y23 1   y2  y2



x  x02 

When x  0: x0  x  yz  0  12  2

 y 1   y   y2 2

1  e2x  ex  ex. ex

y0  y  z  1  2  3

2 2

y1   y2 x  x0   yz y

Center of curvature: 2, 3 (See Exercise 47)

x0  x  yz 1 y  y0   x  x  yz  z y y0  y  z

http://librosysolucionarios.net

Section 11.5 71. r  1  sin

73. r  a sin

r  cos

r  a cos

r  sin K  

r  a sin

2r



 rr  r2  r 232 2

r2

K

2 cos2  1  sin sin   1  sin 2 

cos2



 1  sin  

2 3

3 31  sin   81  sin 3 2 21  sin 



75. r  ea , a > 0 r 

2r 2  rr  r 2 r2  r 232

2a 2 cos2  a2 sin2  a2 sin2  a2 cos2  a2 sin2 3

2a2 2  ,a > 0 a3 a

77. r  4 sin 2

aea

r  8 cos 2

r  a2ea

2r



 rr  r2  r 232 1  a 2 e a  1

K

Arc Length and Curvature

2

2a2e2a

r2

(a) As ⇒

, K ⇒ 0.

(b) As a ⇒

, K ⇒ 0.

a2e2a

e2a

  a2e2a  e2a 32

At the pole: K 



2

r0



2 1  8 4

79. x  f t

81. x   a  sin 

y  g t

x   a1  cos 

y   a sin

x   a sin

y   a cos

dy dy dt gt y    dx dx ft dt

K

d gt ftgt  gtft dt ft ft2 y   dx ft dt





K

y



ftgt  gtft ft3

1   y232



ftgt  gt f t  ft 3  gt 2 32 1 ft











ftgt  gtft  ft3

x y2   y 2x32  x   y  



1  cos  cos  a2 sin2  a 21  cos 2  a 2 sin2 32

a2



1 cos  1 a 2  2 cos 32



1 1  cos a 2 21  cos 32



1 1 csc  2 2a 2  2 cos 4a

Minimum:



83. aN  mK

1 4a

Maximum: none

2 3

 ftgt  gtf t  ft2  gt 232

lb 1 305280 ft

dsdt  325500 ft sec  100 ft  3600 sec  2

2

2

1  cos ≥ 0



2







 ft ftgt  2

y   a1  cos 

 3327.5 lb

http://librosysolucionarios.net

    K →  as → 0

67

68

Chapter 11

Vector-Valued Functions

85. Let r  xti  ytj  ztk. Then r  r  xt 2   yt 2  zt 2 and r  xti  ytj  ztk. Then, r

drdt  xt

2

  yt 2  zt 2

12 xt

2



  yt 2  zt 2 1 2  2xtxt  2ytyt  2ztzt

 xtxt  ytyt  ztzt  r  r. 87. Let r  xi  yj  zk where x, y, and z are functions of t, and r  r. d r rr  rdr dt rr  rr  r r r 2r  r  r r    dt r r2 r2 r3



(using Exercise 77)



x2  y2  z2x i  yj  z k  xx  yy  zz xi  yj  zk r3



1 xy 2  xz 2  xyy  xzzi  x 2y  z 2y  xxy  zz yj  x 2z  y 2z  xxz  yyzk r3



i 1 yz  yz 3 r x





j  xz  xz y

k 1 xy  xy  3 r  r  r r z

89. From Exercise 86, we have concluded that planetary motion is planar. Assume that the planet moves in the xy-plane with the sun at the origin. From Exercise 88, we have r  L  GM

rr  e.

y

Planet Sun

Since r  L and r are both perpendicular to L, so is e. Thus, e lies in the xy-plane. Situate the coordinate system so that e lies along the positive x-axis and  is the angle between e and r. Let e  e. Then r  e  r e cos   re cos . Also,

r

θ e

 L2  L  L  r  r  L



 r  r  L  r  GM e 

r r

  GM r  e  r r r  GMre cos   r

Thus, L 2 GM r 1  e cos  and the planetary motion is a conic section. Since the planet returns to its initial position periodically, the conic is an ellipse.

91. A 

1 2







r d 2

Thus, dA dA d 1 2 d 1   r  L dt d dt 2 dt 2 and r sweeps out area at a constant rate.

Review Exercises for Chapter 11 1. rt  ti  csc tk

3. rt  ln ti  tj  tk

(a) Domain: t n , n an integer

(a) Domain: 0, 

(b) Continuous except at t  n , n an integer

(b) Continuous for all t > 0

http://librosysolucionarios.net

x

Review Exercises for Chapter 11 5. (a) r0  i 8 (b) r2  3i  4j  3 k 1 (c) rc  1  2c  1  1 i  c  12j  3 c  13k

 2c  1i  c  12j  13 c  13k 1 1 (d) r1  t  r1  21  t  1 i  1  t 2j  3 1  t 3k  3i  j  3 k 1  2t i  tt  2j  3t 3  3t 2  3t k

7. rt  cos ti  2 sin2 tj xt  cos t, yt  2

sin2

9. rt  i  tj  t 2k x1

t

x  1, y  sin t, z  1

yt

y 1 2

x2 

11. rt  i  sin tj  k

z  t2 ⇒ z  y2

y  21  x2

z

1 ≤ x ≤ 1

2

y 1

t

0

2



x

1

1

1

1

y

0

1

0

1

z

1

1

1

1

3 2

z

1 2

y 3

x

x

−1

1

2

1

1 −2

1

1

2

2 3

x

1 13. rt  ti  ln tj  2 t 2k

15. One possible answer is:

z 3 2 1

1

1

2

r1t  4ti  3tj,

0 ≤ t ≤ 1

r2t  4i  3  t j,

0 ≤ t ≤ 3

r3t  4  t i,

0 ≤ t ≤ 4

y

2 3

x

17. The vector joining the points is 7, 4, 10. One path is rt  2  7t, 3  4t, 8  10t.

19. z  x2  y 2, x  y  0, t  x x  t, y  t, z  2t 2 rt  ti  tj  2t 2k z 5

−3 2

1

3

x

21. lim t 2 i  4  t 2 j  k  4i  k t→2

http://librosysolucionarios.net

2

3

y

y

69

70

Chapter 11

Vector-Valued Functions

2 23. rt  3ti  t  1j, ut  ti  t 2j  t 3k 3 (a) rt  3i  j

(b) rt  0

(c) rt  ut  3t 2  t 2t  1  t 3  2t 2

2 (d) ut  2rt  5ti  t 2  2t  2 j  t 3k 3

Dtrt  ut  3t 2  4t

Dtut  2rt  5i  2t  2j  2t 2k 2 (f ) rt  ut  t 4  t 3 i  2t 4j  3t 3  t 2  tk 3

(e) rt  10t 2  2t  1 Dtrt 

10t  1

Dtrt  ut 

10t 2  2t  1

25. xt and yt are increasing functions at t  t0, and zt is a decreasing function at t  t 0.

29.



 cos t i  sin tj  tk dt 

31. rt 



1  t 2 dt 

27.

83t

3



 2t 2 i  8t 3j  9t 2  2t  1k



cos t i  t cos tj dt  sin t i  t sin t  cos t j  C

1 t1  t 2  ln t  1  t 2  C 2









2

2ti  etj  et k dt  t 2i  etj  et k  C

33.

2

3t i  2t 2j  t 3k dt 

3t2 i  2t3 j  t4 k 2

3

4

2 2



r0  j  k  C  i  3j  5k ⇒ C  i  2j  4k rt  t2  1i  et  2j  et  4k



2

35.





et 2i  3t2j  k dt  2et 2i  t3j  tk

0

2 0

 2e  2i  8j  2k

37. rt  cos3 t, sin3 t, 3t vt  rt  3 cos2 t sin t, 3 sin2 t cos t, 3 vt  9 cos4 t sin2 t  9 sin4 t cos2 t  9  3cos2 t sin2 tcos2 t  sin2 t  1  3cos2 t sin2 t  1 at  vt  6 cos tsin2 t  3 cos2 t cos t, 6 sin t cos2 t  3 sin2 tsin t, 0  3 cos t2 sin2 t  cos2 t, 3 sin t2 cos2 t  sin2 t, 0

39.





1 rt  lnt  3, t 2, t , t 0  4 2 rt 

41. Range  x 

t 1 3, 2t, 21 

r4  1, 8,

1 2

 direction numbers

Since r4  0, 16, 2, the parametric equations are 1 x  t, y  16  8t, z  2  2 t. rt 0  0.1  r4.1  0.1, 16.8, 2.05

43. Range  x 

v02 sin 2  80 ⇒ v0  9.8

9.8  34.9 m sec 80sin40

http://librosysolucionarios.net

v02 752 sin 2  sin 60  152 feet 32 32

32 j 3

Review Exercises for Chapter 11 rt  5ti

45.

rt  ti  tj

47.

vt  5i

vt  i 

vt  5 at  0

vt 

4t  1

2t

Tt  i at  

Nt does not exist aT0 a

N

i   1 2t  j 2t i  j   4t  1  2t 4t  1

Nt 

i  2t j 4t  1

a

T

1 4tt4t  1

a

N

does not exist

rt  et i  etj

1 j 4tt

Tt 

(The curve is a line.)

49.

1 j 2t

1 2t4t  1

1 rt  ti  t 2j  t 2k 2

51.

vt  et i  etj

vt  i  2tj  tk

vt  e2t  e2t

v  1  5t 2

at  et i  et j

at  2j  k

et i  et j Tt  e2t  e2t

Tt 

Nt 

et i  etj e2t  e2t

i  2tj  tk 1  5t2

Nt 

aT

e2t  e2t e2t  e2t

5t i  2j  k 51  5t2

a

N

a

T

a

N

2 e2t  e2t

5t 1  5t 2

5 51  5t 2

53. rt  2 cos ti  2 sin tj  tk, x  2 cos t, y  2 sin t, z  t 3 3 , x   2, y  2, z  . 4 4

When t 

rt  2 sin ti  2 cos tj  k Direction numbers when t 

3 , a   2, b   2, c  1 4

x   2t  2, y   2t  2, z  t 

55. v 

9.56460010 

4

 4.56 mi sec

57. rt  2ti  3tj, 0 ≤ t ≤ 5

s



rt dt 

a





5 0

−4 −2

5

0

 13t

y 2

rt  2i  3j b

3 4

 513

4  9 dt

(0, 0) x 2 4 6

8 10 12 14

−4 −6 −8 −10 −12 −14

(10, − 15)

−16

http://librosysolucionarios.net



5 1  5t 2

71

72

Chapter 11

Vector-Valued Functions

59.

rt  10 cos3 ti  10 sin3 tj

y

rt  30 cos2 t sin ti  30 sin2 t cos tj

10

rt  30cos4 t sin2 t  sin4 t cos2 t



2



 30 cos t sin t



s4

2

30 cos t

0

−10

 sin t dt  120

sin2 t 2

2



x

−2

 60

2

− 10

0

61. rt  3ti  2tj  4tk, 0 ≤ t ≤ 3



b



3

rt dt 

a



12 10 8 6 4 2

3

9  4  16 dt 

0

29 dt  329

0 2

2

s



rt dt 

a



2

65 dt 

0

1 rt  i  cos tj  sin tk 2

65 2

s

z

(

0, 8,

π 2



)



rt dt



4 6 8



0

4 8 6

(8, 0, 0)

   0

π 2

x

y

67. rt  3ti  2tj

69.

Line



5

2

1  cos2 t  sin2 t dt 4 dt 

0





25 t

0



5

2



1 rt  2ti  t2j  t2k 2 rt  2i  tj  2tk, r  5t2  4

k0

rt  j  2k

 

i r  r  2 0 K

k 2t  4j  2k, r  r   20 2

20 25 r  r  2  r3 5t  43 2 4  5t23 2

1 1 y  , y   2 x x

y  x y  1

y  2 3 2 

1   y

At x  4, K 

j t 1

73. y  ln x

1 71. y  x2  2 2

K

y

1 65. rt  ti  sin tj  cos tk, 0 ≤ t ≤ 2

rt  < 8 sin t, 8 cos t, 1, rt  65 b

(0, 0, 0) 2 4 6 8 10

x

63. rt  8 cos t, 8 sin t, t, 0 ≤ t ≤

(−9, 6, 12)

z

rt  3i  2j  4k s

10

K 1 1  x23 2

y 2 3 2 

1  y

At x  1, K 

1 and r  173 2  1717. 173 2

75. The curvature changes abruptly from zero to a nonzero constant at the points B and C.

http://librosysolucionarios.net

1 x2 1  1 x2]3 2

2 1 1   and r  22. 23 2 22 4

68

Chapter 11

Vector-Valued Functions

85. Let r  xti  ytj  ztk. Then r  r  xt 2   yt 2  zt 2 and r  xti  ytj  ztk. Then, r

drdt  xt

2

  yt 2  zt 2

12 xt

2



  yt 2  zt 2 1 2  2xtxt  2ytyt  2ztzt

 xtxt  ytyt  ztzt  r  r. 87. Let r  xi  yj  zk where x, y, and z are functions of t, and r  r. d r rr  rdr dt rr  rr  r r r 2r  r  r r    dt r r2 r2 r3



(using Exercise 77)



x2  y2  z2x i  yj  z k  xx  yy  zz xi  yj  zk r3



1 xy 2  xz 2  xyy  xzzi  x 2y  z 2y  xxy  zz yj  x 2z  y 2z  xxz  yyzk r3



i 1 yz  yz 3 r x





j  xz  xz y

k 1 xy  xy  3 r  r  r r z

89. From Exercise 86, we have concluded that planetary motion is planar. Assume that the planet moves in the xy-plane with the sun at the origin. From Exercise 88, we have r  L  GM

rr  e.

y

Planet Sun

Since r  L and r are both perpendicular to L, so is e. Thus, e lies in the xy-plane. Situate the coordinate system so that e lies along the positive x-axis and  is the angle between e and r. Let e  e. Then r  e  r e cos   re cos . Also,

r

θ e

 L2  L  L  r  r  L



 r  r  L  r  GM e 

r r

  GM r  e  r r r  GMre cos   r

Thus, L 2 GM r 1  e cos  and the planetary motion is a conic section. Since the planet returns to its initial position periodically, the conic is an ellipse.

91. A 

1 2







r d 2

Thus, dA dA d 1 2 d 1   r  L dt d dt 2 dt 2 and r sweeps out area at a constant rate.

Review Exercises for Chapter 11 1. rt  ti  csc tk

3. rt  ln ti  tj  tk

(a) Domain: t n , n an integer

(a) Domain: 0, 

(b) Continuous except at t  n , n an integer

(b) Continuous for all t > 0

http://librosysolucionarios.net

x

Review Exercises for Chapter 11 5. (a) r0  i 8 (b) r2  3i  4j  3 k 1 (c) rc  1  2c  1  1 i  c  12j  3 c  13k

 2c  1i  c  12j  13 c  13k 1 1 (d) r1  t  r1  21  t  1 i  1  t 2j  3 1  t 3k  3i  j  3 k 1  2t i  tt  2j  3t 3  3t 2  3t k

7. rt  cos ti  2 sin2 tj xt  cos t, yt  2

sin2

9. rt  i  tj  t 2k x1

t

x  1, y  sin t, z  1

yt

y 1 2

x2 

11. rt  i  sin tj  k

z  t2 ⇒ z  y2

y  21  x2

z

1 ≤ x ≤ 1

2

y 1

t

0

2



x

1

1

1

1

y

0

1

0

1

z

1

1

1

1

3 2

z

1 2

y 3

x

x

−1

1

2

1

1 −2

1

1

2

2 3

x

1 13. rt  ti  ln tj  2 t 2k

15. One possible answer is:

z 3 2 1

1

1

2

r1t  4ti  3tj,

0 ≤ t ≤ 1

r2t  4i  3  t j,

0 ≤ t ≤ 3

r3t  4  t i,

0 ≤ t ≤ 4

y

2 3

x

17. The vector joining the points is 7, 4, 10. One path is rt  2  7t, 3  4t, 8  10t.

19. z  x2  y 2, x  y  0, t  x x  t, y  t, z  2t 2 rt  ti  tj  2t 2k z 5

−3 2

1

3

x

21. lim t 2 i  4  t 2 j  k  4i  k t→2

http://librosysolucionarios.net

2

3

y

y

69

70

Chapter 11

Vector-Valued Functions

2 23. rt  3ti  t  1j, ut  ti  t 2j  t 3k 3 (a) rt  3i  j

(b) rt  0

(c) rt  ut  3t 2  t 2t  1  t 3  2t 2

2 (d) ut  2rt  5ti  t 2  2t  2 j  t 3k 3

Dtrt  ut  3t 2  4t

Dtut  2rt  5i  2t  2j  2t 2k 2 (f ) rt  ut  t 4  t 3 i  2t 4j  3t 3  t 2  tk 3

(e) rt  10t 2  2t  1 Dtrt 

10t  1

Dtrt  ut 

10t 2  2t  1

25. xt and yt are increasing functions at t  t0, and zt is a decreasing function at t  t 0.

29.



 cos t i  sin tj  tk dt 

31. rt 



1  t 2 dt 

27.

83t

3



 2t 2 i  8t 3j  9t 2  2t  1k



cos t i  t cos tj dt  sin t i  t sin t  cos t j  C

1 t1  t 2  ln t  1  t 2  C 2









2

2ti  etj  et k dt  t 2i  etj  et k  C

33.

2

3t i  2t 2j  t 3k dt 

3t2 i  2t3 j  t4 k 2

3

4

2 2



r0  j  k  C  i  3j  5k ⇒ C  i  2j  4k rt  t2  1i  et  2j  et  4k



2

35.





et 2i  3t2j  k dt  2et 2i  t3j  tk

0

2 0

 2e  2i  8j  2k

37. rt  cos3 t, sin3 t, 3t vt  rt  3 cos2 t sin t, 3 sin2 t cos t, 3 vt  9 cos4 t sin2 t  9 sin4 t cos2 t  9  3cos2 t sin2 tcos2 t  sin2 t  1  3cos2 t sin2 t  1 at  vt  6 cos tsin2 t  3 cos2 t cos t, 6 sin t cos2 t  3 sin2 tsin t, 0  3 cos t2 sin2 t  cos2 t, 3 sin t2 cos2 t  sin2 t, 0

39.





1 rt  lnt  3, t 2, t , t 0  4 2 rt 

41. Range  x 

t 1 3, 2t, 21 

r4  1, 8,

1 2

 direction numbers

Since r4  0, 16, 2, the parametric equations are 1 x  t, y  16  8t, z  2  2 t. rt 0  0.1  r4.1  0.1, 16.8, 2.05

43. Range  x 

v02 sin 2  80 ⇒ v0  9.8

9.8  34.9 m sec 80sin40

http://librosysolucionarios.net

v02 752 sin 2  sin 60  152 feet 32 32

32 j 3

Review Exercises for Chapter 11 rt  5ti

45.

rt  ti  tj

47.

vt  5i

vt  i 

vt  5 at  0

vt 

4t  1

2t

Tt  i at  

Nt does not exist aT0 a

N

i   1 2t  j 2t i  j   4t  1  2t 4t  1

Nt 

i  2t j 4t  1

a

T

1 4tt4t  1

a

N

does not exist

rt  et i  etj

1 j 4tt

Tt 

(The curve is a line.)

49.

1 j 2t

1 2t4t  1

1 rt  ti  t 2j  t 2k 2

51.

vt  et i  etj

vt  i  2tj  tk

vt  e2t  e2t

v  1  5t 2

at  et i  et j

at  2j  k

et i  et j Tt  e2t  e2t

Tt 

Nt 

et i  etj e2t  e2t

i  2tj  tk 1  5t2

Nt 

aT

e2t  e2t e2t  e2t

5t i  2j  k 51  5t2

a

N

a

T

a

N

2 e2t  e2t

5t 1  5t 2

5 51  5t 2

53. rt  2 cos ti  2 sin tj  tk, x  2 cos t, y  2 sin t, z  t 3 3 , x   2, y  2, z  . 4 4

When t 

rt  2 sin ti  2 cos tj  k Direction numbers when t 

3 , a   2, b   2, c  1 4

x   2t  2, y   2t  2, z  t 

55. v 

9.56460010 

4

 4.56 mi sec

57. rt  2ti  3tj, 0 ≤ t ≤ 5

s



rt dt 

a





5 0

−4 −2

5

0

 13t

y 2

rt  2i  3j b

3 4

 513

4  9 dt

(0, 0) x 2 4 6

8 10 12 14

−4 −6 −8 −10 −12 −14

(10, − 15)

−16

http://librosysolucionarios.net



5 1  5t 2

71

72

Chapter 11

Vector-Valued Functions

59.

rt  10 cos3 ti  10 sin3 tj

y

rt  30 cos2 t sin ti  30 sin2 t cos tj

10

rt  30cos4 t sin2 t  sin4 t cos2 t



2



 30 cos t sin t



s4

2

30 cos t

0

−10

 sin t dt  120

sin2 t 2

2



x

−2

 60

2

− 10

0

61. rt  3ti  2tj  4tk, 0 ≤ t ≤ 3



b



3

rt dt 

a



12 10 8 6 4 2

3

9  4  16 dt 

0

29 dt  329

0 2

2

s



rt dt 

a



2

65 dt 

0

1 rt  i  cos tj  sin tk 2

65 2

s

z

(

0, 8,

π 2



)



rt dt



4 6 8



0

4 8 6

(8, 0, 0)

   0

π 2

x

y

67. rt  3ti  2tj

69.

Line



5

2

1  cos2 t  sin2 t dt 4 dt 

0





25 t

0



5

2



1 rt  2ti  t2j  t2k 2 rt  2i  tj  2tk, r  5t2  4

k0

rt  j  2k

 

i r  r  2 0 K

k 2t  4j  2k, r  r   20 2

20 25 r  r  2  r3 5t  43 2 4  5t23 2

1 1 y  , y   2 x x

y  x y  1

y  2 3 2 

1   y

At x  4, K 

j t 1

73. y  ln x

1 71. y  x2  2 2

K

y

1 65. rt  ti  sin tj  cos tk, 0 ≤ t ≤ 2

rt  < 8 sin t, 8 cos t, 1, rt  65 b

(0, 0, 0) 2 4 6 8 10

x

63. rt  8 cos t, 8 sin t, t, 0 ≤ t ≤

(−9, 6, 12)

z

rt  3i  2j  4k s

10

K 1 1  x23 2

y 2 3 2 

1  y

At x  1, K 

1 and r  173 2  1717. 173 2

75. The curvature changes abruptly from zero to a nonzero constant at the points B and C.

http://librosysolucionarios.net

1 x2 1  1 x2]3 2

2 1 1   and r  22. 23 2 22 4

Problem Solving for Chapter 11

73

Problem Solving for Chapter 11



t

1. xt 

cos

0

 2  du, yt   sin 2  du  u2

3. Bomb: r1t  5000  400t, 3200  16t2

0

t2 t2 xt  cos , yt  sin 2 2



 

Projectile: r2t  v0 cos t, v0 sin t  16t2

 

a

(a) s 

 u2

t



At 1600 feet: Bomb: 3200  16t2  1600 ⇒ t  10 seconds.

a

xt2  yt2 dt 

0

dt  a

Projectile will travel 5 seconds:

0

(b) x t    t sin

K



 t cos2

 t2

 t2

 t2  t2   t sin2 2 2 1



 2 , yt   t cos 2   

 

5v0 sin   1625  1600 v0 sin   400. Horizontal position:

 t

At t  10, bomb is at 5000  40010  1000.

At t  a, K  a.

At t  5, projectile is at 5v0 cos .

(c) K  a   length

Thus, v0 cos   200. Combining, v0 

v0 sin  400  ⇒ tan   2 ⇒  63.4 . v0 cos  200

200 447.2 ft sec cos 

5. x  1  cos , y  sin , 0 ≤  ≤ 2 x2  y2  1  cos 2  sin2 

 2  2 cos  



t

st 

2 sin



  d  4 cos 2 2



t



4 sin 2 2

 4 cos

t 2

x   sin , y   cos  K



 



1 1  cos cos   sin  sin  1 cos   1   3  2 sin 8 sin3 2 2





1



4 sin Thus, 

 2

1 t  4 sin and K 2

s2  2  16 cos2

2t   16 sin 2t   16. 2

7. r2t  rt rt d d rt2  2rt rt dt dt  rt rt  rt rt ⇒

d rt rt rt  dt rt

http://librosysolucionarios.net

74

Chapter 11

Vector-Valued Functions

9. rt  4 cos ti  4 sin tj  3tk, t 

 2

11. (a) B  T N  1 constant length ⇒

rt  4 sin ti  4 cos tj  3k, rt  5

dB d  T N  T N   T N ds ds

rt  4 cos ti  4 sin tj T

4 4 3 T   sin ti  cos tj  k 5 5 5

dB  T T N  T T N ds



 T T N  T T

4 4 T   cos ti  sin tj 5 5

At t 

3 3 4 sin ti  cos tj  k 5 5 5

(b) B  T N. Using Exercise 10.3, number 64,



B N  T N N  N T N   N

2   j 

B T  T N T  T T N   T

z 6π

B

Now, KN 

T

N 4

3

 dTds  TTss  Ts  dTds .

Finally,

1

2

NT  T TN

 N.

T

N B

NT  N TN

 T

 3 4 B  i k 2 5 5





Hence,

  4 3 ,T  i k 2 2 5 5 N

T 0 T

dB dB dB  B and T ⇒   N ds ds ds for some scalar .

N  cos ti  sin tj BT N

dB B ds

y

4

x

d B T  B T  B T ds

Ns 

 B KN   N T  KT  B. 13. rt  t cos  t, t sin  t , 0 ≤ t ≤ 2 (a)



2

(b) Length 

2

rt dt

0



2

−3



3

 2t 2  1 dt 6.766

(graphing utility)

0

−2

(c)

K

  2t 2  2  2t 2  1 3 2

(d)

5

K0  2 K1 

  2  2 1.04  2  13 2

5

0 0

K2 0.51 (e) lim K  0 t→

(f ) As t → , the graph spirals outward and the curvature decreases.

http://librosysolucionarios.net

C H A P T E R 1 2 Functions of Several Variables Section 12.1 Introduction to Functions of Several Variables . . . . . . . 308 Section 12.2 Limits and Continuity Section 12.3 Partial Derivatives

. . . . . . . . . . . . . . . . . . . 312

. . . . . . . . . . . . . . . . . . . . . 315

Section 12.4 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . 321 Section 12.5 Chain Rules for Functions of Several Variables

. . . . . .325

Section 12.6 Directional Derivatives and Gradients . . . . . . . . . . . 330 Section 12.7 Tangent Planes and Normal Lines . . . . . . . . . . . . . 334 Section 12.8 Extrema of Functions of Two Variables . . . . . . . . . . 340 Section 12.9 Applications of Extrema of Functions of Two Variables

. 345

Section 12.10 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 350 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

http://librosysolucionarios.net

C H A P T E R 1 2 Functions of Several Variables Section 12.1

Introduction to Functions of Several Variables

Solutions to Even-Numbered Exercises 4. z  x ln y  8  0

2. xz 2  2xy  y 2  4 No, z is not a function of x and y. For example, x, y  1, 0 corresponds to both z  ± 2

z  8  x ln y Yes, z is a function of x and y.





8. gx, y  ln x  y

6. f x, y  4  x 2  4y 2

    (c) ge, 0  lne  0  1 (d) g0, 1  ln0  1  0 (e) g2, 3  ln2  3  ln 1  0 (f) ge, e  lne  e  ln 2e

(a) f 0, 0  4

(a) g2, 3  ln 2  3  ln 5

(b) f 0, 1  4  0  4  0

(b) g5, 6  ln 5  6  ln 11

(c) f 2, 3  4  4  36  36 (d) f 1, y  4  1  4y 2  3  4y 2 (e) f x, 0  4  x 2  0  4  x 2 (f) f t, 1  4  t 2  4  t 2

 ln 2  ln e  ln 2  1 12. Vr, h   r 2h

10. f x, y, z  x  y  z (a) f 0, 5, 4  0  5  4  3

(a) V3, 10   3 210  90

(b) f 6, 8, 3  6  8  3  11

(b) V5, 2   522  50



y

14. gx, y 

x

1 dt t



1

(a) g4, 1 

4

  

1 dt  ln t t

1 4



3

 ln 4

(b) g6, 3 

6

16. f x, y  3xy  y 2 (a)

f x  x, y  f x, y 3x  x y  y 2  3xy  y 2  x x 

(b)

3xy  3xy  y 2  3xy  y 2 3x y   3y, x  0 x x

f x, y  y  f x, y 3x y  y   y  y2  3xy  y 2  y y 

3xy  3xy  y 2  2yy  y2  3xy  y 2 y



y3x  2y  y  3x  2y  y, y  0 y

  

1 dt  ln t t

308

http://librosysolucionarios.net

3 6

 ln 3  ln 6  ln

12

Section 12.1 18. f x, y  4  x 2  4y 2

20. f x, y  arccos

Domain: 4  x 2  4y 2 ≥ 0

4

x, y:



y2 1

y x



y ≤ 1 x

xy  6 > 0

Domain:

xy > 6

x, y: xy > 6

Range: 0 ≤ z ≤ 

≤ 1

309

22. f x, y  lnxy  6

Domain: x, y: 1 ≤

x 2  4y 2 ≤ 4 x2

Introduction to Functions of Several Variables

Range: all real numbers



x2 y2  ≤ 1 4 1

Range: 0 ≤ z ≤ 2

24. z 

xy xy

26. f x, y  x 2  y 2

28. gx, y  xy

Domain: x, y: x is any real number,

Domain: x, y: x  y

y is any real number

Range: all real numbers

Domain: x, y: y ≥ 0 Range: all real numbers

Range: z ≥ 0

30. (a) Domain: x, y: x is any real number, y is any real number Range: 2 ≤ z ≤ 2 (b) z  0 when x  0 which represents points on the y-axis. (c) No. When x is positive, z is negative. When x is negative, z is positive. The surface does not pass through the first octant, the octant where y is negative and x and z are positive, the octant where y is positive and x and z are negative, and the octant where x, y and z are all negative.

32. f x, y  6  2x  3y Plane

1 Plane: z  2 x

Domain: entire xy-plane Range:   < z <

1 36. z  x 2  y 2 2 Cone

34. gx, y  12 x

Domain of f: entire xy-plane

z



Range: z ≥ 0

4 3 2

z 6

z −4

4 x

2 4

−2 −3 −4

y

3

2

1

1

2

y

3

x 4

2

3

3

4

y

x

x ≥ 0, y ≥ 0 elsewhere Domain of f : entire xy-plane

38. f x, y 

0,

xy,

Range: z ≥ 0 z

1 144  16x 2  9y 2 40. f x, y  12

42. f x, y  x sin y

Semi-ellipsoid

z

Domain: set of all points lying on or inside the ellipse x 29   y 216  1

4 −4

−4

Range: 0 ≤ z ≤ 1

25 20

z

5

y

5

x

x

4

−2

y −4

4

10

4

x

15

4

y

−4

http://librosysolucionarios.net

310

Chapter 12

Functions of Several Variables

44. f x, y  xy, x ≥ 0, y ≥ 0 (a)

(b) g is a vertical translation of f 3 units downward

z 25

(c) g is a reflection of f in the xy-plane

20 15 10 5

y

5

x

(e)

(d) The graph of g is lower than the graph of f. If z  f x, y is on the graph of f, then 12 z is on the graph of g.

z 25 20 15 10 5

y

5

46. z  e1x

2 y 2

48. z  cos

Level curves:

x

x 42y

2

50. f x, y  6  2x  3y The level curves are of the form 6  2x  3y  c or 2x  3y  6  c. Thus, the level curves are straight lines with a slope of  23 .

Level curves: 1x 2 y 2

ce

ln c  1 

x2



c  cos

y2

x 2  y 2  1  ln c Hyperbolas centered at 0, 0

cos1 c 

x

2

 2y 2 4



x 2  2y 2 4

y 3

x 2  2y 2  4 cos1 c

Matches (d)

Ellipses

x

−2

Matches (a)

c = 10 c=8

54. f x, y  e xy2

52. f x, y  x2  2y2

The level curves are of the form

The level curves are ellipses of the form x2  2y2  c (except x2  2y2  0 is the point 0, 0).

e xy2  c, or ln c 

y 3

Thus, the level curves are hyperbolas.

c=8 c=6 c=4 c=2 c=0

y

c=4 c=3 c=2

2

x

−3

3 1 −3

xy . 2

−2

x

−1 −1

c = 12

−2

http://librosysolucionarios.net

1

2

c = 14 c = 13

c=0 c=2 c=4 c=6

Section 12.1 56. f x, y  lnx  y

y

 

58. f x, y  xy

c = − 21

c = −2

Introduction to Functions of Several Variables

The level curves are of the form

4

x

6

c  lnx  y

311

−6

6

c=0 −4

ec  x  y

c=1

c = 21

−4

c = −1 −6

y  x  ec

c=2

c = ± 23

Thus, the level curves are parallel lines of slope 1 passing through the fourth quadrant.

 

60. hx, y  3 sin x  y 

62. The graph of a function of two variables is the set of all points x, y, z for which z  f x, y and x, y is in the domain of f. The graph can be interpreted as a surface in space. Level curves are the scalar fields f x, y  c, for c, a constant.

1

−1

1

−1

64. f x, y 

x y

66. The surface could be an ellipsoid centered at 0, 1, 0. One possible function is

The level curves are the lines f x, y  x 2 

1 x c  or y  x y c

 y  1 2  1. 4

These lines all pass through the origin. 68. Ar, t  1000e rt Number of years Rate

5

10

15

0.08

$1491.82

$2225.54

$3320.12

$4953.03

0.10

$1648.72

$2718.28

$4481.69

$7389.06

0.12

$1822.12

$3320.12

$6049.65

$11,023.18

0.14

$2013.75

$4055.20

$8166.17

$16,444.65

70. f x, y, z  4x  y  2z c4

20

72. f x, y, z  x2  14 y2  z

c0

c1

4  4x  y  2z

0  sin x  z or z  sin x

1  x2  14 y2  z

Plane

74. f x, y, z  sin x  z

z

Elliptic paraboloid

2

z

Vertex: 0, 0, 1

3

4

z

2

x

5 3 x

2

1 4

y

3 x

5

y

http://librosysolucionarios.net

8

y

312

Chapter 12

76. W x, y 

Functions of Several Variables

1 , y < x xy

(a) W 15, 10  (c) W 12, 6 

1 1  hr  12 min 15  10 5

(b) W 12, 9 

1 1  hr  10 min 12  6 6

(d) W 4, 2 

1 1  hr  20 min 12  9 3

1 1  hr  30 min 42 2

f x, y  100x 0.6 y 0.4

78.

f 2x, 2y  1002x0.62y0.4  10020.6x 0.620.4y 0.4  10020.620.4x 0.6y 0.4  2100x 0.6y 0.4  2f x, y 4 r 2 80. V   r 2l   r 3  3l  4r 3 3

r

l

82. (a)

Year

1995

1996

1997

1998

1999

2000

z

12.7

14.8

17.1

18.5

21.1

25.8

Model

13.09

14.79

16.45

18.47

21.38

25.78

(b) x has the greater influence because its coefficient 0.143 is larger than that of y0.024. (c) f x, 25  0.143x  0.02425  0.502  0.143x  1.102 This function gives the shareholder’s equity z in terms of net sales x and assumes constant assets of y  25. 84. Southwest

86. Latitude and land versus ocean location have the greatest effect on temperature.

88. True

90. True

Section 12.2

Limits and Continuity



 



2. Let  > 0 be given. We need to find  > 0 such that f x, y  L  x  4 <  whenever 0 < x  a   y  b  x  4   y  1 < . Take   . 2

2

2

2

Then if 0 < x  42   y  12 <   , we have x  42 < 

x  4 < . 4.

lim

x, y → a, b



4f x, y  gx, y





4



lim

f x, y

lim

gx, y

x, y → a, b

x, y → a, b



45 20  3 3

http://librosysolucionarios.net

Section 12.2

6.

8.

f x, y  gx, y  f x, y



lim

5x  y  1  0  0  1  1

x, y → a, b



lim

x, y → a, b

lim

f x, y  lim

x, y → a, b

lim

x, y → a, b

gx, y

f x, y

10.

x, y → 0, 0

lim

x, y →  4, 2

y cosxy  2 cos

 0 2

14.

lim

x, y, z → 2, 0, 1

x

lim

x, y → 1, 1

x  y



1 1  1



2

2

lim

x, y → 1, 1

xy 1  x2  y2 2

Continuous except at 0, 0

Continuous everywhere

16.

53 2  5 5

Continuous for x  y > 0

Continuous everywhere

12.



Limits and Continuity

18. f x, y 

xe yz  2e0  2

Continuous everywhere



x2

x2  1 y 2  1

x2 0  0 x, y → 0, 0 x  1 y 2  1 0  10  1 lim

2

Continuous everywhere

1  cosxxy y     2

20.

lim

x, y → 0, 0

2

2

2

The limit does not exist. Continuous except at 0, 0 22. f x, y 

y x2  y2

Continuous except at 0, 0 Path: y  0

x, y f x, y

Path: y  x

1, 1

0.5, 0.5

0.1, 0.1

0.01, 0.01

0.001, 0.001

1 2

1

5

50

500

x, y

1, 0

0.5, 0

0.1, 0

0.01, 0

0.001, 0

f x, y

0

0

0

0

0

The limit does not exist because along the path y  0 the function equals 0, whereas along the path y  x the function tends to infinity.

24. f x, y 

2x  y 2 2x 2  y

Continuous except at 0, 0 Path: y  0

Path: y  x

x, y

1, 0

0.25, 0

0.01, 0

0.001, 0

0.000001, 0

f x, y

1

4

100

1000

1,000,000

x, y

1, 1

0.25, 0.25

0.01, 0.01

0.001, 0.001

0.0001, 0.0001

1 3

1.17

1.95

1.995

2.0

f x, y

The limit does not exist because along the line y  0 the function tends to infinity, whereas along the line y  x the function tends to 2.

http://librosysolucionarios.net

313

314

26.

Chapter 12

Functions of Several Variables

4x2y2 0 x, y → 0, 0 x2  y2

28.

lim

Hence,

lim

x, y → 0, 0

f x, y 

lim

x, y → 0, 0

lim

x, y → 0, 0

sin 1x  cos 1x

z 2

Does not exist

gx, y  0.

f is continuous at 0, 0, whereas g is not continuous at 0, 0.

4 x

6 6 y

30.

lim

x, y → 0, 0

x2  y2 x2y

32. f x, y 

Does not exist

2xy x2  y2  1

The limit equals 0.

z z 18 5

x

5

5

y

4 4

x

34.

36.

y

lim

xy 2 r cos r 2 sin2   lim  lim r cos sin2   0 2 r→0 r→0 y r2

lim

x 2y 2 r 4 cos2 sin2  lim  lim r 2 cos2 sin2  0 2 r→0 r→0 y r2

x, y → 0, 0 x 2

x, y → 0, 0 x 2

38. f x, y, z 

z x2  y2  9

40. f x, y, z  xy sin z Continuous everywhere

Continuous for x 2  y 2 9

42.

f t 

1 t

44. f t 

gx, y  x 2  y 2

gx, y  x 2  y 2

f  gx, y  f x 2  y 2 

1 4t

f  gx, y  f x 2  y 2 

1 x2  y2

Continuous for x 2  y 2 4

Continuous except at 0, 0 46. f x, y  x 2  y 2 (a) lim

x→0

x  x 2  y 2  x 2  y 2 f x  x, y  f x, y  lim x→0 x x 2x x   x2  lim 2x  x  2x x→0 x→0 x

 lim (b) lim

y→0

1 4  x2  y2

f x, y  y  f x, y x 2   y  y2  x 2  y 2  lim y→0 y y  lim

y→0

2y y   y2  lim 2y  y  2y y→0 y

http://librosysolucionarios.net

Section 12.3

Partial Derivatives

48. f x, y  y  y  1 (a) lim

y  y  1  y  y  1 f x  x, y  f x, y  lim 0 x→0 x x

(b) lim

f x, y  y  f x, y  y  y32   y  y12   y32  y12  lim y→0 y y

x→0

y→0

 y  y32  y32  y  y12 y12  lim y→0 y→0 y y

 lim

3 1  y12  y12 2 2 

(L’Hôpital’s Rule)

3y  1 2y

50. See the definition on page 854.

52.

x2  y2 x, y → 0, 0 xy lim

(a) Along y  ax:

lim

x, ax → 0, 0

 lim

x→0

x2  ax2 xax

(b) Along y  x2 :

x21  a2 1  a2  , a0 ax2 a

lim

x, x 2 → 0, 0

x2  x22 1  x2  lim x→0 xx2 x

limit does not exist

If a  0, then y  0 and the limit does not exist. (c) No, the limit does not exist. Different paths result in different limits. 54. Given that f x, y is continuous, then



lim

x, y → a, b

f x, y  f a, b < 0, which means that for each  > 0, there corresponds



a  > 0 such that f x, y  f a, b <  whenever 0 < x  a2   y  b2 < .





Let   f a, b 2, then f x, y < 0 for every point in the corresponding  neighborhood since f a, b f a, b  f x, y  f a, b <  2  ⇒   2  ⇒

56. False. Let f x, y 

< f x, y  f a, b <

 f a, b 2

3 1 f a, b < f x, y < f a, b < 0. 2 2

xy . x2  y2

58. True

See Exercise 21.

Section 12.3 2. fy1, 2 < 0

Partial Derivatives 4. fx 1, 1  0

6. f x, y  x 2  3y 2  7 fx x, y  2x fy x, y  6y

http://librosysolucionarios.net

8. z  2y2x z y2  x x z  4yx y

315

316

Chapter 12

Functions of Several Variables

10. z  y3  4xy2  1

16.

12.

z  xe xy

z  4y2 x

z x x  e xy  e xy  e xy  1 x y y

z  3y2  8xy y

x x2 z  xe xy  2   2 e xy y y y



18. f x, y 

1 lnxy 2

1 y 1 z   x 2 xy 2x z 1 x 1   y 2 xy 2y

xy x2  y2

z 1 2x  2x  2 x x2  y2 x  y2

fx x, y 

2y z  y x2  y2

x 2  y 2 y  xy2x y 3  x 2y  2 x 2  y 2 2 x  y 2 2

fy x, y 

x 2  y 2x  xy2y x3  xy 2  2 2 2 2 x  y  x  y 2 2

20. gx, y  ln x 2  y 2  gx x, y 

1 lnx 2  y 2 2

22.

f x, y  2x  y3 f 1 1  2x  y312 2  2x  y3 x 2

1 2x x  2 x2  y2 x2  y2

3y2 1 f  2x  y3123y2  y 2 22x  y3

1 2y y gy x, y   2 x2  y2 x2  y2 24.





z  lnx2  y2

z  ln xy 

14.

z  sin 3x cos 3y

26.

z  cosx 2  y 2

z  3 cos 3x cos 3y x

z  2x sinx 2  y 2 x

z  3 sin 3x sin 3y y

z  2y sinx 2  y 2 y

  

y

28. f x, y 

x

y

2t  1 dt 

x

2t  1 dt

x

y



2t  1 dt

y

y



 

x

2t  1 dt 



2 dt  2t

x

y

x

 2y  2x

fx x, y  2 fy x, y  2 30. f x, y  x 2  2xy  y 2  x  y 2 f f x  x, y  f x, y  lim x x→0 x  lim

x→0

x  x2  2x  xy  y 2  x 2  2xy  y 2  lim 2x  x  2y  2x  y x→0 x

f f x, y  y  f x, y  lim y y→0 y x2  2x y  y   y  y 2  x 2  2xy  y 2  lim 2x  2y  y  2 y  x y→0 y→0 y

 lim

http://librosysolucionarios.net

Section 12.3

32. f x, y 

Partial Derivatives

317

1 xy

1 1  f f x  x, y  f x, y x  x  y x  y 1 1  lim  lim  lim  x→0 x→0 x  x  yx  y x x→0 x x x  y2 1 1  f f x, y  y  f x, y x  y  y x  y 1 1  lim  lim  lim  y→0 y→0 x  y  yx  y y y→0 y y x  y2 34. hx, y  x 2  y 2

36. z  cos2x  y z  2 sin2x  y x

hxx, y  2x At 2, 1: hx 2, 1  4 hy x, y  2y

At

At 2, 1: hy 2, 1  2

z  sin2x  y1  sin2x  y y At

40. f x, y 

38. f x, y  arccosxy fxx, y 

y 1  x2y2

At 1, 1, fx is undefined. x fyx, y  1  x2y2 At 1, 1, fy is undefined.

4 , 3 , x z  2 sin

6  1

fxx, y 

4 , 3 , y z  sin

6  21

6xy

42. z  x 2  4y 2, y  1, 2, 1, 8

4x2  5y2

Intersecting curve: z  x 2  4

30y3 2 4x  5y232

At 1, 1, fx1, 1  fyx, y 

z  2x x

30 10  27 9

At 2, 1, 8:

24x3 4x2  5y232

z  22  4 x

z 20

At 1, 1, fy1, 1 

8 9

4 x

44. z  9x2  y 2, x  1, 1, 3, 0 Intersecting curve: z  9  y 2

z  23  6 y

z

46. fx x, y  9x 2  12y, fyx, y  12x  3y 2 fx  fy  0: 9x2  12y  0 ⇒ 3x 2  4y Solving for x in the second equation, x  y 24, you obtain 3 y 242  4y. 3y4  64y ⇒ y  0 or y 

40

⇒ x  0 or x  Points: 0, 0, 4

x

y

3y 2  12x  0 ⇒ y 2  4x

z  2y y At 1, 3, 0:

4

y

4

http://librosysolucionarios.net

34 , 34 23

13

4 313



1 16 4 323

318

Chapter 12

Functions of Several Variables

48. fx x, y 

2x 0 ⇒ x0 x 2  y2  1

fy x, y 

2y 0 ⇒ y0 x2  y2  1

50. (a) The graph is that of fx. (b) The graph is that of fy.

Points: 0, 0

52. w 

3xz xy

54. Gx, y, z 

1 1  x 2  y 2  z 2

w x  y3z  3xz 3yz   x x  y2 x  y2

Gxx, y, z 

x 1  x 2  y 2  z 232

w 3xz  y x  y2

Gyx, y, z 

y 1  x 2  y 2  z 232

3x w  z xy

Gzx, y, z 

z 1  x 2  y 2  z 232

56. f x, y, z  3x 2 y  5xyz  10yz 2

58.

fxx, y, z  6xy  5yz

z  x 4  3x 2y 2  y 4

60.

z 1  x x  y

z  4x 3  6xy 2 x

fy x, y, z  3x 2  5xz  10z 2

2z 1  x2 x  y 2

2z  12x 2  6y 2 x2

fzx, y, z  5xy  20yz

z  lnx  y

1 2z  y x x  y 2

2z  12xy y x

z 1 1   y x  y y  x

z  6x 2 y  4y 3 y

2z 1  y2 x  y 2

2z  6x 2  12y 2 y2

1 2z  x y x  y 2

2z  12xy x y

Therefore,

62.

z  2xey  3yex z  2ey  3yex x 2z  3yex x2 2z  2ey  3yex y x z  2xey  3ex y 2z  2xey y2 2z  2ey  3ex x y

64.

z  sinx  2y

66.

2z 2z  . y x x y

z  9  x 2  y 2

z  cosx  2y x

z x  x 9  x 2  y 2

2z  sinx  2y x2

2z y2  9 2  x 9  x 2  y 232

2z  2 sinx  2y y x

2z xy  y x 9  x 2  y 232

z  2 cosx  2y y

z y  y 9  x 2  y 2

2z  4 sinx  2y y2

2z x2  9 2  y 9  x 2  y 232

2z  2 sinx  2y x y

xy 2z  x y 9  x 2  y 232 Therefore,

2z 2z  . y x x y

z z   0 if x  y  0 x y

http://librosysolucionarios.net

Section 12.3

68.

z

xy xy

70.

Partial Derivatives

319

f x, y, z  x 2  3xy  4yz  z 3 fxx, y, z  2x  3y

z yx  y  xy y 2   x x  y2 x  y2

fy x, y, z  3x  4z fyyx, y, z  0

2z 2y 2  x2 x  y3

fxyx, y, z  3

2z x  y22y  y 22x  y1 2xy   y x x  y 4 x  y3

fyxx, y, z  3 fyyxx, y, z  0

z xx  y  xy x2   2 y x  y x  y2

fxyyx, y, z  0 fyxyx, y, z  0

2z 2x 2  y2 x  y3

Therefore, fxyy  fyxy  fyyx  0.

2z x  y22x  x 22x  y 2xy   x y x  y4 x  y3 There are no points for which zx  zy  0. 72.

 ey 2



2z x  y2

z e y  ey  cos x x 2



fyx, y, z 

2z x  y2

2z e y  ey  sin x 2 x 2

fyyx, y, z 

4z x  y3

z e y  ey  sin x y 2



fxyx, y, z 

4z x  y3

2z e y  ey  sin x 2 y 2



fyxx, y, z 

4z x  y3

Therefore,

f x, y, z 

2z xy

fxx, y, z 

74.

z  sin x

e









 0.

12z fxyyx, y, z  x  y4

76. z  arctan



2z 2z e y  ey e y  ey  2  sin x  sin x 2 x y 2 2

12z fyyxx, y, z  x  y4

fyxyx, y, z 

y

12z x  y4

y x

78.

From Exercise 53, we have 2z 2xy 2xy 2z  2 2   0. 2 x y x  y 22 x 2  y 22

z  sinwct sinwx z  wc coswct sinwx t 2z  w 2c 2 sinwct sinwx t 2 z  w sinwct coswx x 2z  w 2 sinwct sinwx x 2 Therefore,

2z 2z  c 2 2. 2 t x

http://librosysolucionarios.net







320

80.

Chapter 12

z  et sin

Functions of Several Variables

x c

84. The plane z  x  y  f x, y satisfies

82. If z  f x, y, then to find fx you consider y constant and differentiate with respect to x. Similarly, to find fy, you consider x constant and differentiate with respect to y.

x z  et sin t c 1 x z  et cos x c c

f f < 0 and > 0. x y z

4

1 x 2z   2 et sin x 2 c c

2

4

2z z  c 2 2. Therefore, t x

2 4

y

x

86. In this case, the mixed partials are equal, fxy  fyx. See Theorem 12.3. 88. f x, y  200x0.7y0.3 (a)

f y  140x0.3y0.3  140 x x



At x, y  1000, 500, (b)

f 500  140 1000 x



f x  60x0.7y0.7  60 x y



At x, y  1000, 500,

0.3



0.3

 140

12

0.3

113.72

0.7

f 1000  60 500 x





0.7

 6020.7 97.47

1  R  1  0.10 1I

10

VI, R  1000

90.

1  R  1  0.10  1I

VII, R  10,000

9

1  0.101  R

1  0.101  R10  10,000 2 1  I  1  I 11



VI0.03, 0.28 14,478.99

1  R

1  0.101  R  1000  1  0.10  0.10 1I 1  I 1  I 

VRI, R  10,000

9

9

10

VR0.03, 0.28 1391.17 The rate of inflation has the greater negative influence on the growth of the investment. (See Exercise 61 in Section 12.1.) 92. A  0.885t  22.4h  1.20th  0.544 (a)

94. U  5x 2  xy  3y 2 (a) Ux  10x  y

A  0.885  1.20h t A 30 , 0.80  0.885  1.200.80  1.845 t A  22.4  1.20t h

(b) Uy  x  6y (c) Ux2, 3  17 and Uy2, 3  16. The person should consume one more unit of y because the rate of decrease of satisfaction is less for y. (d)

A 30 , 0.80  22.4  1.2030   13.6 h

z 1 −2

2

x

(b) The humidity has a greater effect on A since its coefficient 22.4 is larger than that of t.

http://librosysolucionarios.net

1

2

y

Section 12.4 z  1.55x  22.15 x

96. (a)

(b) Concave downward

2z  1.55 x2



2z < 0 x2



y z > 0 2

The rate of increase of Medicare expenses z is increasing with respect to public assistance expenses  y.

2z  0.014 y2 98. False

100. True

Let z  x  y  1.



y

102. f x, y 

1  t 3 dt

x

By the Second Fundamental Theorem of Calculus, f d  x dx d f  y dy

 

y

1  t 3 dt  

x

dz 

1  t 3 dt   1  x3

y

1  t 3 dt  1  y 3.

x

Differentials

x2 y

4.

2x x2 dx  2 dy y y

6. z 

12e

dz  2x

8.



x

y

Section 12.4 2. z 

d dx

e

x 2 y 2

x 2 y 2

w dw 

 ex

 ex 2

2 y 2

2 y 2

xy z  2y 1 z  2x xy dx  dy  dz z  2y z  2y2 z  2y2



 dx  2y e

x 2 y 2

 ex 2

w  ey cos x  z2

2 y 2

 dy  e

x 2 y 2

10.

dw  ey sin x dx  ey cos x dy  2z dz

 ex

2 y 2

x dx  y dy

w  x 2 yz 2  sin yz dw  2xyz 2 dx  x 2z 2  z cos yz dy 

2x 2yz  y cos yz dz 12. (a) f 1, 2  5  2.2361

14. (a) f 1, 2  e2  7.3891

f 1.05, 2.1  5.5125  2.3479

f 1.05, 2.1  1.05e2.1  8.5745

z  0.11180

z  1.1854

(b) dz 

x x 2  y 2

dx 

y x 2  y 2

dy

x dx  y dy 0.05  20.1    0.11180 x 2  y 2 5

321

2

(c) Concave upward

The rate of increase of Medicare expenses z is declining with respect to worker’s compensation expenses x.

z  0.014y  0.54 y

Differentials

(b) dz  ey dx  xey dy  e20.05  e20.1  1.1084

http://librosysolucionarios.net

322

Chapter 12

16. (a) f 1, 2 

Functions of Several Variables

1  0.5 2

f 1.05, 2.1 

1.05  0.5 2.1

z  0 (b) dz  

x 1 dx  2 dy y y 1 1 0.05  0.1  0 2 4

18. Let z  x 21  y3, x  2, y  9, dx  0.03, dy  0.1. Then: dz  2x1  y3 dx  3x 21  y2 dy

2.0321  8.93  221  93  221  930.03  3221  920.1  0 20. Let z  sinx 2  y 2, x  y  1, dx  0.05, dy  0.05. Then: dz  2x cosx 2  y 2 dx  2y cosx 2  y 2 dy sin 1.052  0.952  sin 2  21 cos12  120.05  21 cos12  120.05  0 24. If z  f x, y, then z  dz is the propagated error, z dz and is the relative error.  z z

22. In general, the accuracy worsens as  x and y increase.

26.

V   r 2h dV  2 rh dr   r 2 dh π r 2dh

∆V − dV

∆h 2πrhdr ∆r

r

28. S   rr 2  h2 r  8, h  20 20

dS   r 2  h21 2   r 2r 2  h21 2 dr 

 r 2  h2   r 2 2r 2  h2  2 2 1 2 r  h  r 2  h2

rh dS   r r 2  h21 2h   dh r 2  h2 2r 2  h2 rh dS   dr   dh r 2  h2 r 2  h2 

 r 2  h2

2r 2  h2 dr  rh dh

S8, 20  541.3758

8

r

h

dS

S

0.1

0.1

10.0341

10.0768

0.0427

0.1

0.1

5.3671

5.3596

0.0075

0.12368

0.12368

0.683  105

0.00303

0.00303

0.286  107

0.001

0.002

0.0001

0.0002

http://librosysolucionarios.net

S  dS

Section 12.4

30.

Differentials

C 1  0.0817 3.71 v1 2  0.25 T  91.4 v 2









0.1516  0.0204 T  91.4 v1 2

C  0.08173.71v  5.81  0.25v T dC  Cv dv  CT dT 

 0.02048  91.4± 3  0.08173.7123  5.81  0.2523± 1 0.1516 23 1 2

 ± 2.79 ± 1.46  ± 4.25 Maximum propagated error ± 4.25 dC   ± 0.14 C 30.24

 

 

32. x, y  8.5, 3.2, dx ≤ 0.05, dy ≤ 0.05 r  x 2  y 2 ⇒ dr  

dr

x x 2  y 2

dx 

8.5 8.52  3.22

y

dy

x 2  y 2

dx 

3.2 8.52  3.22

dy  0.9359 dx  0.3523 dy

≤ 1.2880.05  0.064



y  arctan x

y x2 ⇒ d  y 1 x 





2

1 x

dx  1

 y x

2

dy

3.2 y x 8.5 dx  2 dy  dx  dy x2  y2 x  y2 8.52  3.22 8.52  3.22

Using the worst case scenario, dx  0.05 and dy  0.05, you see that

d  34.

a da 

≤ 0.00194  0.00515  0.0071.

v2 r v2 2v dv  2 dr r r

da dv dr 2   20.03  0.02  0.08  8% a v r Note: The maximum error will occur when dv and dr differ in signs. 36. (a) Using the Law of Cosines: a2  b2  c2  2bc cos A  3302  4202  2330420cos 9

330 ft 420 ft

a  107.3 ft. 9˚

(b) a  b2  4202  2b420cos da  



1 2 b  4202  840b cos 2

1 2

2b  840 cos  db  840b sin d

 1 3302  4202  840330 cos 2 20





  2330  840 cos 20 6  840330sin 20 180  1 2

1  11512.79 1 2 ± 1774.79  ± 8.27 ft 2

http://librosysolucionarios.net

323

324

Chapter 12

38.

1 1 1   R R1 R2 R

Functions of Several Variables

R1R 2 R1  R2

dR1  R1  0.5 dR2  R2  2 R R22 R12 R dR  dR  R1  R2 R1 R2 2 R1  R22 R1  R22

R  dR 

When R1  10 and R2  15, we have R 

40.

T  2

152 102 2  0.14 ohm. 2 0.5  10  15 10  152

Lg

dg  g  32.24  32.09  0.15 dL  L  2.48  2.5  0.02 T  dT 

T  T dg  dL   g L g

Lg g 

When g  32.09 and L  2.5, we have T  

42.

 Lg

 32.09

L

2.5 0.15  32.09

 2.532.09

0.02  0.0111 sec.

z  f x, y  x2  y2 z  f x  x, y  y  f x, y  x2  2xx  x2  y2  2yy  y2  x2  y2  2xx  2yy  xx  yy  fxx, y x  fyx, y y  1x  2y where 1  x and 2  y. As x, y → 0, 0, 1 → 0 and 2 → 0.

44.

z  f x, y  5x  10y  y3 z  f x  x, y  y  f x, y  5x  5x  10y  10y  y3  3y2y  3yy 2  y3  5x  10y  y3  5x  3y2  10y  0x  3yy  y2 y  fxx, y x  fyx, y y  1x  2y where 1  0 and 2  3yy  y2. As x, y → 0, 0, 1 → 0 and 2 → 0.

46. f x, y 



5x2y ,  y3 0 ,

x3

x, y 0, 0 x, y  0, 0

f  x, 0  f 0, 0 00  lim 0 x→0 x→0  x x

(a) fx0, 0  lim

fy0, 0  lim

y→0

f 0, y  f 0, 0 00  lim 0 y→0 y y

Thus, the partial derivatives exist at 0, 0.

(b) Along the line y  x: Along the line x  0,

5x3 5  . x→0 2x3 2

lim

f x, y  lim

lim

f x, y  0.

x, y → 0, 0 x, y → 0, 0

Thus, f is not continuous at 0, 0. Therefore f is not differentiable at 0, 0. (See Theorem 12.5)

http://librosysolucionarios.net

Section 12.5

Section 12.5 2.

Chain Rules for Functions of Several Variables

Chain Rules for Functions of Several Variables

w  x2  y2

w  ln

4.

x  cos t, y  et

y x

x  cos t

dw y x sin t  et  2 2 2   dt x y x  y2

y  sin t 1 1 dw  sin t  cos t dt x y

 

x sin t  yet cos t sin t  e2t   x2  y2 cos2 t  e2t



 tan t  cot t 

1 sin t cos t

6. w  cosx  y, x  t2, y  1 (a)

dw  sinx  y2t  sinx  y0 dt  2t sinx  y  2t sint2  1

(b) w  cost2  1,

dw  2t sint2  1 dt

8. w  xy cos z xt y  t2 z  arccos t (a)

  1 1t   t  2t  t  4t 1t

dw 1   y cos z1  x cos z2t  xy sin z  dt 1  t2  t2t   tt2t  tt2

(b) w  t 4,

2

3



3

3

3

2

dw  4t3 dt

10. w  xyz, x  t2, y  2t, z  et (a)

dw  yz2t  xz2  xyet  dt  2tet 2t  t2et 2  t22tet   2t2et2  1  t  2t2et3  t

(b)

w  t22tet   2t3et dw  2t3et  et6t2  2t2ett  3 dt

12. Distance  f t  x2  x12   y2  y12  48  3  2  48t1  2 2

 48t8  22  26 ft  488  22  26  f1

http://librosysolucionarios.net

2

325

326

14.

Chapter 12

w

Functions of Several Variables

x2 , y

16.

w  y3  3x2y x  es

x  t2,

y  et

y  t  1,

w  6xyes  3y2  3x20  6e2st s

t1 dw w dx w dy   dt x dt y dt 

2x x2 2t  2 1 y y



t4 2t 22t  t  12 t1



t  14t3  t4 t  12



3t4  4t3 t  12

w  6xy0  3y2  3x2et  t  3ete2t  e2s When s  0 and t  1,

d 2w t  1212t3  12t2  3t4  4t32t  1  dt 2 t  14 At t  1:

18.

d 2w 424  74 68   4.25  dt 2 16 16

w  sin2x  3y xst yst w  2 cos2x  3y  3 cos2x  3y s  5 cos2x  3y  5 cos5s  t w  2 cos2x  3y  3 cos2x  3y t  cos2x  3y  cos5s  t When s  0 and t 

 w w ,  0 and  0. 2 s t

20. w  25  5x2  5y2, x  r cos , y  r sin  (a)

w 5x 5y  cos   sin  r 25  5x2  5y2 25  5x2  5y2 

5r cos2   5r sin2  5r  25  5x2  5y2 25  5r2

w 5x 5y  r sin   r cos  2 2  25  5x  5y 25  5x2  5y2 

5r2 sin2  cos   5r2 sin  cos  0 25  5x2  5y2

(b) w  25  5r2 5r w w  ; 0 r 25  5r2 

http://librosysolucionarios.net

w w  6e and  3ee2  1. s t

Section 12.5

22. w  (a)

yz , x  2, y  r  , z  r   x

w yz z y  2 2  1  1  x x x 

 r  r   r    r   2  4 2



22  r2 2 2r2   3 3  

w  cos yz2s  xz sin yz0  xy sin yz1 s  cosst2  2t32s  s2t2 sinst2  2t3 w  cos yz0  xz sin yz2t  xy sin yz2 t  2s2ts  2t sinst2  2t3  2s2t2 sinst2  2t3  6s2t2  2s3t sinst2  2t3

yz r  r   r2   21 2 x  

w 2r  2 r  w 2r2  3   26. w  x2  y2  z2, x  t sin s, y  t cos s, z  st2 w  2x  cos s  2yt sin s  2zt2 s

28. cos x  tan xy  5  0 F x, y sin x  y sec2 xy dy  x  dx Fyx, y x sec2 xy

 2t2 sin s cos s  2t2 sin s cos s  2st4  2st4 w  2x sin s  2y cos s  2z2st t  2t sin2 s  2t cos2 s  4s2t3  2t  4s2t3

30.

x  y2  6  0 x2  y2

32. Fx, y, z  xz  yz  xy Fx  z  y

Fxx, y dy  dx Fyx, y 

Fy  z  x Fz  x  y

 y 2  x 2 x 2  y 22 2xy x 2  y 22  2y



 2xy  2yx 2  y 22



 2xy  2yx 4  4x2y 3  2y 5

y2

Fx yz z   x Fz xy

x2

y2

Fy z xz   y Fz xy

x2

34. Fx, y, z  ex sin y  z  z Fx 

ex

sin y  z

Fy 

ex

cos y  z

Fz 

ex

cos y  z  1

Fx z ex sin y  z   x Fz 1  ex cos y  x

327

24. w  x cos yz, x  s2, y  t2, z  s  2t

w yz z y z  y 2r  2 0  1  1   2 r x x x x 

(b) w 

Chain Rules for Functions of Several Variables

36. x  sin y  z  0 z cos y  z  0 implies (i) 1  x 1 z   sec y  z. x cos y  z (ii)

1  yz  cos y  z  0 implies yz  1.

Fy ex cos y  z z   y Fz 1  ex cos y  z

http://librosysolucionarios.net

328

Chapter 12

Functions of Several Variables 40. x2  y2  z2  5yw  10w2  2  Fx, y, z, w

38. x ln y  y2z  z2  8  0 (i)

Fxx, y, z ln y z   2 x Fzx, y, z y  2z

Fx  2x, Fy  2y  5w, Fz  2z, Fw  5y  20w w F 2x 2x  x   x Fw 5y  20w 5y  20w

x  2yz Fyx, y, z z x  2y2z y (ii)   2  3 y Fzx, y, z y  2z y  2yz

w Fy 5w  2y   y Fw 20w  5y Fz w 2z   z Fw 5y  20w

42. Fx, y, z, w  w  x  y  y  z  0

44.

w Fx 1 x  y1 2 1    x Fw 2 1 2x  y

f x, y  x3  3xy2  y3 f tx, ty  tx3  3txty2  ty3  t3x3  3xy2  y3  t3f x, y

w Fy 1 1   x  y1 2   y  z1 2 y Fw 2 2

Degree: 3 x fxx, y  y fyx, y  x3x2  3y2  y6xy  3y2

1 1     2 xy 2 yz

 3x3  9xy2  3y3  3f x, y

w Fz 1   z Fw 2y  z

46.

f x, y  f tx, ty 

x2  y2

x2





tx2 x2  t  tf x, y tx2  ty2 x2  y2

Degree: 1

xx

x fxx, y  y fyx, y  x

48.

3

2

 2xy2 x2y y 2  y23 2 x  y23 2





x4  x2y2 x2x2  y2  2 2 2 3 2 x  y  x  y23 2



x2  f x, y x2  y2

w w x w y   s x s y s



50.

w w x w y   (Page 878) t x t y t

f x, y dy  x dx fyx, y z f x, y, z   x x fzx, y, z fyx, y, z z   y fzx, y, z

52. (a)

V   r 2h









dV dr dh dr dh   2rh  r 2   r 2h  r   122366  124  4608 in.3 min dt dt dt dt dt (b)

S  2 r r  h





dh dr dS  2 2r  h  r  2 24  366  124  624 in.2 min dt dt dt

http://librosysolucionarios.net

Section 12.5

54. (a)

V

Chain Rules for Functions of Several Variables

 2 r  rR  R 2h 3

dV  dr dR dh  2r  Rh  r  2Rh  r 2  rR  R2 dt 3 dt dt dt



(b)





 215  25104  15  225104  152  1525  25212 3



 19,500  6,500 cm3 min 3





S   R  rR  r2  h2 dS  dt



R  r2  h2  R  r

R  r 

h

dh

R  r2  h2 dt

R  r

dr 

R  r2  h2 dt

R  r2  h2  R  r

R  r

dR 

R  r2  h2 dt





25  152  102  25  15

4  25  15 4  25  15 25  15  10 25  15

25  152  102

25  152  102  25  15



2

2



10 12 25  152  102

 3202 cm2 min 58. gt  f xt, yt  t n f x, y

56. pV  mRT T

Let u  xt, v  yt, then

1  pV  mR



dp 1 dV dT  V p dt mR dt dt

gt 



f u



du f  dt v



dv f f  x y dt u v

and gt  ntn1f x, y. Now, let t  1 and we have u  x, v  y. Thus, f f x  y  nf x, y. x y

60.

w  x  y sin y  x w   x  y cos y  x  sin y  x x w  x  y cos y  x  sin y  x y w w  0 x y

62.

y w  arctan , x  r cos , y  r sin  x  arctan

sin     arctantan    for  <  < rr cos  2 2

w w w y x w  2 ,  2 ,  0, 1 x x  y2 y x  y2 r  w   w x  y

2

1 w     w r  r 

2

2

2

2

y2 x2 1 1   2 2  2 x  y  x  y22 x2  y2 r 2 2

0

1 1 1  2 r2 r

w w     w x  y r 2

Therefore,



2

2



1 w 2 . r2 

 

http://librosysolucionarios.net

329

330

Chapter 12

Functions of Several Variables

64. Note first that x u v   x y x 2  y 2 v y u   2 . y x x  y 2 x y r cos2   r sin2  1 u  2 cos   2 sin    r x  y2 x  y2 r2 r y x r 2 sin2   r 2 cos2  v  r sin   2 r cos   1  x2  y2 x  y2 r2 Thus,

u 1 v  . r r 

y x r sin  cos   r sin  cos  v  2 cos   2 sin   0 r x  y2 x  y2 r2 x y r 2 sin  cos   r 2 sin  cos  u  r sin   2 r cos   0  x2  y2 x  y2 r2 Thus,

v 1 u  . r r 

Section 12.6 2.

Directional Derivatives and Gradients

f x, y  x3  y3, v 

2

2

i  j

4.

x y

v  j

f x, y  3x2i  3y2j f 4, 3  48i  27j u

f x, y 

f x, y 

2 2 v  i j v 2 2

1 x i  2j y y

f 1, 1  i  j

Du f 4, 3  f 4, 3  u  242 

u

27 21 2  2 2 2

v  j v

Du f 1, 1  f 1, 1  u  1 6.

gx, y  arccos xy, v  i  5j gx, y 

y 1  xy2

i

8.

x 1  xy2

h  2xex

2 y2

i

 2yex

Dug1, 0  g1, 0  u 

5 26



Du h0, 0  h0, 0  u  0 526 26

f x, y, z  x2  y2  z2

12.

hx, y, z  xyz v  2, 1, 2

v  i  2j  3k

h  yz i  xz j  xyk

f  2x i  2yj  2zk

h2, 1, 1  i  2j  2k

f 1, 2, 1  2i  4j  2k 1 v 2 3  i j k v 14 14 14

6 Du f 1, 2, 1  f 1, 2, 1  u   14 7

u

2 1 2 v  i j k v 3 3 3

Du h2, 1, 1  h2, 1, 1  u 

http://librosysolucionarios.net

j

2 y2

h0, 0  0

v 5 1 u i j  26 v 26

u



2 y2

vij

j

g1, 0  j

10.

hx, y  ex

8 3

Section 12.6

14. f x, y  u

y xy 3

2

16. gx, y  xey

i

3 1 u i j 2 2

1 j 2

g  ey i  xey j

y x f   i j x  y2 x  y2 Du f  f  u   

3 y 1 ey xe   3x  1 Dug   ey  2 2 2

3y x  2x  y2 2x  y2

1  3y  x 2x  y2

18. f x, y  cosx  y v

20. gx, y, z  xyez

i  j 2

v  2i  4j g  yez i  xez j  xyez k

f  sinx  yi  sinx  yj

At 2, 4, 0, g  4i  2j  8k.

v 1 2  u i j v 5 5 Du f   

Directional Derivatives and Gradients

1 5

1 5

sinx  y 

sinx  y 

u 2 5

5

5

sinx  y

v 2 1  i j v 5 5

Du g  g  u  

4 5



sinx  y

At 0, , Du f  0. 22.

gx, y  2xey x



gx, y  

24.



2y y x e  2ey x i  2ey xj x

z  lnx2  y zx, y 

2x 1 i 2 j x2  y x y

z2, 3  4i  j

g2, 0  2i  2j w  x tan y  z

26.

wx, y, z  tany  zi  x sec2y  zj  x sec2y  zk w4, 3, 1  tan 2i  4 sec2 2j  4 sec2 2k \

28.

PQ  2i  7j, u  

2 53

i

7 53

j

f x, y  6xi  2yj, f 3, 1  18i  2j Du f  f  u  

\

30.

PQ 

36 14 50 5053    53 53 53 53

1 2 i j i  j, u  2 5 5

f x, y  2 cos 2x cos yi  sin 2x sin yj f 0, 0  2i Du f  f  u 

2 25  5 5

http://librosysolucionarios.net

4 5



8 5

331

332

Chapter 12

Functions of Several Variables

hx, y  y cosx  y

32.

hx, y  y sinx  yi  cosx  y  y sinx  y j

 3 

h 0,

3

i

6

3  6 3 j 

 h0, 3   336  9  6

3  3 2

2

36



3 2 2  23  3 6

gx, y  yex

2

34.

36.

gx, y  2xyex i  ex j 2

w

2

w 

g0, 5  j g0, 5  1

1 1  x2  y2  z2

 1 

x2

1 xi  yj  zk  y2  z2 3

w0, 0, 0  0 w0, 0, 0  0

38.

w  xy2z2 w  y2z2i  2xyz2j  2xy2zk w2, 1, 1  i  4j  4k w2, 1, 1  33

For Exercises 40 – 46, f x, y  3 

40. (a) D 4 f 3, 2  

u



13 22  12 22   5122 

(b) D2 3 f 3, 2  

42. (a)



x y 1 1  and D f x, y   cos   sin . 3 2 3 2 



13  21  12 23  2 123 

 12 i  j

3

44. f  



13 i  12 j

Du f  f  u  (b)

13 12  12 12   5122 

v  3i  4j v  9  16  5 4 3 u i j 5 5 Du f  f  u 

46.

1 2 3   5 5 5

1 1 f   i  j 3 2 f 1  2i  3j f  13 Therefore, u  1 13 3i  2j and Du f 3, 2  f  u  0. f is the direction of greatest rate of change of f. Hence, in a direction orthogonal to f, the rate of change of f is 0.

http://librosysolucionarios.net

Section 12.6

Directional Derivatives and Gradients

333

For Exercises 48 and 50, f x, y  9  x2  y2 and D f x, y  2x cos   2y sin   2 x cos   y sin .

 22  2 

48. (a) D 4 f 1, 2  2 (b) D 3 f 1, 2  2





2

50. f 1, 2  2i  4j f 1, 2 1  i  2j f 1, 2 5

12  3    1  23 

Therefore, u   1 5 2i  j and

Du f 1, 2  f 1, 2  u  0.

52. (a) In the direction of the vector i  j. 1 1 y 1 1 (b) f  y i  x j  i  x j 2 2x 2 2 4x f 1, 2 

1 1 i j 2 2

(Same direction as in part (a).) (c) f   12 i  12 j, the direction opposite that of the gradient.

54. (a) f x, y 

8y 2 1  x2  y2

(b) f 

⇒ 4y  1  x2  y2

8  8x2  8y2 16xy i j 2 2 2 1  x  y  1  x2  y22

f  3, 2 

4  y2  4y  4  x2  1

 3 i 2

y 4 3

 y  22  x2  3

2

Circle: center: 0, 2, radius: 3

1

−2

(c) The directional derivative of f is 0 in the directions ± j.

(d)

z 6

−6

6

x

y

−6

56. f x, y  6  2x  3y c  6, P  0, 0 f x, y  2i  3j 6  2x  3y  6 0  2x  3y

58. f x, y  xy c  3, P  1, 3 f x, y  y i  xj xy  3 f 1, 3  3i  j

f 0, 0  2i  3j

http://librosysolucionarios.net

−1

x 1

2

334

Chapter 12

Functions of Several Variables

60. 3x2  2y2  1

62. xey  y  5

y

f x, y  3x2  2y2

1

f x, y  6xi  4y j f 1, 1  6i  4j

x

−1



13

13

f x, y  xey  y

6

f x, y  ey i  xey  1j

4

f 5, 0  i  4j

1

1 f 1, 1  3i  2j

f 1, 1 13

y

2

1 f 5, 0  i  4j

f 5, 0 17

−1

3i  2j



64. hx, y  5000  0.001x2  0.004y2

17

17

x 2

4

6

i  4j

66. The directional derivative gives the slope of a surface at a point in an arbitrary direction u  cos  i  sin  j.

h  0.002x i  0.008y j h500, 300  i  2.4j or 5h   5i  12j 68. See the definition, page 887.

70. The gradient vector is normal to the level curves.

72. The wind speed is greatest at A.

See Theorem 12.12. 74. Tx, y  100  x2  2y2,

P  4, 3

dx  2x dt

dy  4y dt

xt  C1e2t

yt  C2e4t

4  x0  C1

3  y0  C2

xt 

yt  3e4t

4e2t

3x 2 3  e4t  y ⇒ u  x 2 16 16

z

76. (a) 500

x

6

6

y

xi  12 j T 3, 5  400e73i  12 j

(b) T x, y  400ex

2 y

2

There will be no change in directions perpendicular to the gradient: ± i  6j (c) The greatest increase is in the direction of the gradi1 ent: 3i  2 j 78. False

80. True

Du f x, y  2 > 1 when



u  cos

  i  sin j. 4 4

Section 12.7

 



Tangent Planes and Normal Lines

2. Fx, y, z  x2  y2  z2  25  0 x2  y2  z2  25

4. Fx, y, z  16x2  9y2  144z  0 16x2  9y2  144z  0 Hyperbolic paraboloid

Sphere, radius 5, centered at origin.

http://librosysolucionarios.net

Section 12.7 6.

Fx, y, z  x2  y2  z2  11

8.

Tangent Planes and Normal Lines

Fx, y, z  x3  z

Fx, y, z  2xi  2yj  2zk

Fx, y, z  3x2i  k

F3, 1, 1  6i  2j  2k

F2, 1, 8  12i  k

n

F 1 6i  2j  2k 

F 44 

n

11 1 3i  j  k  3i  j  k 11 11



Fx, y, z  x2  3y  z3  9

10.

12.

Fx, y, z  2xi  3j  3z2k

145

12i  k

145

Fx, y, z  zex

2

y2

Fx, y, z  2xzex

2

F2, 1, 2  4i  3j  12k n

F 1 12i  k 

F 145

3

y2i

 2yzex

2

y2j

F2, 2, 3  12i  12j  k

F 1  4i  3j  12k

F 13

n

F 1  12i  12j  k

F 17

Fx, y, z  sinx  y  z  2

14.

Fx, y, z  cosx  yi  cosx  yj  k F

3 , 6 ,  23  n

2

i

3

2

jk





3 3 F 2  i jk

F 10 2 2

 

16.

3

1 10 10

10

 3 i  3 j  2k  3 i  3 j  2k

y f x, y  , 1, 2, 2 x Fx, y, z 

y z x

Fxx, y, z  

y x2

1 x

Fzx, y, z  1

Fy1, 2, 2  1

Fz1, 2, 2  1

Fyx, y, z 

Fx1, 2, 2  2

2x  1   y  2  z  2  0 2x  y  z  2  0 2x  y  z  2

18.

y gx, y  arctan , 1, 0, 0 x Gx, y, z  arctan Gxx, y, z 

y z x

  yx2 y  1   y2x2 x2  y2

Gx1, 0, 0  0

Gyx, y, z 

1x x  1   y2x2 x2  y2

Gy1, 0, 0  1

yz0

http://librosysolucionarios.net

Gzx, y, z  1 Gz1, 0, 0  1

 ex

2

y2k

335

336 20.

Chapter 12

Functions of Several Variables

f x, y  2  23 x  y, 3, 1, 1 Fx, y, z  2  23 x  y  z Fxx, y, z   23 ,  23 x

Fyx, y, z  1,

Fzx, y, z  1

 3   y  1  z  1  0 2 3 x  y  z  2  0

2x  3y  3z  6 22. z  x2  2xy  y2, 1, 2, 1 Fx, y, z  x2  2xy  y2  z Fxx, y, z  2x  2y

Fyx, y, z  2x  2y

Fzx, y, z  1

Fx1, 2, 1  2

Fy1, 2, 1  2

Fz1, 2, 1  1

2x  1  2 y  2  z  1  0 2x  2y  z  1  0 2x  2y  z  1

24.

hx, y  cos y,

5, 4 , 22 

Hx, y, z  cos y  z Hxx, y, z  0

Hyx, y, z  sin y



  0 H 5, 4 , 22   22 2  2 y    z  0  2  4 2 

 2 Hx 5, , 4 2









y

Hzx, y, z  1





 2  1 Hz 5, , 4 2



2

2

yz

2

8



2

2

0

4 2y  8z  2  4 26. x2  2z2  y2, 1, 3, 2 Fx, y, z  x2  y2  2z2 Fxx, y, z  2x

Fyx, y, z  2y

Fx1, 3, 2  2

Fy1, 3,2  6

Fzx, y, z  4z Fz1, 3, 2  8

2x  1  6 y  3  8z  2  0

x  1  3 y  3  4z  2  0 x  3y  4z  0 28. x  y2z  3, 4, 4, 2 Fx, y, z  x  2yz  3y Fxx, y, z  1

Fyx, y, z  2z  3

Fzx, y, z  2y

Fx4, 4, 2  1

Fy4, 4, 2  1

Fz4, 4, 2  8

x  4  1y  4  8z  2  0 x  y  8z  16 x  y  8z  16

http://librosysolucionarios.net

Section 12.7

Tangent Planes and Normal Lines

337

30. x2  y2  z2  9, 1, 2, 2 Fx, y, z  x2  y2  z2  9 Fxx, y, z  2x

Fyx, y, z  2y

Fzx, y, z  2z

Fx1, 2, 2  2

Fy1, 2, 2  4

Fz1, 2, 2  4

Direction numbers: 1, 2, 2 Plane: x  1  2 y  2  2z  2  0, x  2y  2z  9 Line:

x1 y2 z2   1 2 2

32. x2  y2  z2  0, 5, 13, 12 Fx, y, z  x2  y2  z2 Fxx, y, z  2x

Fyx, y, z  2y

Fzx, y, z  2z

Fx5, 13, 12  10

Fy5, 13, 12  26

Fzx, y, z  24

Direction numbers: 5, 13, 12 Plane

Line:

5x  5  13 y  13  12z  12  0

x  5 y  13 z  12   5 13 12

5x  13y  12z  0 34. xyz  10, 1, 2, 5 Fx, y, z  xyz  10 Fxx, y, z  yz

Fyx, y, z  xz

Fzx, y, z  xy

Fx1, 2, 5  10

Fy1, 2, 5  5

Fz1, 2, 5  2

Direction numbers: 10, 5, 2 Plane: 10x  1  5 y  2  2z  5  0, 10x  5y  2z  30 Line:

x1 y2 z5   10 5 2

36. See the definition on page 897.

40.

Fx, y, z  x2  y2  z Fx, y, z  2xi  2yj  k F2, 1, 5  4i  2j  k



i (a) F G  4 0

j 2 1



Gx, y, z  4  y  z Gx, y, z  j  k G2, 1, 5  j  k

k 1  i  4j  4k 1

Direction numbers: 1, 4, 4, (b) cos  

38. For a sphere, the common object is the center of the sphere. For a right circular cylinder, the common object is the axis of the cylinder.

x2 y1 z5   1 4 4



42 F  G 3 3    ; not orthogonal

F G 21 2 42 14

http://librosysolucionarios.net

338 42.

Chapter 12

Functions of Several Variables

Fx, y, z  x2  y2  z x

Fx, y, z 

x2  y2

i

3 4 F3, 4, 5  i  j  k 5 5



i j k F G  35 45 1 5 2 3

Gx, y, z  5x  2y  3z  22 y x2  y2



jk

Gx, y, z  5i  2j  3k G3, 4, 5  5i  2j  3k

34 26 2  i j k 5 5 5

Direction numbers: 1, 17, 13 x3 y4 z5   Tangent line 1 17 13 cos  

44.

F  G 

F G

 85 2 38



Fx, y, z  x2  y2  z Fx, y, z  2xi  2y j  k F1, 2, 5  2i  4j  k



i (a) F G  2 1

8 Not orthogonal 5 76 Gx, y, z  x  y  6z  33 Gx, y, z  i  j  6k G1, 2, 5  i  j  6 k

k 1  25i  13j  2k 6 x1 y2 z5 Direction numbers: 25, 13, 2,   25 13 2

(b) cos  



j 4 1



F  G  0; orthogonal

F G

46. (a) f x, y  16  x2  y2  2x  4y gx, y 

2

2

z 5

1  3x2  y2  6x  4y

f

g

f x, y  gx, y

(b)

16  x2  y2  2x  4y 

1 1  3x2  y2  6x  4y 2

5

5

y

x

32  2x2  2y2  4x  8y  1  3x2  y2  6x  4y x2  2x  31  3y2  12y

x2  2x  1  42  3 y2  4y  4 x  12  42  3 y  22 To find points of intersection, let x  1. Then 3 y  22  42

 y  22  14 y  2 ± 14 f  1, 2  14    2 j, g 1, 2  14    1 2 j. The normals to f and g at this point are  2j  k and  1 2 j  k, which are orthogonal. Similarly, f  1, 2  14   2 j and g 1, 2  14    1 2 j and the normals are 2 j  k and  1 2 j  k, which are also orthogonal.

(c) No, showing that the surfaces are orthogonal at 2 points does not imply that they are orthogonal at every point of intersection.

http://librosysolucionarios.net

Section 12.7 48. Fx, y, z  2xy  z3, 2, 2, 2

Tangent Planes and Normal Lines

50. Fx, y, z  x2  y2  5, 2, 1, 3

F  2yi  2xj  3z2k

Fx, y, z  2xi  2yj

F2, 2, 2  4i  4j  12k

F2, 1, 3  4i  2j

cos  

F2, 2, 2  k  12  3 11

F2, 2, 2

176

cos  

11

3 1111  25.24

52. Fx, y, z  3x2  2y2  3x  4y  z  5

z

Fx, y, z  6x  3i  4y  4j  k 6x  3  0, x 

30 25

1 2

4y  4  0, y  1 z  3



1 2,



1 2 2

1,

−3

 21  3

 31 4

F2, 1, 3

  arccos 0  90



  arccos

F2, 1, 3  k  0

2

1 2

  41  5 

−2

−3

 31 4



3

3

x

y

x2 y2 z2  2 21 2 a b c

56. Fx, y, z 

54. T x, y, z  100  3x  y  z2, 2, 2, 5 dx  3 dt

dy  1 dt

dz  2z dt

xt  3t  C1

yt  t  C2

zt  C3e2t

x0  C1  2

y0  C2  2

z0  C3  5

x  3t  2

y  t  2

z  5e2t

Fxx, y, z 

2x a2

Fyx, y, z 

2y b2

Fzx, y, z 

2z c2

2y 2z 2x0 x  x0  20  y  y0  20 z  z0  0 a2 b c

Plane:

x0x y0 y z0z x02 y02 z02  2  2  2  2  2 1 a2 b c a b c

58.

z  xf Fx, y, z  x f Fxx, y, z  f

yx yx  z

yx  x f yx xy   f yx  xy f yx 2

Fyx, y, z  x f

yx1x   f yx

Fxx, y, z  1 Tangent plane at x0, y0, z0:

f x   x f x x  x   f x  y  y   z  z   0 y0

y0

y0

y0

0

0

0

0

0

0

0

f x   x f x x  x f x   y f x   yf x   y f x   z  x f x   0 y0

y0

y0

y0

0

0

0

0

y0

y0

y0

0

0

0

0

y0

0

0

0

0

f x   x f x x  f x y  z  0 y0

y0

y0

y0

0

0

0

0

Therefore, the plane passes through the origin x, y, z  0, 0, 0.

http://librosysolucionarios.net

339

340

Chapter 12

Functions of Several Variables

60. f x, y  cosx  y fxx, y  sinx  y

fyx, y  sinx  y

fxxx, y  cosx  y,

fyyx, y  cosx  y,

fxyx, y  cosx  y

(a) P1x, y  f 0, 0  fx0, 0x  fy0, 0y  1 1 1 (b) P2x, y  f 0, 0  fx0, 0x  fy0,0y  2 fxx0, 0x2  fxy0, 0xy  2 fyy0, 0y2

 1  12 x2  xy  12 y2 1 (c) If x  0, P20, y  1  2 y2. This is the second–degree Taylor polynomial for cos y. 1 If y  0, P2x, 0  1  2 x2. This is the second–degree Taylor polynomial for cos x.

(d)

x

y

f x, y

P1x, y

0

0

1

1

1

0

0.1

0.9950

1

0.9950

0.2

0.1

0.9553

1

0.9950

0.2

0.5

0.7648

1

0.7550

1

0.5

0.0707

1

 0.1250

(e)

P2x, y

z 5

5 x

5

y

62. Given z  f x, y, then: Fx, y, z  f x, y  z  0 Fx0, y0, z0  fxx0, y0i  fyx0, y0j  k cos    

Section 12.8

Fx0, y0, z0  k Fx0, y0, z0 k

1

  fxx0, y0   fyx0, y02  12 2

1  fxx0, y02   fyx0, y02  1

Extrema of Functions of Two Variables

2. gx, y  9  x  32   y  22 ≤ 9

z

(3, − 2, 9)

Relative maximum: 3, 2, 9

8

gx  2x  3  0 ⇒ x  3

6

gy  2 y  2  0 ⇒ y  2

4 2 1 x

y

6

4. f x, y  25  x  22  y2 ≤ 5

5

Relative maximum: 2, 0, 5 Check: fx   fy   fxx  

x2 25  x  22  y2

y 25  x  22  y2

z

(2, 0 , 5)

0 ⇒ x2 x

5

5

y

0 ⇒ y0

25  y2 25  x  22 yx  2 ,f  , f  2 2 3 2 yy 25  x  2  y  25  x  22  y23 2 xy 25  x  22  y23 2

At the critical point 2, 0, fxx < 0 and fxx fyy   fxy2 > 0. Therefore, 2, 0, 5 is a relative maximum.

http://librosysolucionarios.net

Section 12.8

Extrema of Functions of Two Variables

6. f x, y  x2  y2  4x  8y  11   x  22   y  42  9 ≤ 9

z

Relative maximum: 2, 4 , 9

8

(2, 4 , 9)

6

Check: fx  2x  4  0 ⇒ x  2 fy  2y  8  0 ⇒ y  4 6

fxx  2, fyy  2, fxy  0

4

2

x

8

y

At the critical point 2, 4, fxx < 0 and fxx fyy   fxy2 > 0. Therefore, 2, 4, 9 is a relative maximum. 8. f x, y  x2  5y2  10x  30y  62 fx  2x  10  0 x  5, y  3 fy  10y  30  0



fxx  2, fyy  10, fxy  0 2 > 0. At the critical point 5, 3, fxx < 0 and fxx fyy  f xy

Therefore, 5, 3, 8 is a relative maximum. 10. f x, y  x2  6xy  10y2  4y  4 fx  2x  6y  0



fy  6x  20y  4  0

Solving simultaneously yields x  6 and y  2.

fxx  2, fyy  20, fxy  6 At the critical point 6, 2, fxx > 0 and fxx fyy   fxy2 > 0. Therefore, 6, 2, 0 is a relative minimum. 14. hx, y  x2  y21 3  2

12. f x, y  3x2  2y2  3x  4y  5 fx  6x  3  0 when x  12 . fy  4y  4  0 when y  1. fxx  6, fyy  4, fxy  0 1 At the critical point  2 , 1, fxx < 0 and fxx fyy   fxy2 > 0. Therefore,  12 , 1, 31 4  is a relative maximum.





2x 0 3x2  y22 3 2y hy  0 3x2  y22 3

hx 



x  0, y  0

Since hx, y ≥ 2 for all x, y, 0, 0, 2 is a relative minimum.

18. f x, y  y3  3yx2  3y2  3x2  1

16. f x, y  x  y  2

Relative maximum: 0, 0, 1

Since f x, y ≥ 2 for all x, y, the relative minima of f consist of all points x, y satisfying x  y  0.

Saddle points: 0, 2, 3,  ± 3, 1, 3 z 40 20 3 x

20. z  exy

3

z

Saddle point: 0, 0, 1

100

x

3

3

y

http://librosysolucionarios.net

y

341

342

Chapter 12

Functions of Several Variables

22. gx, y  120x  120y  xy  x2  y2



gx  120  y  2x  0

Solving simultaneously yields x  40 and y  40.

gy  120  x  2y  0

gxx  2, gyy  2, gxy  1 At the critical point 40, 40, gxx < 0 and gxx gyy  gxy2 > 0. Therefore, 40, 40, 4800 is a relative maximum. 24. gx, y  xy gx  y



x  0 and y  0

gy  x

gxx  0, gyy  0, gxy  1 At the critical point 0, 0, gxx gyy  gxy2 < 0. Therefore, 0, 0, 0 is a saddle point. 1 26. f x, y  2xy  x4  y2  1 2 fx  2y  2x3 Solving by substitution yields 3 critical points: fy  2x  2y3 0, 0, 1, 1, 1, 1



fxx  6x2, fyy  6y2, fxy  2 At 0, 0, fxx fyy   fxy2 < 0 ⇒ 0, 0, 1 saddle point. At 1, 1, fxx fyy   fxy2 > 0 and fxx < 0 ⇒ 1, 1, 2 relative maximum. At 1, 1, fxx fyy   fxy2 > 0 and fxx < 0 ⇒ 1, 1, 2 relative maximum.

28. f x, y 

12  x

2

 y2 e1x

2 y2

fx  2x3  2xy2  3xe1x

0

2 y2

fy  2x y  2y  ye 2

3

1x2 y2

0



Solving yields the critical points 0, 0, 0, ±

fxx  4x 4  4x2y2  12x2  2y2  3e1x

2

2

,

±

6

2

,0 .

2 y2

fyy  4y4  4x2y2  2x2  8y2  1e1x

2 y2

fxy  4x3y  4xy3  2xye1x

2 y2

At the critical point 0, 0, fxx fyy  fxy2 < 0. Therefore, 0, 0, e 2 is a saddle point. At the critical points  0, ± 2 2, fxx < 0 and fxx fyy   fxy2 > 0. Therefore,  0, ± 2 2, e  are relative maxima. At the critical points  ± 6 2, 0, fxx > 0 and fxx fyy   fxy2 > 0. Therefore,  ± 6 2, 0,  e e are relative minima. 30. z 

x2  y22 ≥ 0. z  0 if x2  y2  0. x2  y2

z 2

Relative minima at all points x, x and x, x, x  0.

5 x

32. fxx < 0 and fxx fyy   fxy2  38  22 > 0 f has a relative maximum at x0, y0.

5

y

34. fxx > 0 and fxx fyy   fxy2  258  102 > 0 f has a relative minimum at x0, y0.

36. See Theorem 12.17.

http://librosysolucionarios.net

Section 12.8 Extrema at all x, y

z

38.

Extrema of Functions of Two Variables

40.

Relative maximum

z 4

4

343

(2, 1, 4)

3

2

3

4

y

3

4

4

y

4

x

x

42. A and B are relative extrema. C and D are saddle points.

44. d  fxx fyy  fxy2 < 0 if fxx and fyy have opposite signs. Hence, a, b, f a, b is a saddle point. For example, consider f x, y  x2  y2 and a, b  0, 0.

46. f x, y  x3  y3  6x2  9y2  12x  27y  19 fx  3x2  12x  12  0

Solving yields x  2 and y  3.

fy  3y 2  18y  27  0

fxx  6x  12, fyy  6y  18, fxy  0 At 2, 3, fxx fyy   fxy2  0 and the test fails. 1, 2, 0 is a saddle point. 48. f x, y  x  12   y  22 ≥ 0 fx  fy  fxx 

x1 x  12   y  22



0

y2 0 x  12   y  22

Solving yields x  1 and y  2.

 y  22 x  12 x  1 y  2 , f  , f  x  12   y  223 2 yy x  12   y  223 2 xy x  12   y  223 2

At 1, 2, fxx fyy   fxy2 is undefined and the test fails. Absolute minimum: 1, 2, 0 50. f x, y  x2  y22 3 ≥ 0 fx 

4x 3x2  y21 3

fy 

4y 3x2  y21 3

fxx 



fx and fy are undefined at x  0, y  0. The critical point is 0, 0.

4x2  3y2 43x2  y2 8xy , f  2 2 4 3 , fyy  9x  y  9x2  y24 3 xy 9x2  y24 3

At 0, 0, fxx fyy   fxy2 is undefined and the test fails. Absolute minimum: 0, 0, 0 52. f x, y, z  4  x y  1z  22 ≤ 4 fx  2x y  12z  22  0 fy  2x2 y  1z  22  0 fz  2x y  12z  2  0



Solving yields the critical points 0, a, b, c, 1, d, e, f, 2. These points are all absolute maxima.

http://librosysolucionarios.net

344

Chapter 12

Functions of Several Variables

54. f x, y  2x  y2

y

fx  42x  y  0 ⇒ 2x  y

3

fy  22x  y  0 ⇒ 2x  y

(1, 2) 2

On the line y  x  1, 0 ≤ x ≤ 1, f x, y  f x  2x  x  12  x  12

(0, 1)

1 and the maximum is 1, the minimum is 0. On the line y   2 x  1, 0 ≤ x ≤ 2,

f x, y  f x   2x  

 12

y = 2x

1

1

2

5 2

(2, 0) x

x  1   x  1 2

2

3

and the maximum is 16, the minimum is 0. On the line y  2x  4, 1 ≤ x ≤ 2, f x, y  f x  2x  2x  42  4x  42 and the maximum is 16, the minimum is 0. Absolute maximum: 16 at 2, 0 Absolute minimum: 0 at 1, 2 and along the line y  2x. 56. f x, y  2x  2xy  y2

y

fx  2  2y  0 ⇒ y  1

f 1, 1  1

2

fy  2y  2x  0 ⇒ y  x ⇒ x  1

(−1, 1)

On the line y  1, 1 ≤ x ≤ 1,

(1, 1)

f x, y  f x  2x  2x  1  1. On the curve y  x2, 1 ≤ x ≤ 1

−1

x 1

f x, y  f x  2x  2xx2  x22  x4  2x3  2x and the maximum is 1, the minimum is  11 16 . Absolute maximum: 1 at 1, 1 and on y  1

11 1 1 Absolute minimum:  16  0.6875 at   2 , 4 





58. f x, y  x2  2xy  y2, R  x, y: x ≤ 2, y ≤ 1

y

y  x f  2x  2y  0 fx  2x  2y  0

2

y

f x, x  x2  2x2  x2  0

x

−1

Along y  1, 2 ≤ x ≤ 2, f  x2  2x  1, f  2x  2  0 ⇒ x  1, f 2, 1  1, f 1, 1  0, f 2, 1  9.

1

−2

Along y  1, 2 ≤ x ≤ 2, f  x2  2x  1, f  2x  2  0 ⇒ x  1, f 2, 1  9, f 1, 1  0, f 2, 1  1. Along x  2, 1 ≤ y ≤ 1, f  4  4y  y2, f  2y  4  0. Along x  2, 1 ≤ y ≤ 1, f  4  4y  y2, f  2y  4  0. Thus, the maxima are f 2, 1  9 and f 2, 1  9, and the minima are f x, x  0, 1 ≤ x ≤ 1. 60. f x, y  x2  4xy  5, R   x, y: 0 ≤ x ≤ 4, 0 ≤ y ≤ x 

xy0

y

fx  2x  4y  0

4

fy  4x  0

3

f 0, 0  5

2

Along y  0, 0 ≤ x ≤ 4, f  x2  5 and f 4, 0  21.

1

Along x  4, 0 ≤ y ≤ 2, f  16  16y  5, f  16  0 and f 4, 2  11. Along y  x, 0 ≤ x ≤ 4, f  x2  4x3 2  5, f  2x  6x1 2  0 on 0, 4. Thus, the maximum is f 4, 0  21 and the minimum is f 4, 2  11.

http://librosysolucionarios.net

x 1

2

3

4

Section 12.9

62. f x, y 

Applications of Extrema of Functions of Two Variables

345

4xy , R  x, y: x ≥ 0, y ≥ 0, x2  y2 ≤ 1 x2  1 y2  1

fx 

41  x2 y  0 ⇒ x  1 or y  0  y  1x2  12

fy 

41  y2x  0 ⇒ y  1 or x  0 x  1 y2  12

2

2

For x  0, y  0, also, and f 0, 0  0. For x  1 and y  1, the point 1, 1 is outside R. For x2  y2  1, f x, y  f  x, 1  x2   Absolute maximum is



2 2 4x1  x2 , and the maximum occurs at x  ,y . 2  x2  x4 2 2



2 2 8 f , . 9 2 2

The absolute minimum is 0  f 0, 0. In fact, f 0, y  f x, 0  0 y

1

R x 1

64. False Let f x, y  x4  2x2  y2. Relative minima: ± 1, 0, 1 Saddle point: 0, 0, 0

Section 12.9

Applications of Extrema of Functions of Two Variables

2. A point on the plane is given by x, y, 12  2x  3y. The square of the distance from 1, 2, 3 to a point on the plane is given by S  x  12   y  22  9  2x  3y2

4. A point on the paraboloid is given by x, y, x2  y2. The square of the distance from 5, 0, 0 to a point on the paraboloid is given by S  x  52  y2  x2  y22

Sx  2x  1  29  2x  3y2

Sx  2x  5  4xx2  y2  0

Sy  2 y  2  29  2x  3y3.

Sy  2y  4yx2  y2  0.

From the equations Sx  0 and Sy  0, we obtain the system

From the equations Sx  0 and Sy  0, we obtain the system

5x  6y  19

2x3  2xy2  x  5  0

6x  10y  29.

2y3  2x2y  y  0.

16 31 43 Solving simultaneously, we have x  14 , y  14 , z  14 and the distance is

1614  1  3114  2  4314  3 2

2

2



1 . 14

Solving as in Exercise 3, we have x 1.235, y  0, z 1.525 and the distance is 1.235  52  1.5252 4.06.

http://librosysolucionarios.net

346

Chapter 12

Functions of Several Variables

6. Since x  y  z  32, z  32  x  y. Therefore,

8. Let x, y, and z be the numbers and let S  x2  y2  z2. Since x  y  z  1, we have

P  xy2z  32xy2  x2y2  xy3

S  x2  y2  1  x  y2

Px  32y2  2xy2  y3  y232  2x  y  0

Sx  2x  21  x  y  0 2x  y  1



Py  64xy  2x2y  3xy2  y64x  2x2  3xy  0.

Sy  2y  21  x  y  0 x  2y  1.

Ignoring the solution y  0 and substituting y  32  2x into Py  0, we have

Solving simultaneously yields x  13 , y  13 , and z  13 .

64x  2x2  3x32  2x  0 4xx  8  0. Therefore, x  8, y  16, and z  8. C0  1.5xy . 10. Let x, y, and z be the length, width, and height, respectively. Then C0  1.5xy  2yz  2xz and z  2x  y The volume is given by V  xyz 

C0 xy  1.5x2y2 2x  y

Vx 

y22C0  3x2  6xy 4x  y2

Vy 

x22C0  3y2  6xy . 4x  y2

In solving the system Vx  0 and Vy  0, we note by the symmetry of the equations that y  x. Substituting y  x into Vx  0 yields x22C0  9x2 1 1 1  0, 2C0  9x2, x  2C0 , y  2C0 , and z  2C0 . 16x2 3 3 4 12. Consider the sphere given by x2  y2  z2  r 2 and let a vertex of the rectangular box be  x, y, r 2  x2  y2 . Then the volume is given by V  2x2y 2r 2  x2  y2   8xyr 2  x2  y2

 V  8xy

Vx  8 xy

y

x r 2  x2  y2

y r 2  x2  y2

 x y 

 yr 2  x2  y2  xr 2

2

2

8y r 2  x2  y2

8x r 2  x2  y2

r 2  2x2  y2  0

r 2  x2  2y2  0.

Solving the system 2x2  y2  r 2 x2  2y2  r 2 yields the solution x  y  z  r 3. 14. Let x, y, and z be the length, width, and height, respectively. Then the sum of the two perimeters of the two cross sections is given by

2x  2z  2y  2z  108 or x  54  y  2z. The volume is given by V  xyz  54yz  y2z  2yz2 Vy  54z  2yz  2z2  z54  2y  2z  0 Vz  54y  y2  4yz  y54  y  4z  0. Solving the system 2y  2z  54 and y  4z  54, we obtain the solution x  18 inches, y  18 inches, and z  9 inches.

http://librosysolucionarios.net

Section 12.9

16.

Applications of Extrema of Functions of Two Variables

347

1 A  30  2x  30  2x  2x cos  x sin  2  30x sin   2x2 sin   x2 sin  cos  A  30 sin   4x sin   2x sin  cos   0 x A  30 cos   2x2 cos   x22 cos2   1  0  From

A 2x  15  0 we have 15  2x  x cos   0 ⇒ cos   . x x

From

A  0 we obtain 

30x

2x x 15  2x 2x x 15  x 22x x 15 2

2

2



1 0

302x  15  2x2x  15  22x  152  x2  0 3x2  30x  0 x  10 Then cos  

1 ⇒   60. 2

18. P p, q, r  2pq  2pr  2qr.

R  515p1  805p2  1.5p1 p2  1.5p12  p22

20.

p  q  r  1 implies that r  1  p  q.

R p1  515  1.5p2  3p1  0

P p, q  2pq  2p1  p  q  2q1  p  q

R p2  805  1.5p1  p2  0

 2pq  2p  2p2  2pq  2q  2pq  2q2  2pq  2p  2q 

2p2



Solving this system yields p1  $2296.67, p2  $4250.

P P  2q  2  4p;  2p  2  4q p q Solving

3p1  1.5p2  515 1.5p1  p2  805

2q2

P P   0 gives p q

q  2p  1 p  2q  1 and hence p  q  P

1 and 3

13, 13  219  213  213  219  219 

6 2  . 9 3

22. S  d1  d2  d3  0  02   y  02  0  22   y  22  0  22   y  22  y  24   y  22 dS 2 y  2 23 6  23 1  0 when y  2   . dy 3 3 4   y  22 The sum of the distance is minimized when y 

2 3  3  0.845. 3

http://librosysolucionarios.net

348

Chapter 12

Functions of Several Variables

24. (a) S  x  42  y2  x  12   y  62  x  122   y  22

z 30

The surface appears to have a minimum near x, y  1, 5. (b) Sx  Sy 

x4 x  42  y2

y x  4  2

y2

 

x1



x  12   y  62

x  12 x  122   y  22

−2

y6 y2  2 2 x  1  y  6 x  122  y  22

x

2

4

−4

2 4 6 8

y

(c) Let x1, y1  1, 5. Then S1, 5  0.258i  0.03j Direction 6.6 (d) t 0.94 x2 1.24 y2 5.03 (e) t 3.56,

x3 1.24,

y3 5.06,

t 1.04,

x4 1.23,

y4 5.06

Note: Minimum occurs at x, y  1.2335, 5.0694 (f ) Sx, y points in the direction that S decreases most rapidly. 26. See the last paragraph on page 915 and Theorem 12.18.

28. (a)

x

y

xy

x2

3

0

0

9

1

1

1

1

1

1

1

1

3

2

6

9

 x  0  y  4 x y  6  x i

i

i i

2

i

(b) S  

46  04 3 3 1  , b 4 0  1, 420  02 10 4 10

y

3 x1 10

30. (a)

y

xy

x2

3

0

0

9

1

0

0

1

2

0

0

4

3

1

3

9

4

1

4

16

4

2

8

16

5

2

10

25

6

2

12

a (b) S 

2

1 5

36

 x  28  y  8  x y  37 x i

2



x

i

2

 20

a



19  1    2 101  0  107  1  13 10 10

i i

i

2

 116

72 1 1 1 3 1 3 837  288   , b  8  28   , y  x  8116  282 144 2 8 2 4 2 4





34  0   41  0  14  0  34  1  54  1  54  2  74  2  94  2 2

2

2

2

2

http://librosysolucionarios.net

2

2

2



3 2

2

Section 12.9

Applications of Extrema of Functions of Two Variables 34. 6, 4, 1, 2, 3, 3, 8, 6, 11, 8, 13, 8; n  6

32. 1, 0, 3, 3, 5, 6

 x  9,  y  9, x y  39,  x  35 i

 x  42  y  31  x y  275  x  400

i

2

i i

i

339  99 36 3   a 335  92 24 2





3 3 9 1 9  9     b 3 2 6 2 3 3 y x 2 2 7

i

i

i i

i

2

a

6275  4231 29 0.5472  6400  422 53

b

1 29 425 31  42  1.3365 6 53 318

y

425 29 x 53 318





9

−1

6 −1

−1

14 −1

38. (a) y  1.8311x  47.1067

36. (a) 1.00, 450, 1.25, 375, 1.50, 330

 x  3.75,  y  1,155,  x  x y  1,413.75 i

i

(b) For each 1 point increase in the percent x, y increases by about 1.83 (slope of line).

 4.8125,

2

i

i i

a

31,413.75  3.751,155  240 34.8125  3.752

b

1 1,155  2403.75  685 3

y  240x  685 (b) When x  1.40, y  2401.40  685  349.

40. Sa, b 

n

 ax  b  y  i

2

i

i1

Saa, b  2a

n

x

2

i

i1

Sba, b  2a

 2b

n

n

x  2x y i

i1

n

n

 x  2nb  2  y i

i

i1

Saaa, b  2

i i

i1

i1

n

x

2

i

i1

Sbba, b  2n Saba, b  2

n

x

i

i1

Saaa, b > 0 as long as xi 0 for all i. (Note: If xi  0 for all i, then x  0 is the least squares regression line.) d  SaaSbb  Sab2  4n

n

x

i1

2

i

  x   4n  x    x   ≥ 0 since n  x ≥   x  .

4

2

n

n

i1

i

i1

2

n

2

i

n

i1

As long as d 0, the given values for a and b yield a minimum.

http://librosysolucionarios.net

i

i1

2

n

2

i

i

i1

349

350

Chapter 12

Functions of Several Variables

42. 4, 5, 2, 6, 2, 6, 4, 2

x 0  y  19  x  40 x 0  x  544  x y  12  x y  160

44. 0, 10, 1, 9, 2, 6, 3, 0

x 6  y  25  x  14  x  36  x  98  x y  21  x y  33

8

i

(−2, 6) (− 4, 5)

(4, 2) −9

9

4

4

i

i i

i i

2

i

i

b

3  10 ,

c

41 6 ,

y

5 2  24 x



3 10

x

i

98a  36b  14c  33

544a  40c  160, 40b  12, 40a  4c  19 a

9 −1

i

i

5  24 ,

(3, 0)

−9

3

i

2

(2, 6)

i

−4

3

(1, 9)

2

i

i

(0, 10)

i

i

2

11

i

(2, 6)

41 6

36a  14b  6c  21 14a  6b  4c  25 a   54 , b 

46. (a) y  0.078x  2.96

48. (a)

y

7

(b)

−5

5 2 9 199 c  199 20 , y   4 x  20 x  20

1  ax  b  0.0029x  0.1640 y

(b) y  0.0001429x2  0.07229x  2.9886 (c)

9 20 ,

1 0.0029x  0.1640

50

45 0 0

60 0

(d) For the linear model, x  50 gives y  6.86 billion. For the quadratic model, x  50 gives y  6.96 billion.

(c) No. For x  60, y  100. Note that there is a vertical asymptote at x  56.6.

As you extrapolate into the future, the quadratic model increases more rapidly.

Section 12.10

Lagrange Multipliers

2. Maximize f x, y  xy.

4. Minimize f x, y  x2  y 2.

Constraint: 2x  y  4

Constraint: 2x  4y  5

f  g

f  g

y i  xj  2 i   j

2x i  2yj  2 i  4 j

y  2

2x  2 ⇒ x  

x

2y  4 ⇒ y  2

2x  y  4 ⇒ 4  4

2x  4y  5 ⇒ 10  5

  12 , x  12 , y  1

  1, x  1, y  2 f 1, 2  2

f  2 , 1  4 1

5

http://librosysolucionarios.net

Section 12.10 6. Maximize f x, y  x2  y 2.

Lagrange Multipliers

8. Minimize f x, y  3x  y  10.

Constraint: 2y  x2  0

Constraint: x2y  6

f  g

f  g

2x i  2yj  2x i  2 j

3i  j  2xy i  x2 j

2x  2x ⇒ x  0 or   1

3 3  2xy ⇒   2xy

If x  0, then y  0 and f 0, 0  0.

1  x2 ⇒   12 x

If   1, 2y  2  2 ⇒ y  1 ⇒ x2  2 ⇒ x  2.

x2y  6 ⇒ x2

f 2, 1  2  1  1 Maximum.



3x 2 x  0

3x2  2xy ⇒ y 

3x2   6 x3  4 3 4, y  x



3 4, f 

10. Note: f x, y  x2  y 2 is minimum when gx, y is minimum.

2  y 1  x

y  2x

y  2x

xy  32 ⇒ 2x2  32 x  4, y  8

2x  4y  15 ⇒ 10 x  15

f 4, 8  16

3 x , y3 2 f



Constraint: xy  32

Constraint: 2x  4y  15 2y  4

3 4 3 4  20 3 9  2 2

12. Minimize f x, y  2x  y.

Minimize gx, y  x2  y 2. 2x  2

3 4 3 2

32, 3  g32, 3  3 2 5 

14. Maximize or minimize f x, y  exy 4. Constraint: x 2  y 2 ≤ 1 Case 1: On the circle x 2  y 2  1   y 4exy 4  2x

x2  y2  1 ⇒ x  ±



2



2

Maxima: f ± Minima: f ±

2 2

,



⇒ x y 2

 x 4exy 4  2y

2

2

e

 1.1331

e

 0.8825

2

2

2

2

2

1 8

1 8

Case 2: Inside the circle fx    y 4exy 4  0

⇒ xy0

fy   x 4exy 4  0 fxx 



y2 xy 4 x2 1 1 e , fyy  e xy 4 , fxy  exy xy  16 16 16 4



At 0, 0, fxx fyy   fxy2 < 0. Saddle point: f 0, 0  1



Combining the two cases, we have a maximum of e1 8 at ±

2

2

, 

2

2

 and a minimum of e

http://librosysolucionarios.net

1 8



at ±

2

2



2

2

.

351

352

Chapter 12

Functions of Several Variables

16. Maximize f x, y, z  xyz.

18. Minimize x2  10x  y2  14y  70 Constraint: x  y  10

Constraint: x  y  z  6

2x  10   2y  14   xy8



yz   xz   x  y  z xy  



xyz6 ⇒ xyz2

x  1 2  10 y  1 2  14

1 1 x  y    10    14 2 2

f 2, 2, 2  8

   12  8 ⇒   4 Then x  3, y  5. f 3, 5  9  30  25  70  70  4 22. Maximize f x, y, z  xyz.

20. Minimize f x, y, z  x2  y 2  z 2.

Constraints: x 2  z 2  5

Constraints: x  2z  6

x  2y  0

x  y  12 f  g  h

f  g  h

2x i  2yj  2z k  i  2k  i  j

yz i  xz j  xyk  2x i  2z k  i  2j yz  2x  

2x    2y  2x  2y  z 2z  2



x  2z  6 ⇒ z 

xz  2 ⇒  

6x x 3 2 2

xy  2z  ⇒  

x  y  12 ⇒ y  12  x



2x  212  x  3  x  6, z  0 f 6, 6, 0  72

x 2

 ⇒ 92x  27 ⇒ x  6

xy 2

xy 2z

x2  z2  5

⇒ z  5  x 2

x  2y  0

⇒ y

yz  2x

x 2

xy2z   xz2

x5  x 2 x3 x5  x 2   2 25  x 2 2 x5  x 2 

x3 25  x 2

2x5  x 2  x 3 0  3x 3  10x  x3x 2  10

103, y  21103, z  53 10 1 10 5 5 15 f  ,  ,    3 2 3 3 9 x  0 or x 



Note: f  0, 0, 5   0 does not yield a maximum.

http://librosysolucionarios.net

Section 12.10

Lagrange Multipliers

353

24. Minimize the square of the distance f x, y  x2   y  102 subject to the constraint x  42  y 2  4. 2x  2x  4 2 y  10  2y

x4 x

y  10

5 ⇒ y   x  10 2

y

x  42  y 2  4 ⇒ x 2  8x  16 

254 x

2



 50x  100  4

29 2 x  58x  112  0 4 Using a graphing utility, we obtain x  3.2572 and x  4.7428 or, by the Quadratic Formula, x

58 ± 582  429 4112 58 ± 229 429 4 ± .  229 4 29 2 29



Using the smaller value, we have x  4 1 



29

The point on the circle is 4 1  and the desired distance is d 

29

29

29



and

y

1029  1.8570. 29

, 102929 

161 

29

29

  102929  10 

2

2

 8.77.

The larger x-value does not yield a minimum. 28. Maximize f x, y, z  z subject to the constraints x2  y 2  z2  0 and x  2z  4.

26. Minimize the square of the distance f x, y, z  x  4  2

subject to the constraint

y2

x2



z2

0  2x 

 y 2  z  0.

x x 2x  4    z x2  y2 y y 2y    z x2  y 2 2z   

0  2y ⇒ y  0 1  2z  2

2x  4  2x 2y  2y

x2  y 2  z2  0 x  2z  4 ⇒ x  4  2z

4  2z2  02  z2  0

x2  y 2  z  0, x  2, y  0, z  2

3z2  16z  16  0

The point on the plane is 2, 0, 2 and the desired distance is

3z  4z  4  0

d  2  42  02  22  22.

4 3

z

or z  4

The maximum value of f occurs when z  4 at the point of 4, 0, 4. 30. See explanation at the bottom of page 922. 32. Maximize Vx, y, z  xyz subject to the constraint 1.5x y  2xz  2yz  C.

34. Minimize A , r  2 rh  2 r 2 subject to the constraint r 2h  V0.

yz  1.5y  2z 3 xz  1.5x  2z x  y and z  x 4 xy  2x  2y



2 h  4 r  2 rh h  2r 2 r  r 2



r 2h  V0 ⇒ 2 r 3  V0

3 3 1.5xy  2xz  2yz  C ⇒ 1.5x 2  x2  x2  C 2 2 x

2C

Dimensions: r 

3

Volume is maximum when xy

2C

3

and

z

2C

4

.

http://librosysolucionarios.net

2V

3

0

and

2V

h2

3

0

354

Chapter 12

Functions of Several Variables

36. (a) Maximize Px, y, z  xyz subject to the constraint

(b) Maximize P  x1x2x3 . . . xn subject to the constraint n

x  y  z  S. yz  

 x  S. i

i1



x2x3 . . . xn   x1x3 . . . xn   x1x2 . . . xn  

xz   x  y  z xy   S xyzS ⇒ xyz 3



x1x2x3 . . . xn1  

Therefore,

n

    S 3

xyz ≤

S 3

S , x, y, z > 0 3

x S ⇒ x i

1

i1

x1  x2  x3  . . .  xn

S  x2  x3  . . .  xn  n

Therefore,

S3 27

x1x2x3 . . . xn ≤

SnSnSn . . . Sn, x

3 xyz ≤ 

S 3

x1x2x3 . . . xn ≤

Sn

3 xyz ≤ 

xyz . 3

xyz ≤

38. Case 1: Minimize Pl, h  2h  l  1

i

≥ 0

n

n x x x . . .x ≤  1 2 3 n

S n

n x x x . . .x ≤  1 2 3 n

x1  x2  x3  . . .  xn . n

 2l subject to the constraint lh   8l   A. 2



l  h  2 4





2

2h

2  l ⇒   , 1    l 2 l 2 l  2h

h

Case 2: Minimize Al, h  lh  h

l 2

 8  subject to the constraint 2h  l   2l  P.

l

l

   4 2





l

l l

l   l  2 ⇒   , h  2 4 2 4 h

l or l  2h 2

40. Maximize T x, y, z  100  x2  y 2 subject to the constraints x2  y 2  z 2  50 and x  z  0. 2x  2x  2y  2y 0  2z 

42. Maximize Px, y  100x0.4y0.6 Constraint: 48x  36y  100,000.



If y  0, then   1 and  0, z  0.

40x0.6y0.6  48 ⇒

yx

0.6

60x0.4y0.4  36 ⇒

xy

0.4

0.6

T 0, 50, 0  100  50  150 If y  0, then x 2  z 2  2x 2  50 and x  z  50 2.



50

2

, 0,

50

2

48 40



36 60

yx yx

Thus, x  z  0 and y  50.

T



  100  504  112.5

Therefore, the maximum temperature is 150.

0.4



48403660

y  2 ⇒ y  2x x 2500 5000 ,y 48x  36y2x  100,000 ⇒ x  3 3 P

5000 ,  $126,309.71. 2500 3 3 

http://librosysolucionarios.net

Review Exercises for Chapter 12

355

44. Minimize Cx, y  48x  36y subject to the constraint 100x0.6y0.4  20,000. 48  60x0.4y0.4 ⇒

yx

0.4

36  40x0.6y0.6 ⇒

xy

0.6



48 60



36 40

yx yx 0.4

0.6



6048 4036

8 y 8  ⇒ y x x 9 9 100x0.6y0.4  20,000 ⇒ x0.6

89 x

0.4

 200

x

200  209.65 890.4

y

8 200  186.35 9 890.4





Therefore, C209.65, 186.35  $16,771.94. 46. f x, y  ax  by, x, y > 0 Constraint:

x2 y2  1 64 36

(a) Level curves of f x, y  4x  3y are lines of form 4 y   x  C. 3

(b) Level curves of f x, y  4x  9y are lines of form 4 y   x  C. 9

4 Using y   x  12.3, you obtain 3 x  7, y  3, and

4 Using y   x  7, you obtain 9

f 7, 3  28  9  37.

x  4, y  5.2, and f 4, 5.2  62.8.

8

−10

10

−8

Constraint is an ellipse.

Review Exercises for Chapter 12 2. Yes, it is the graph of a function. 6. f x, y 

4. f x, y  ln xy The level curves are of the form c  ln xy

1

2

3

c= 2

c=1 c=0

−3

e c  xy. The level curves are hyperbolas.

c= 2

−2

x xy

3

The level curves are of the form c y

x xy

1 c c x.

1 c = −1 c = − 2 c = − 23 2

c = −2

1

c= 2

c=1 −3

3 3

−2

c= 2 c=2

The level curves are passing through the origin with slope 1c . c

http://librosysolucionarios.net

356

Chapter 12

Functions of Several Variables

1 x

8. gx, y  y

10. f x, y, z  9x2  y2  9z2  0

z

12.

Elliptic cone

lim

x, y → 1, 1

xy x2  y 2

Does not exist

60

Continuous except when y  ± x.

z 2

2 x

5

5

x

y  xey 00 0  x, y → 0, 0 1  x2 10 lim

16. f x, y 

Continuous everywhere

20.

y

y

2

14.

5

xy xy

fx 

yx  y  xy y2  2 x  y x  y2

fy 

x2 x  y2 22. f x, y, z 

w  x2  y 2  z2 x w 1 2  x  y 2  z2122x  x 2 x2  y 2  z2

z  lnx 2  y 2  1

18.

2x z  x x 2  y 2  1 2y z  y x2  y 2  1

1 1  x2  y 2  z2

1 fx   1  x2  y 2  z2322x 2

w y  y x2  y 2  z2



w z  z x2  y 2  z 2

x 1  x2  y 2  z232

fy 

y 1  x2  y 2  z232

fz 

z 1  x2  y 2  z232

26. z  x2 ln y  1

24. ux, t  csin akx cos kt u  akccos akx cos kt x

z z  2x ln y  1. At 2, 0, 0,  0. x x

u  kcsin akx sin kt t

Slope in x-direction. z x2 z  . At 2, 0, 0,  4. y 1  y y Slope in y-direction.

28. hx, y 

x xy

30. gx, y  cosx  2y gx  sinx  2y

hx 

y x  y2

hy 

x x  y2

gxx  cosx  2y

hxx 

2y x  y3

gxy  2 cosx  2y

gy  2 sinx  2y gyy  4 cosx  2y gyx  2 cosx  2y

2x hyy  x  y3 hxy 

x  y2  2yx  y xy  x  y4 x  y3

hyx 

 x  y2  2yx  y xy  x  y4 x  y3

http://librosysolucionarios.net

Review Exercises for Chapter 12 34. z  e x sin y

32. z  x3  3xy 2 z  3x2  3y 2 x

z  e x sin y x

 2z  6x x2

 2z  e x sin y x2

z  6xy y

z  e x cos y y

 2z  6x y 2 Therefore,

36. z 

 2z  e x sin y y 2

 2z  2z   0. x2 y 2

Therefore,

 2z 2z  2  0. 2 x y

xy x2  y 2

dz  

z z dx  dy x y





x2  y 2 y  xy x x2  y 2

x2  y 2



 dx  



x2  y 2x  xy y x2  y 2

x2  y 2



 dy  x y y  3

2

2 32

dx 

38. From the accompanying figure we observe tan  

h or h  x tan  x

h

h h dx  d  tan  dx  x sec2  d. dh  x 

θ

1 11  Letting x  100, dx  ± ,   , and d  ± . 2 60 180

x

(Note that we express the measurement of the angle in radians.) The maximum error is approximately dh  tan

40.

 1160 ± 12  100 sec 1160 ± 180  ± 0.3247 ± 2.4814  ± 2.81 feet. 2

A   r r 2  h2



dA   r 2  h2  

r2  rh dr  dh r 2  h2 r 2  h2



2r 2  h2  rh  8  25 1 43 10 1 dr  dh  ±  ± ± 8 r 2  h2 r 2  h2 29 29 8 8 29





42. u  y 2  x, x  cos t, y  sin t Chain Rule:

du u x u y   dt x t y t  1sin t  2ycos t  sin t  2sin t cos t  sin t1  2 cos t

Substitution: u  sin2 t  cos t du  2 sin t cos t  sin t  sin t1  2 cos t dt

http://librosysolucionarios.net

x3 dy x2  y 232

357

358

Chapter 12

44. w 

Functions of Several Variables

xy , x  2r  t, y  rt, z  2r  t z

Chain Rule:

xz2  y sin z  0

46.

w w x w y w z    r x r y r z r

2xz

z2 z  x y cos z  2xz

y x xy  2  t  2 2 z z z 

2rt 2r  tt 22r  trt   2r  t 2r  t 2r  t2



4r2t  4rt2  t 3 2r  t2

z z  z2  y cos z 0 x x

2xz

z z  y cos z  sin z  0 y y sin z z  y 2xz  y cos z

w w x w y w z    t x t y t z t y x xy  1  r  2 1 z z z  w

Substitution:

4r2t  rt 2  4r 3 2r  t2 xy 2r  trt 2r2t  rt 2   z 2r  t 2r  t

w 4r2t  4rt2  t 3  r 2r  t2 w 4r2t  rt2  4r 3  t 2r  t2

48.

1 f x, y  y 2  x 2 4

w  6x2  3xy  4y 2z

50.

w  12x  3yi  3x  8yzj  4y 2k

1 f  2xi  yj 2

w1, 0, 1  12i  3j

f 1, 4  2i  2j

u

5 2 5 1 i j v u 5 5 5

Du f 1, 4  f 1, 4 u  

z

52.

z 

1 3

v

3

3

i

3

3

j

3

3

k

Duw1, 0, 1  w1, 0, 1 u  4 3  3  0  5 3

2 5 4 5 2 5   5 5 5

x2 xy

54.

z  x2y z  2xy i  x2j

x2  2xy x2 i j 2 x  y x  y2

z2, 1  4i  4 j z2, 1  4 2

z2, 1  4 j z2, 1  4 56. 4y sin x  y2  3

58.

F  2yj  2z k

f x, y  4y sin x  y2 f x, y  4y cos xi  4 sin x  2yj f

2 , 1  2j

Normal vector: j

Fx, y, z  y 2  z 2  25  0 F2, 3, 4  6j  8k  23j  4k Therefore, the equation of the tangent plane is 3 y  3  4z  4  0 or

3y  4z  25,

and the equation of the normal line is x  2,

y3 z4  . 3 4

http://librosysolucionarios.net

Review Exercises for Chapter 12 60.

Fx, y, z  x2  y 2  z 2  9  0

62.

Fx, y, z  y 2  z  25  0 Gx, y, z  x  y  0

F  2xi  2y j  2z k F1, 2, 2  2i  4j  4k  2i  2j  2k

F  2y i  k

Therefore, the equation of the tangent plane is

G  i  j F4, 4, 9  8i  k

x  1  2 y  2  2z  2  0 or



x  2y  2z  9,

i F G  8 1

and the equation of the normal line is x1 y2 z2   . 1 2 2

j 0 1

k 1  i  j  8k 0

Therefore, the equation of the tangent line is x4 y4 z9   . 1 1 8

64. (a) f x, y  cos x  sin y,

f 0, 0  1

(b) fxx  cos x,

fx  sin x,

fx0, 0  0

fyy  sin y,

fyy0, 0  0

fy  cos y,

fy0, 0  1

fxy  0,

fxy0, 0  0

P1x, y  1  y

1 P2x, y  1  y  2 x2

(c) If y  0, you obtain the 2nd degree Taylor polynomial for cos x.

(e)

fxx0, 0  1

z

(d)

f x, y

0

0

1.0

1.0

1.0

0

0.1

1.0998

1.1

1.1

0.2

0.1

1.0799

1.1

1.095

0.5

0.3

1.1731

1.3

1.175

1

0.5

1.0197

1.5

1.0

z 3

2 2 −2 −1 1

1

y

1 x

−1

−2

−1 y

1

P2x, y

y

z

2

P1x, y

x

2

1 −1

1

2

y

x

x

The accuracy lessens as the distance from 0, 0 increases. 66. f x, y  2x2  6xy  9y 2  8x  14 fx  4x  6y  8  0 fy  6x  18y  0, x  3y 43y  6y  8 ⇒ y  43 , x  4 fxx  4 fyy  18 fxy  6 fxx fyy   f xy 2  418  62  36 > 0 Therefore,  4, 43 , 2 is a relative minimum.

http://librosysolucionarios.net

359

360

Chapter 12

Functions of Several Variables

68. z  50x  y  0.1x3  20x  150  0.05y3  20.6y  125 zx  50  0.3x2  20  0, x  ± 10 zy  50  0.15y 2  20.6  0, y  ± 14 Critical Points: 10, 14, 10, 14, 10, 14, 10, 14 zxx  0.6x, zyy  0.3y, zxy  0 At 10, 14, zxx zyy  zxy2  64.2  02 > 0, zxx < 0.

10, 14, 199.4 is a relative maximum. At 10, 14, zxx zyy  zxy2  64.2  02 < 0.

10, 14, 349.4 is a saddle point. At 10, 14, zxx zyy  zxy2  64.2  02 < 0.

10, 14, 200.6 is a saddle point. At 10, 14, zxx zyy  xxy2  64.2  02 > 0, zxx < 0.

10, 14, 749.4 is a relative minimum. 70. The level curves indicate that there is a relative extremum at A, the center of the ellipse in the second quadrant, and that there is a saddle point at B, the origin. 72. Minimize Cx1, x2  0.25x12  10x1  0.15x22  12x2 subject to the constraint x1  x2  1000. 0.50x1  10   0.30x2  12  

5x  3x  20 1

2

x1  x2  1000 ⇒ 3x1  3x2  3000 5x1  3x2 

20

 3020

8x1

x1  377.5 x2  622.5 C377.5, 622.5  104,997.50 74. Minimize the square of the distance: f x, y, z  x  22   y  22  x2  y2  02. fx  2x  2  2x2  y22x  0 x  2  2x3  2xy2  0

fy  2y  2  2x2  y22y  0 y  2  2y3  2x2y  0 Clearly x  y and hence: 4x3  x  2  0. Using a computer algebra system, x  0.6894. Thus, distance2  0.6894  22  0.6894  22  20.689422  4.3389. distance  2.08 76. (a) 25, 28, 50, 38, 75, 54, 100, 75, 125, 102

 x  375,  y  297, x  x  382,421,875,  x y  26,900,  x i

i

4

i

 34,375,

2

i i

2

i i

yi  2,760,000,

x

382,421,875a  3,515,625b  34,375c  2,760,000 3,515,625a 

34,375b 

375c 

26,900

34,375a 

375b 

5c 

297

a  0.0045, b  0.0717, c  23.2914, y  0.0045x2  0.0717x  23.2914 (b) When x  80 km/hr, y  57.8 km.

http://librosysolucionarios.net

3

i

 3,515,625

Review Exercises for Chapter 12

355

44. Minimize Cx, y  48x  36y subject to the constraint 100x0.6y0.4  20,000. 48  60x0.4y0.4 ⇒

yx

0.4

36  40x0.6y0.6 ⇒

xy

0.6



48 60



36 40

yx yx 0.4

0.6



6048 4036

8 y 8  ⇒ y x x 9 9 100x0.6y0.4  20,000 ⇒ x0.6

89 x

0.4

 200

x

200  209.65 890.4

y

8 200  186.35 9 890.4





Therefore, C209.65, 186.35  $16,771.94. 46. f x, y  ax  by, x, y > 0 Constraint:

x2 y2  1 64 36

(a) Level curves of f x, y  4x  3y are lines of form 4 y   x  C. 3

(b) Level curves of f x, y  4x  9y are lines of form 4 y   x  C. 9

4 Using y   x  12.3, you obtain 3 x  7, y  3, and

4 Using y   x  7, you obtain 9

f 7, 3  28  9  37.

x  4, y  5.2, and f 4, 5.2  62.8.

8

−10

10

−8

Constraint is an ellipse.

Review Exercises for Chapter 12 2. Yes, it is the graph of a function. 6. f x, y 

4. f x, y  ln xy The level curves are of the form c  ln xy

1

2

3

c= 2

c=1 c=0

−3

e c  xy. The level curves are hyperbolas.

c= 2

−2

x xy

3

The level curves are of the form c y

x xy

1 c c x.

1 c = −1 c = − 2 c = − 23 2

c = −2

1

c= 2

c=1 −3

3 3

−2

c= 2 c=2

The level curves are passing through the origin with slope 1c . c

http://librosysolucionarios.net

356

Chapter 12

Functions of Several Variables

1 x

8. gx, y  y

10. f x, y, z  9x2  y2  9z2  0

z

12.

Elliptic cone

lim

x, y → 1, 1

xy x2  y 2

Does not exist

60

Continuous except when y  ± x.

z 2

2 x

5

5

x

y  xey 00 0  x, y → 0, 0 1  x2 10 lim

16. f x, y 

Continuous everywhere

20.

y

y

2

14.

5

xy xy

fx 

yx  y  xy y2  2 x  y x  y2

fy 

x2 x  y2 22. f x, y, z 

w  x2  y 2  z2 x w 1 2  x  y 2  z2122x  x 2 x2  y 2  z2

z  lnx 2  y 2  1

18.

2x z  x x 2  y 2  1 2y z  y x2  y 2  1

1 1  x2  y 2  z2

1 fx   1  x2  y 2  z2322x 2

w y  y x2  y 2  z2



w z  z x2  y 2  z 2

x 1  x2  y 2  z232

fy 

y 1  x2  y 2  z232

fz 

z 1  x2  y 2  z232

26. z  x2 ln y  1

24. ux, t  csin akx cos kt u  akccos akx cos kt x

z z  2x ln y  1. At 2, 0, 0,  0. x x

u  kcsin akx sin kt t

Slope in x-direction. z x2 z  . At 2, 0, 0,  4. y 1  y y Slope in y-direction.

28. hx, y 

x xy

30. gx, y  cosx  2y gx  sinx  2y

hx 

y x  y2

hy 

x x  y2

gxx  cosx  2y

hxx 

2y x  y3

gxy  2 cosx  2y

gy  2 sinx  2y gyy  4 cosx  2y gyx  2 cosx  2y

2x hyy  x  y3 hxy 

x  y2  2yx  y xy  x  y4 x  y3

hyx 

 x  y2  2yx  y xy  x  y4 x  y3

http://librosysolucionarios.net

Review Exercises for Chapter 12 34. z  e x sin y

32. z  x3  3xy 2 z  3x2  3y 2 x

z  e x sin y x

 2z  6x x2

 2z  e x sin y x2

z  6xy y

z  e x cos y y

 2z  6x y 2 Therefore,

36. z 

 2z  e x sin y y 2

 2z  2z   0. x2 y 2

Therefore,

 2z 2z  2  0. 2 x y

xy x2  y 2

dz  

z z dx  dy x y





x2  y 2 y  xy x x2  y 2

x2  y 2



 dx  



x2  y 2x  xy y x2  y 2

x2  y 2



 dy  x y y  3

2

2 32

dx 

38. From the accompanying figure we observe tan  

h or h  x tan  x

h

h h dx  d  tan  dx  x sec2  d. dh  x 

θ

1 11  Letting x  100, dx  ± ,   , and d  ± . 2 60 180

x

(Note that we express the measurement of the angle in radians.) The maximum error is approximately dh  tan

40.

 1160 ± 12  100 sec 1160 ± 180  ± 0.3247 ± 2.4814  ± 2.81 feet. 2

A   r r 2  h2



dA   r 2  h2  

r2  rh dr  dh r 2  h2 r 2  h2



2r 2  h2  rh  8  25 1 43 10 1 dr  dh  ±  ± ± 8 r 2  h2 r 2  h2 29 29 8 8 29





42. u  y 2  x, x  cos t, y  sin t Chain Rule:

du u x u y   dt x t y t  1sin t  2ycos t  sin t  2sin t cos t  sin t1  2 cos t

Substitution: u  sin2 t  cos t du  2 sin t cos t  sin t  sin t1  2 cos t dt

http://librosysolucionarios.net

x3 dy x2  y 232

357

358

Chapter 12

44. w 

Functions of Several Variables

xy , x  2r  t, y  rt, z  2r  t z

Chain Rule:

xz2  y sin z  0

46.

w w x w y w z    r x r y r z r

2xz

z2 z  x y cos z  2xz

y x xy  2  t  2 2 z z z 

2rt 2r  tt 22r  trt   2r  t 2r  t 2r  t2



4r2t  4rt2  t 3 2r  t2

z z  z2  y cos z 0 x x

2xz

z z  y cos z  sin z  0 y y sin z z  y 2xz  y cos z

w w x w y w z    t x t y t z t y x xy  1  r  2 1 z z z  w

Substitution:

4r2t  rt 2  4r 3 2r  t2 xy 2r  trt 2r2t  rt 2   z 2r  t 2r  t

w 4r2t  4rt2  t 3  r 2r  t2 w 4r2t  rt2  4r 3  t 2r  t2

48.

1 f x, y  y 2  x 2 4

w  6x2  3xy  4y 2z

50.

w  12x  3yi  3x  8yzj  4y 2k

1 f  2xi  yj 2

w1, 0, 1  12i  3j

f 1, 4  2i  2j

u

5 2 5 1 i j v u 5 5 5

Du f 1, 4  f 1, 4 u  

z

52.

z 

1 3

v

3

3

i

3

3

j

3

3

k

Duw1, 0, 1  w1, 0, 1 u  4 3  3  0  5 3

2 5 4 5 2 5   5 5 5

x2 xy

54.

z  x2y z  2xy i  x2j

x2  2xy x2 i j 2 x  y x  y2

z2, 1  4i  4 j z2, 1  4 2

z2, 1  4 j z2, 1  4 56. 4y sin x  y2  3

58.

F  2yj  2z k

f x, y  4y sin x  y2 f x, y  4y cos xi  4 sin x  2yj f

2 , 1  2j

Normal vector: j

Fx, y, z  y 2  z 2  25  0 F2, 3, 4  6j  8k  23j  4k Therefore, the equation of the tangent plane is 3 y  3  4z  4  0 or

3y  4z  25,

and the equation of the normal line is x  2,

y3 z4  . 3 4

http://librosysolucionarios.net

Review Exercises for Chapter 12 60.

Fx, y, z  x2  y 2  z 2  9  0

62.

Fx, y, z  y 2  z  25  0 Gx, y, z  x  y  0

F  2xi  2y j  2z k F1, 2, 2  2i  4j  4k  2i  2j  2k

F  2y i  k

Therefore, the equation of the tangent plane is

G  i  j F4, 4, 9  8i  k

x  1  2 y  2  2z  2  0 or



x  2y  2z  9,

i F G  8 1

and the equation of the normal line is x1 y2 z2   . 1 2 2

j 0 1

k 1  i  j  8k 0

Therefore, the equation of the tangent line is x4 y4 z9   . 1 1 8

64. (a) f x, y  cos x  sin y,

f 0, 0  1

(b) fxx  cos x,

fx  sin x,

fx0, 0  0

fyy  sin y,

fyy0, 0  0

fy  cos y,

fy0, 0  1

fxy  0,

fxy0, 0  0

P1x, y  1  y

1 P2x, y  1  y  2 x2

(c) If y  0, you obtain the 2nd degree Taylor polynomial for cos x.

(e)

fxx0, 0  1

z

(d)

f x, y

0

0

1.0

1.0

1.0

0

0.1

1.0998

1.1

1.1

0.2

0.1

1.0799

1.1

1.095

0.5

0.3

1.1731

1.3

1.175

1

0.5

1.0197

1.5

1.0

z 3

2 2 −2 −1 1

1

y

1 x

−1

−2

−1 y

1

P2x, y

y

z

2

P1x, y

x

2

1 −1

1

2

y

x

x

The accuracy lessens as the distance from 0, 0 increases. 66. f x, y  2x2  6xy  9y 2  8x  14 fx  4x  6y  8  0 fy  6x  18y  0, x  3y 43y  6y  8 ⇒ y  43 , x  4 fxx  4 fyy  18 fxy  6 fxx fyy   f xy 2  418  62  36 > 0 Therefore,  4, 43 , 2 is a relative minimum.

http://librosysolucionarios.net

359

360

Chapter 12

Functions of Several Variables

68. z  50x  y  0.1x3  20x  150  0.05y3  20.6y  125 zx  50  0.3x2  20  0, x  ± 10 zy  50  0.15y 2  20.6  0, y  ± 14 Critical Points: 10, 14, 10, 14, 10, 14, 10, 14 zxx  0.6x, zyy  0.3y, zxy  0 At 10, 14, zxx zyy  zxy2  64.2  02 > 0, zxx < 0.

10, 14, 199.4 is a relative maximum. At 10, 14, zxx zyy  zxy2  64.2  02 < 0.

10, 14, 349.4 is a saddle point. At 10, 14, zxx zyy  zxy2  64.2  02 < 0.

10, 14, 200.6 is a saddle point. At 10, 14, zxx zyy  xxy2  64.2  02 > 0, zxx < 0.

10, 14, 749.4 is a relative minimum. 70. The level curves indicate that there is a relative extremum at A, the center of the ellipse in the second quadrant, and that there is a saddle point at B, the origin. 72. Minimize Cx1, x2  0.25x12  10x1  0.15x22  12x2 subject to the constraint x1  x2  1000. 0.50x1  10   0.30x2  12  

5x  3x  20 1

2

x1  x2  1000 ⇒ 3x1  3x2  3000 5x1  3x2 

20

 3020

8x1

x1  377.5 x2  622.5 C377.5, 622.5  104,997.50 74. Minimize the square of the distance: f x, y, z  x  22   y  22  x2  y2  02. fx  2x  2  2x2  y22x  0 x  2  2x3  2xy2  0

fy  2y  2  2x2  y22y  0 y  2  2y3  2x2y  0 Clearly x  y and hence: 4x3  x  2  0. Using a computer algebra system, x  0.6894. Thus, distance2  0.6894  22  0.6894  22  20.689422  4.3389. distance  2.08 76. (a) 25, 28, 50, 38, 75, 54, 100, 75, 125, 102

 x  375,  y  297, x  x  382,421,875,  x y  26,900,  x i

i

4

i

 34,375,

2

i i

2

i i

yi  2,760,000,

x

382,421,875a  3,515,625b  34,375c  2,760,000 3,515,625a 

34,375b 

375c 

26,900

34,375a 

375b 

5c 

297

a  0.0045, b  0.0717, c  23.2914, y  0.0045x2  0.0717x  23.2914 (b) When x  80 km/hr, y  57.8 km.

http://librosysolucionarios.net

3

i

 3,515,625

Problem Solving for Chapter 12

78. Optimize f x, y  x2y subject to the constraint x  2y  2. 2xy  

 x  4xy ⇒ x  0 or x  4y 2

x2  2 x  2y  2

1 4 If x  0, y  1. If x  4y, then y  3 , x  3 . 4 1 16 Maximum: f  3 , 3   27

Minimum: f 0, 1  0

Problem Solving for Chapter 12 4 2. V   r 3   r 2h 3 Material  M  4 r 2  2 rh V  1000 ⇒ h 

1000  43 r 3 r2

Hence, M  4 r 2  2 r  4 r 2 

1000 r43 r  3

2

2000 8 2  r r 3

dM 2000 16  8 r  2   r  0 dr r 3 8 r 

16 2000 r  2 3 r

r3

83  2000 r3 

Then, h 



750 6 ⇒ r5  

13

.

1000  43750  0. r2

The tank is a sphere of radius r  5

6 

13

.

4. (a) As x → ± , f x  x3  113 → x and hence lim f x  gx  lim f x  gx  0.

x→ 

x→

(b) Let x0, x03  113 be a point on the graph of f.

4

−6

6

The line through this point perpendicular to g is y  x  x0 

3 x 3  0

−4

 1.

This line intersects g at the point

12 x

0

3 x 3  1 ,  0



1 x  3 x03  1 . 2 0

The square of the distance between these two points is hx0 

1 x  3 x03  1 2. 2 0

h is a maximum for x0 

1 3 2 

. Hence, the point on f farthest from g is

 12,  12. 3 

3 

http://librosysolucionarios.net

361

362

Chapter 12

Functions of Several Variables

6. Heat Loss  H  k5xy  xy  3xz  3xz  3yz  3yz  k6xy  6xz  6yz V  xyz  1000 ⇒ z 



Then H  6k xy 

1000 . xy



1000 1000  . y x

Setting Hx  Hy  0, you obtain x  y  z  10. 8. (a) Tx, y  2x2  y2  y  10  10 1 1  4 4

2x2  y2  y 



2x2  y 

1 2

y



2



1 2

1 4

x −

1 2



1 2

1 2

x2  y  122   1 ellipse 18 14 (b) On x2  y2  1, Tx, y  Ty  21  y2  y2  y  10  12  y2  y 3 1 T y  2y  1  0 ⇒ y   , x  ± . 2 2

Inside: Tx  4x  0, Ty  2y  1  0 ⇒

0, 21

 12  394 minimum

T 0,



T ±

3

2

,



1 49 maximum  2 4

10. x  r cos , y  r sin , z  z u u x u y u z   

x

y

z



u u r sin   r cos Similarly, x y

u u u  cos  sin . r x y 2u x 2u 2u y 2u z u cos

 r sin    r 2 2

x x y x z

x





u x u y u z u   r sin

y x y y z y

 r cos  

2

2

2

2

2u 2 2 2u 2u 2 u u r sin  2 r 2 cos2  2 r sin cos  r cos  r sin

x2 y x y x y

Similarly,

2u 2u 2u 2 u  2 cos2  2 sin2  2 cos sin . r 2 x y x y

Now observe that 2u 1 u 2u 2u 2u 2u 1 u u 1 2u  cos2  2 sin2  2  2 2 2 cos sin  cos  sin

r 2 r r r

z x2 y x y r x y





2u

x



2u 2u 2u  2  2. x2 y z

sin2 



2u 2u 1 u 1 u 2u cos2  2 sin cos  cos  sin  2 y2 x y r x r y z



2



Thus, Laplaces equation in cylindrical coordinates, is



1 2u 2u 2u 1 u  2 2  2  0.  2 r r r r

z

http://librosysolucionarios.net

Problem Solving for Chapter 12 12. (a) d  x2  y2   322t2   322t  16t22

(b)

dd 32 t2  32t  8  dt t2  42t  16

(d)

d 2d 32 t3  62t2  36t  3212   0 dt2  t2  42t  1632

 4096t2  10242t3  256t4  16tt2  42t  16 (c) When t  2: dd 32 12  62  

38.16 ftsec dt 20  82

when t 1.943 seconds. No. The projectile is at its maximum height when t  2.

14. Given that f is a differentiable function such that f x0, y0  0, then fxx0, y0  0 and fyx0, y0  0. Therefore, the tangent plane is  z  z0  0 or z  z0  f x0, y0 which is horizontal.



16. r,   5,

 18



y

dr  ± 0.05, d  ± 0.05 x  r cos  5 cos



4.924 18

 y  r sin  5 sin

0.868 18

5 4 3 2 1

(

(r, θ ) = 5,

π 18

)

5 x 1

(a) dx should be more effected by changes in r. dx  cos dr  r sin d

2

3

4

5

(b) dy should be more effected by changes in . dy  sin dr  r cos d

0.985dr  0.868 d

0.174 dr  4.924 d

dx is more effected by changes in r because 0.985 > 0.868.

18.

π θ = 18

dy is more effected by because 4.924 > 0.174.

u 1  cosx  t  cosx  t

t 2 2u 1  sinx  t  sinx  t

t 2 2 u 1  cosx  t  cosx  t

x 2 2u 1  sinx  t  sinx  t

x 2 2 Then,

2u 2u  2. t 2 x

http://librosysolucionarios.net

363

C H A P T E R 1 2 Functions of Several Variables Section 12.1 Introduction to Functions of Several Variables . . . . . . . 76 Section 12.2 Limits and Continuity . . . . . . . . . . . . . . . . . . . . 80 Section 12.3 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 83 Section 12.4 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . 88 Section 12.5 Chain Rules for Functions of Several Variables . . . . . . . 92 Section 12.6 Directional Derivatives and Gradients . . . . . . . . . . . . 98 Section 12.7 Tangent Planes and Normal Lines . . . . . . . . . . . . . 103 Section 12.8 Extrema of Functions of Two Variables . . . . . . . . . . 109 Section 12.9 Applications of Extrema of Functions of Two Variables

. 113

Section 12.10 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 119 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

http://librosysolucionarios.net

C H A P T E R 1 2 Functions of Several Variables Section 12.1

Introduction to Functions of Several Variables

Solutions to Odd-Numbered Exercises 1. x 2z  yz  xy  10

3.

zx 2  y  10  xy

x2 y2   z2  1 4 9 No, z is not a function of x and y. For example, x, y  0, 0 corresponds to both z  ± 1.

10  xy z 2 x y Yes, z is a function of x and y.

5. f x, y 

x y

(a) f 3, 2 

3 2

(b) f 1, 4  

(d) f 5, y 

5 y

(e) f x, 2 

(c) f 30, 5 

x 2

(f) f 5, t 

(a) f 5, 0  5e0  5 (b) f 3, 2  3e 2 2 e

30 6 5

5 t

xy z

9. hx, y, z 

7. f x, y  xe y

(c) f 2, 1  2e1 

1 4

(a) h2, 3, 9 

23 2  9 3

(b) h1, 0, 1 

10 0 1

(d) f 5, y  5e y (e) f x, 2  xe 2 (f) f t, t  tet



y

11. f x, y  x sin y

13. gx, y 

2t  3 dt

x

 4   2 sin 4  2

 

4

(a) f 2,

(a) g0, 4 

0

(b) f 3, 1  3 sin 1

4

(b) g1, 4 

1









4

2t  3 dt  t 2  3t

2t  3 dt  t 2  3t

0 4 1

4 6

15. f x, y  x 2  2y (a)

f x  x, y  f x, y x  x2  2y  x2  2y  x x 

(b)

x 2  2xx  x2  2y  x 2  2y x2x  x   2x  x, x  0 x x

f x, y  y  f x, y x 2  2 y  y  x 2  2y x 2  2y  2y  x 2  2y 2y     2, y  0 y y y y

76

http://librosysolucionarios.net

Section 12.1 17. f x, y  4  x 2  y 2 Domain: 4 

x2

19. f x, y  arcsinx  y

y ≥ 0 2 2

Domain: 4  x  y > 0 xy < 4

  Range:  ≤ z ≤ 2 2

x, y: x 2  y 2 ≤ 4

x, y: y < x  4

Range: 0 ≤ z ≤ 2

23. z 

Range: all real numbers

xy xy

25. f x, y  e xy

27. gx, y 

Domain: x, y: y  0

Domain: x, y: x  0 and y  0

1 xy

Domain: x, y: x  0 and y  0

Range: z > 0

Range: all real numbers

29. f x, y 

77

21. f x, y  ln4  x  y

Domain: x, y: 1 ≤ x  y ≤ 1

x y ≤ 4 2

Introduction to Functions of Several Variables

Range: all real numbers except zero

4x x2  y2  1

(a) View from the positive x-axis: 20, 0, 0

(b) View where x is negative, y and z are positive: 15, 10, 20

(c) View from the first octant: 20, 15, 25

(d) View from the line y  x in the xy-plane: 20, 20, 0

31. f x, y  5

33. f x, y  y 2

z

Plane: z  5

Since the variable x is missing, the surface is a cylinder with rulings parallel to the x-axis. The generating curve is z  y 2. The domain is the entire xy-plane and the range is z ≥ 0.

4

2

2

z

4

4

y 5

x

4

1 4

2

3

y

x

35. z  4  x 2  y 2

37. f x, y  ex

z 4

Paraboloid Domain: entire xy-plane Range: z ≤ 4 −3

2

3

3

z

Since the variable y is missing, the surface is a cylinder with rulings parallel to the y-axis. The generating curve is z  ex. The domain is the entire xy-plane and the range is z > 0.

y

8 6 4 2

x 4 x

39. z  y 2  x 2  1

41. f x, y  x 2exy2

z

Hyperbolic paraboloid

z

Domain: entire xy-plane Range:   < z <



y

x

y x

http://librosysolucionarios.net

4

y

78

Chapter 12

Functions of Several Variables

43. f x, y  x 2  y 2 (a)

(c) g is a horizontal translation of f two units to the right. The vertex moves from 0, 0, 0 to 0, 2, 0.

z 5 4

(d) g is a reflection of f in the xy-plane followed by a vertical translation 4 units upward. (e)

−2 1

2

y

2

z

z

x

5

5

4

4

(b) g is a vertical translation of f two units upward z = f (x, 1)

z = f (1, y)

2 2

x

y

2

2

x

45. z  e1x



2 y 2

47. z  ln y  x 2

Level curves:

y



49. z  x  y Level curves are parallel lines of the form x  y  c.

Level curves:

c



2 2 e1x y

c  ln y 

ln c  1  x 2  y 2

x2



y

± ec  y  x2

x 2  y 2  1  ln c

4

y  x2 ± e c

Circles centered at 0, 0

Parabolas

Matches (c)

Matches (b)

2

−2

2

x 4 c=4

−2

c=2 c = −1

53. f x, y  xy

51. f x, y  25  x 2  y 2

The level curves are hyperbolas of the form xy  c.

The level curves are of the form c  25  x 2  y 2, x2



y2

 25 

c=0

y

c 2.

Thus, the level curves are circles of radius 5 or less, y centered at the origin. 6

1

c=5 c=4 c=3 c=2

−1

1 −1

2 −6

x

−2

2

c=6 c=5 c=4 c=3 c=2 c=1 x c = −1 c = −2 c = −3 c = −4 c = −5 c = −6

6

−2

c=1 c=0

−6

55. f x, y 

x x2  y2

57. f x, y  x2  y2  2

The level curves are of the form x c 2 x  y2 x x   y2  0 c

c=− c=−

3 2

−9

y

1 2 2

c=2 x

2

2

 y2 

2c1 

2

c = −2

c=

c = −1

1 c= 2

9

−6

c=1

2

x  2c1 

6

3 2

Thus, the level curves are circles passing through the origin and centered at 12c, 0.

http://librosysolucionarios.net

Section 12.1 59. gx, y 

8 1  x2  y2

Introduction to Functions of Several Variables

61. See Definition, page 838.

63. No, The following graphs are not hemispheres. z  ex

4

−6

2 y 2

z  x2  y2

6

−4

1  R  1  0.10 1I

Inflation Rate

f x, y  x 2  y 2.

69. f x, y, z  x  2y  3z

10

67. VI, R  1000

65. The surface is sloped like a saddle. The graph is not unique. Any vertical translation would have the same level curves. One possible function is

Tax Rate

0

0.03

0.05

0

2593.74

1929.99

1592.33

0.28

2004.23

1491.34

1230.42

0.35

1877.14

1396.77

1152.40

71. f x, y, z  x 2  y 2  z 2

73. f x, y, z  4x 2  4y 2  z 2

c6

c9

c0

6  x  2y  3z

9  x2  y2  z2

0  4x 2  4y 2  z 2

Plane

Sphere

Elliptic cone

z

z

z 4

3

2

−2

−3

−2

−4

y

2

4

4

x 6

y

1

2

y

x

−4

x

75. Nd, L 

d 4 4

(a) N22, 12 

2

L

22 4 4 12  243 board-feet 2

(b) N30, 12 

The level curves are of the form c  600 

0.75x 2

x2  y 2 

600  c . 0.75



30 4 4 12  507 board-feet 2

20.40xz  20.40yz

79. C  0.75xy 

77. T  600  0.75x 2  0.75y 2

base  front & back  two ends

0.75y 2

 0.75xy  0.80xz  yz

The level curves are circles centered at the origin. c = 600 c = 500 c = 400

y 30

c = 300 c = 200 c = 100 c=0

x z y

x

−30

79

30

−30

http://librosysolucionarios.net

80

Chapter 12

Functions of Several Variables

81. PV  kT, 202600  k300 (a) k 

202600 520  300 3

(b) P 

kT 520 T  V 3 V

 

The level curves are of the form: c  V

T 520 3  V  520 T 3c

Thus, the level curves are lines through the origin with slope

520 . 3c

83. (a) Highest pressure at C

85. (a) The boundaries between colors represent level curves

(b) Lowest pressure at A

(b) No, the colors represent intervals of different lengths, as indicated in the box

(c) Highest wind velocity at B

(c) You could use more colors, which means using smaller intervals 89. False. Let

87. False. Let f x, y  2xy

f x, y  5.

f 1, 2  f 2, 1, but 1  2

Section 12.2

Then, f 2x, 2y  5  22 f x, y.

Limits and Continuity



 



1. Let  > 0 be given. We need to find  > 0 such that f x, y  L  y  b <  whenever 0 < x  a2   y  b2 < . Take   . Then if 0 < x  a2   y  b2 <   , we have  y  b2 < 

y  b < . 3.

5.

7.

lim

 f x, y  gx, y 

lim

 f x, ygx, y 

lim

x  3y 2  2  312  5

x, y → a, b

x, y → a, b



lim

x, y → a, b

lim

x, y → a, b

f x, y 



f x, y

lim

x, y → a, b

lim

x, y → a, b

gx, y  5  3  2



gx, y  53  15

9.

x, y → 2, 1

lim

x, y → 0, 1

arcsinx y  arcsin 0  0 1  xy

13.

 

Continuous for xy  1, y  0, x y ≤ 1 15.

lim

x, y, z → 1, 2, 5

x  y  z  8  22

Continuous for x  y  z ≥ 0

xy 24   3 xy 24

Continuous for x  y

Continuous everywhere

11.

lim

x, y → 2, 4

lim

x, y → 1, 2

e xy  e2 

Continuous everywhere 17.

lim

x, y → 0, 0

e xy  1

Continuous everywhere

http://librosysolucionarios.net

1 e2

Section 12.2 19.

lim

x, y → 0, 0

Limits and Continuity

81

lnx2  y2  ln0   

The limit does not exist. Continuous except at 0, 0

21. f x, y 

xy x2  y2

Continuous except at 0, 0 Path: y  0

Path: y  x

x, y

1, 0

0.5, 0

0.1, 0

0.01, 0

0.001, 0

f x, y

0

0

0

0

0

x, y

1, 1

0.5, 0.5

0.1, 0.1

0.01, 0.01

0.001, 0.001

1 2

1 2

1 2

1 2

1 2

f x, y

The limit does not exist because along the path y  0 the function equals 0, whereas along the path y  x the function equals 12 .

23. f x, y  

x2

xy 2  y4

Continuous except at 0, 0 Path: x  y 2

Path: x  y 2

x, y

1, 1

0.25, 0.5

0.01, 0.1

0.0001, 0.01

0.000001, 0.001

f x, y

 12

 12

 12

 12

 12

x, y

1, 1

0.25, 0.5

0.01, 0.1

0.0001, 0.01

0.000001, 0.001

1 2

1 2

1 2

1 2

1 2

f x, y

The limit does not exist because along the path x  y 2 the function equals  12 , whereas along the path x  y 2 the function equals 12 .

25.

lim

x, y → 0, 0

f x, y  

 2xy2  y2 x2  y2

lim

x

lim

1  x 2xy y   1

2

x, y → 0, 0



27.

lim

x, y → 0, 0

z

2

x, y → 0, 0

2

sin x  sin y  0

2

(same limit for g)

y

Thus, f is not continuous at 0, 0, whereas g is continuous at 0, 0.

29.

lim

x, y → 0, 0

x2y x 4  4y 2

x

31. f x, y 

Does not exist

10xy 2x2  3y2

The limit does not exist. Use the paths x  0 and x  y.

z

z

y

x

y x

http://librosysolucionarios.net

82

Chapter 12

Functions of Several Variables

33.

sinx 2  y 2 sin r 2 2r cos r 2  lim 2  lim  lim cos r 2  1 2 2 r→0 r→0 r→0 x, y → 0, 0 x y r 2r

35.

x3  y 3 r 3 cos3  sin3   lim  lim rcos3  sin3   0 2 2 r→0 r→0 x, y → 0, 0 x  y r2

lim

lim

37. f x, y, z 

1

39. f x, y, z 

x 2  y 2  z 2

Continuous except at 0, 0, 0

41.

sin z ex  ey

Continuous everywhere

f t  t 2

f t 

43.

gx, y  3x  2y

1 t

gx, y  3x  2y

f  gx, y  f 3x  2y

f  gx, y  f 3x  2y 

 3x  2y2  9x 2  12xy  4y 2

Continuous for y 

Continuous everywhere

1 3x  2y

3x 2

45. f x, y  x 2  4y (a) lim

x→0

f x  x, y  f x, y x  x 2  4y  x 2  4y  lim

x→0

x

x 2x x   x2  lim 2x  x  2x

x→0

x→0

x

 lim (b) lim

y→0

f x, y  y  f x, y x 2  4 y  y  x 2  4y  lim

y→0

y

y  lim

y→0

4 y  lim 4  4

y→0

y

47. f x, y  2x  xy  3y (a) lim

x→0

f x  x, y  f x, y 2x  x  x  xy  3y  2x  xy  3y  lim

x→0

x

x  lim

x→0

(b) lim

y→0

2 x  xy  lim 2  y  2  y

x→0

x

f x, y  y  f x, y 2x  x y  y  3 y  y  2x  xy  3y  lim

y→0

y

y  lim

y→0

x y  3 y  lim x  3  x  3

y→0

y

51. No.

49. See the definition on page 851. Show that the value of

lim

x, y → x0 , y0 

for two different paths to x0, y0.

f x, y is not the same

The existence of f 2, 3 has no bearing on the existence of the limit as x, y → 2, 3.

http://librosysolucionarios.net

Section 12.3 53. Since

lim

x, y → a, b

Partial Derivatives









f x, y  L1, then for 2 > 0, there corresponds 1 > 0 such that f x, y  L1 < 2 whenever

0 < x  a2   y  b2 < 1. Since

lim

x, y → a, b

gx, y  L2, then for 2 > 0, there corresponds  2 > 0 such that gx, y  L 2 < 2 whenever

0 < x  a2   y  b2 < 2. Let  be the smaller of  1 and 2. By the triangle inequality, whenever x  a2   y  b2 < , we have





f x, y  gx, y  L 1  L 2    f x, y  L 1  gx, y  L 2  ≤ f x, y  L 1  gx, y  L 2 < 2  2  . Therefore,

lim

x, y → a, b

 f x, y  gx, y  L 1  L 2.

55. True

57. False. Let f x, y 

nx2  y2,

0,l

x, y  0, 0 x  0, y  0

See Exercise 19.

Section 12.3

Partial Derivatives

1. fx 4, 1 < 0

3. fy 4, 1 > 0

5. f x, y  2x  3y  5 fx x, y  2 fy x, y  3

7.

13.

z  xy z  y x

z  2x  5y x

z  2xe 2y x

x z  y 2y

z  5x  6y y

z  2x 2e 2y y

z  lnx 2  y 2

15.

z 2x  x x 2  y 2

z

z  ln

xx  yy  lnx  y  lnx  y

z 1 1 2y    2 x x  y x  y x  y2

2y z  y x 2  y 2

17.

11. z  x 2e 2y

9. z  x2  5xy  3y2

z 1 1 2x    y x  y x  y x 2  y 2

4y 2 x2  2y x

19. hx, y  ex

z 2x 4y 2 x 3  4y 3   2  x 2y x x2y

2 y 2

hx x, y  2xex

2 y 2

hy x, y  2yex

2 y 2

z 8y x 3  16y 3 x2  2  y 2y x 2xy 2 21. f x, y  x 2  y 2

23.

z  tan2x  y

fx x, y 

1 2 x x  y 212 2x  2 x 2  y 2

z  2 sec22x  y x

fy x, y 

1 2 y x  y 212 2y  2 x 2  y 2

z  sec 22x  y y

http://librosysolucionarios.net

83

84

Chapter 12

25.

z  e y sin xy

Functions of Several Variables



y

27. f x, y 

t 2  1 dt

x

z  ye y cos xy x



z  ey sin xy  xey cos xy y

t3  t 3

y

x



y3  y  x3  x 3

3

fx x, y  x  1  1  x 2 2

fy x, y  y 2  1

 ey x cos xy  sin xy

[You could also use the Second Fundamental Theorem of Calculus.] 29. f x, y  2x  3y f x  x, y  f x, y 2x  x  3y  2x  3y 2 x f  lim  lim  lim 2 x→0 x→0 x x x→0 x x f x, y  y  f x, y 2x  3 y  y  2x  3y 3 y f  lim  lim  lim 3 y→0 y→0 y y y→0 y y 31. f x, y  x  y x  x  y  x  y f f x  x, y  f x, y  lim  lim x→0 x x→0 x x

 lim

x→0

 lim

x→0

x  x  y  x  y x  x  y  x  y  xx  x  y  x  y  1 x  x  y  x  y



1 2x  y

x  y  y  x  y f f x, y  y  f x, y  lim  lim y→0 y y→0 y y

 lim

y→0

 lim

y→0

33. gx, y  4  x 2  y 2

gy x, y  2y At 1, 1: gy 1, 1  2

1 2x  y

z  ex sin y y z At 0, 0: 0 y

y x

39. f x, y 

1 y y  2  2 1   y 2x 2 x x  y2 1 At 2, 2: fx 2, 2  4

 



1 1 x  2 1   y 2x 2 x x  y2 1 At 2, 2: fy 2, 2  4 fy x, y 



z  ex cos y x z At 0, 0:  1 x

At 1, 1: gx 1, 1  2

fx x, y 

1 x  y  y  x  y

35. z  ex cos y

gxx, y  2x

37. f x, y  arctan

x  y  y  x  y x  y  y  x  y  yx  y  y  x  y

xy xy

yx  y  xy y 2  2 x  y x  y2 1 At 2, 2: fx 2, 2   4 fx x, y 

xx  y  xy x2  2 x  y x  y2 1 At 2, 2: fy 2, 2  4 fy x, y 

http://librosysolucionarios.net

Section 12.3

43. z  9x2  y 2, y  3, 1, 3, 0

41. z  49  x2  y2, x  2, 2, 3, 6 Intersecting curve: z  45  y

Partial Derivatives

Intersecting curve: z  9x 2  9 2

z  18x x

y z  y 45  y 2

z  181  18 x

At 1, 3, 0:

z 3 1 At 2, 3, 6:   y 45  9 2

y=3 z

z

x=2 10

160

4

3

2 4

y

x 8 x

8

y

45. fx x, y  2x  4y  4, fyx, y  4x  2y  16

47. fx x, y  

1 1  y, fyx, y   2  x x2 y

fx  fy  0: 2x  4y  4 fx  fy  0: 

4x  2y  16 Solving for x and y,

1 1  y  0 and  2  x  0 x2 y y

x  6 and y  4.

1 1 and x  2 x2 y

y  y4 ⇒ y  1  x Points: 1, 1 49. (a) The graph is that of fy.

51.

(b) The graph is that of fx.

55. Hx, y, z  sinx  2y  3z Hxx, y, z  cosx  2y  3z Hy x, y, z  2 cosx  2y  3z Hzx, y, z  3 cosx  2y  3z

57.

w  x 2  y 2  z 2

53. Fx, y, z  ln x 2  y 2  z 2

w x  x x 2  y 2  z 2



w y  y x 2  y 2  z 2

Fx x, y, z 

x x2  y2  z2

z w  z x 2  y 2  z 2

Fy x, y, z 

y x2  y2  z2

Fz x, y, z 

z x2  y2  z2

z  x 2  2xy  3y 2 z  2x  2y x

59.

1 lnx 2  y 2  z 2 2

z  x 2  y 2 z x  x x 2  y 2

2z 2 x2

2z y2  x2 x 2  y 2 32

2z  2 yx

xy  2z  yx x 2  y 2 32

z  2x  6y y

z y  y x 2  y 2

2z 6 y2

2z x2  2 2 y x  y 2 32

 2z  2 xy

xy  2z  xy x 2  y 2 32

http://librosysolucionarios.net

85

86

61.

Chapter 12

Functions of Several Variables

z  e x tan y

z  arctan

63.

z  e x tan y x

1 z y y   2  2 x 1   y 2x 2 x x  y2

 

  e x tan y x2 2z

2z 2xy  x2 x 2  y 2 2

2z  e x sec2 y yx

 x2  y2  y2y  2z y2  x2   2 2 2 2 yx x  y  x  y 22

z  e x sec2 y y

1 1 z x   2 y 1   y 2x 2 x x  y2



  2e x sec2 y tan y y2 2z

2z 2xy  y2 x 2  y 2 2

2z  e x sec2 y xy

65.

x 2  y 2  x2x y 2  x2  2z   2 2 2 2 xy x  y  x  y 22

z  x sec y

z  ln

67.

z  sec y x

x

2



x  ln x  lnx 2  y 2  y2

z y2  x2 1 2x   2  x x x  y 2 xx 2  y 2

2z 0 x2

2z x 4  4x 2y 2  y 4  2 x x 2x 2  y 2 2

2z  sec y tan y yx

 2z 4xy  yx x2  y 2 2

z  x sec y tan y y

z 2y  2 y x  y2

2z  x sec ysec2 y  tan2 y y2

2z 2 y 2  x 2  2 y2 x  y 22

2z  sec y tan y xy Therefore,

y x

2z 4xy  xy x 2  y 2 2

2z 2z  . yx xy

There are no points for which zx  zy  0.

There are no points for which zx  0  zy, because z  sec y  0. x 69.

f x, y, z  xyz

71.

f x, y, z  ex sin yz

fxx, y, z  yz

fxx, y, z  ex sin yz

fy x, y, z  xz

fy x, y, z  zex cos yz

fyyx, y, z  0

fyyx, y, z  z2ex sin yz

fxyx, y, z  z

fxyx, y, z  zex cos yz

fyxx, y, z  z

fyxx, y, z  zex cos yz

73.

z  5xy z  5y x  2z 0 x 2 z  5x y

fyyxx, y, z  0

fyyxx, y, z  z2ex sin yz

fxyyx, y, z  0

fxyyx, y, z  z2ex sin yz

 2z 0 y 2

fyxyx, y, z  0

fyxyx, y, z  z2ex sin yz

Therefore,

Therefore, fxyy  fyxy  fyyx  0.

Therefore, fxyy  fyxy  fyyx.

http://librosysolucionarios.net

 2z  2z   0  0  0. x 2 y 2

Section 12.3 z  e x sin y

75.

z  sinx  ct

77.

z  e x sin y x

z  c cosx  ct t

 2z  e x sin y x 2

 2z  c 2 sinx  ct t 2

z  e x cos y y

z  cosx  ct x

 2z  e x sin y y 2

 2z  sinx  ct x 2

Therefore,

 2z  2z  2  e x sin y  e x sin y  0. 2 x y

z  et cos

79.

Therefore,

x c

Partial Derivatives

 2z  2z  c 2 2. t 2 x

81. See the definition on page 859.

x z  et cos t c x 1 z   et sin x c c 1 x  2z   2 et cos x 2 c c Therefore,

83.

 2z z  c 2 2. t x

z

z

(x0, y0, z 0 )

85. The plane z  x  y  f x, y satisfies

(x0, y0, z 0 )

f f > 0 and > 0. x y z 6

y

x

y

x

y

Plane: x = x0

Plane: y = y0

8 x

f denotes the slope of the surface in the x-direction. x

−6

f denotes the slope of the surface in the y-direction. y 87. (a) C  32xy  175x  205y  1050

yx  175 1 C  16  175  183 x 4 x C  16  205 y y C  16 x

(b) The fireplace-insert stove results in the cost increasing at a faster rate because C C > . y x

80, 20

C y

80, 20

 164  205  237

http://librosysolucionarios.net

87

88

Chapter 12

Functions of Several Variables 91.

89. An increase in either price will cause a decrease in demand.

T  500  0.6x 2  1.5y 2 T T  1.2x, 2, 3  2.4m x x T T  3y  2, 3  9m y y

PV  mRT

93.

T P

P

95. (a)

T

V PV T  ⇒ mR P mR

P

mRT P mRT  2 ⇒ V V V

V

mRT V mR  ⇒ P T P

V

 V  T   mR  V



97. f x, y 



mRT V2

z  1.83 x z  1.09 x

(b) As the consumption of skim milk x increases, the consumption of whole milk z decreases. Similarly, as the consumption of reduced-fat milk  y increases, the consumption of whole milk z decreases.

mRP

mRT mRT   1 VP mRT

xyx 2  y 2 , x2  y2 0,

x, y 0, 0 x, y  0, 0

(a) fxx, y 

x 2  y 23x 2y  y 3  x3 y  xy 32x y x 4  4x 2y 2  y 4  x 2  y 22 x 2  y 22

fyx, y 

x 2  y 2x3  3xy 2  x3y  xy 32y x x 4  4x 2 y 2  y 4  x 2  y 22 x 2  y 22

(b) fx0, 0  lim

x→0

f x, 0  f 0, 0 0x 2  0  lim 0 x→0 x x

0y 2  0 f 0, y  f 0, 0  lim 0 y→0 y→0 y y

fy0, 0  lim

  

(c) fxy0, 0 

 f y x

0, 0

fyx0, 0 

 f x y

0, 0

 

 lim

y→0

 lim

fx0, y  fx0, 0 y  y4  lim  lim 1  1 y→0 y22y y→0 y fyx, 0  fy0, 0 x

x→0

 lim

x→0

x x4  lim 1  1 x22x x→0

(d) fyx or fxy or both are not continuous at 0, 0. 99. True

Section 12.4 1.

101. True

Differentials

z  3x 2y 3

3. z 

dz  6xy 3 dx  9x 2 y 2 dy dz  

1 x2  y2 2x 2y dx  2 dy x 2  y 2 2 x  y 2 2 2 x dx  y dy x 2  y 22

http://librosysolucionarios.net

Section 12.4

Differentials

89

5. z  x cos y  y cos x dz  cos y  y sin x dx  x sin y  cos x dy  cos y  y sin x dx  x sin y  cos x dy 7. z  e x sin y

w  2z 3 y sin x

9.

dz  e x sin y dx  e x cos y dy

dw  2z 3 y cos x dx  2z3 sin x dy  6z 2 y sin x dz

11. (a) f 1, 2  4

13. (a) f 1, 2  sin 2

f 1.05, 2.1  3.4875

f 1.05, 2.1  1.05 sin 2.1

z  f 1.05, 2.1  f 1, 2  0.5125

z  f 1.05, 2.1  f 1, 2 0.00293

(b) dz  2x dx  2y dy

(b) dz  sin y dx  x cos y dy

 20.05  40.1  0.5

 sin 20.05  cos 20.1 0.00385

15. (a) f 1, 2  5 f 1.05, 2.1  5.25 z  0.25 (b) dz  3 dx  4 dy  30.05  40.1 0.25

17. Let z  x 2  y 2, x  5, y  3, dx  0.05, dy  0.1. Then: dz  5.052  3.12  52  32

5 52  32

0.05 

x x 2  y 2

3 52  32

0.1 

19. Let z  1  x 2y 2, x  3, y  6, dx  0.05, dy  0.05. Then: dz  

dx  0.55

34

y x 2  y 2

dy

0.094

21  x 2 2x dx  dy y2 y3

1  3.052 1  32 23 21  32   2 0.05  0.05 0.012 2 2 5.95 6 6 63 23. The tangent plane to the surface z  f x, y at the point P is a linear approximation of z.

21. See the definition on page 869.

25.

A  lh dA  l dh  h dl ∆h

∆A

dA

h

dA

dA l

∆l

r 2h 3

r

h

r3

0.1

0.1

4.7124

4.8391

0.1267

h6

0.1

0.1

2.8274

2.8264

0.0010

0.0565

0.0566

0.0001

0.0019

0.0019

0.0000

27. V 

dV 

r2

r 2 rh dr  dh  2h dr  r dh 3 3 3

0.001

0.002

0.0001

0.0002

http://librosysolucionarios.net

dV

V

V  dV

90

Chapter 12

Functions of Several Variables

29. (a) dz  1.83 dx  1.09 dy z z dx  dy x y

(b) dz 

 1.83± 0.25  1.09± 0.25  ± 0.73 Maximum propagated error: ± 0.73 Relative error:

31.

± 0.73 ± 0.73 dz   ± 0.1166  11.67% z 1.837.2  1.098.5  28.7 6.259

V  r 2h  dV  2 rh dr   r 2 dh dr dh dV 2  V r h  20.04  0.02  0.10  10%

1 33. A  2 ab sin C

dA  12 b sin C da  a sin C db  ab cos C dC 1  12 4sin 45 ± 16   3sin 45 ± 161   12cos 45± 0.02 ± 0.24 in.2

35. (a) V 

1 bhl 2



 18 sin

b 2

2

18 cos 21612

18

 31,104 sin in.3

h

18

θ 2

 18 sin ft3 V is maximum when sin  1 or  2. (b)

V

s2 sin l 2

dV  ssin l ds 



 18 sin

s2 s2 l cos  d  sin  dl 2 2

1 182

1612  1612 cos 2 2 2 2







90   182 sin 2 12 2

 1809 in3 1.047 ft3

37.

P dP 

E2 R E2 2E dE  2 dR R R

dE dR dP 2   20.02  0.03  0.07  7% P E R

http://librosysolucionarios.net

Section 12.4



39. L  0.00021 ln

h

dL  0.00021

dh

2h  0.75 r 



dr ± 1100 ± 116  0.00021  ± 6.6 106 r 100 2





L  0.00021ln 100  0.75 8.096 104 ± dL  8.096 104 ± 6.6 106 micro–henrys 41.

z  f x, y  x2  2x  y z  f x  x, y  y  f x, y  x2  2xx  x2  2x  2x  y  y  x2  2x  y  2xx  x2  2x  y  2x  2 x  y  xx  0y  fxx, y x  fyx, y y  1x  2y where 1  x and 2  0. As x, y → 0, 0, 1 → 0 and 2 → 0.

43.

z  f x, y  x2y z  f x  x, y  y  f x, y  x2  2xx  x2 y  y  x2y  2xyx  yx2  x2y  2xxy  x2 y  2xyx  x2y   yx x  2xx  x2 y  fxx, y x  fyx, y y  1x  2y where 1  yx and 2  2xx  x2. As x, y → 0, 0, 1 → 0 and 2 → 0.

45. f x, y 



3x2y , x, y 0, 0  y2 x, y  0, 0 0,

x4

0 0 f x, 0  f 0, 0 x4 (a) fx0, 0  lim  lim 0 x→0 x→0 x x 0 0 f 0, y  f 0, 0 y2 fy0, 0  lim  lim 0 y→0 y→0 y y Thus, the partial derivatives exist at 0, 0. (b) Along the line y  x:

lim

x, y → 0, 0

Along the curve y  x2:

lim

f x, y  lim

x, y → 0, 0

x →0 x 4

f x, y 

3x3 3x  lim 0  x2 x →0 x2  1

3x 4 3  2x 4 2

f is not continuous at 0, 0. Therefore, f is not differentiable at 0, 0. (See Theroem 12.5) 47. Essay. For example, we can use the equation F  ma: dF 

F F dm  da  a dm  m da. m a

http://librosysolucionarios.net

Differentials

91

92

Chapter 12

Functions of Several Variables

Section 12.5 1.

Chain Rules for Functions of Several Variables

w  x2  y2

w  x sec y

3.

x  et

x  et

y  et

yt dw  sec yet   x sec y tan y1 dt

dw  2xet  2yet   2e2t  e2t  dt

 et sec  t1  tan  t  et sec t  sec t tan t 5. w  xy, x  2 sin t, y  cos t (a)

dw  2y cos t  xsin t  2y cos t  x sin t dt  2cos2 t  sin2 t  2 cos 2t

(b) w  2 sin t cos t  sin 2t,

dw  2 cos 2t dt

7. w  x2  y2  z2 x  et cos t y  et sin t z  et (a)

dw  2xet sin t  et cos t  2yet cos t  et sin t  2zet  4e2t dt

(b) w  2e2t,

dw  4e2t dt

9. w  xy  xz  yz, x  t  1, y  t 2  1, z  t (a)

dw  y  z  x  z2t  x  y dt  t 2  1  t  t  1  12t  t  1  t 2  1  32t 2  1

(b)

w  t  1t 2  1  t  1t  t 2  1t dw  2tt  1  t 2  1  2t  1  3t 2  1  32t 2  1 dt

11. Distance  f t  x1  x22   y1  y2 2  10 cos 2t  7 cos t2  6 sin 2t  4 sin t2 1 ft  10 cos 2t  7 cos t2  6 sin 2t  4 sin t212 2

210 cos 2t  7 cos t20 sin 2t  7 sin t  26 sin 2t  4 sin t12 cos 2t  4 cos t f

2  21 10

2

 42122107  2412

22 1129 1   1161244   2.04 2 229 20

http://librosysolucionarios.net

Section 12.5

Chain Rules for Functions of Several Variables

13. w  arctan2xy, x  cos t, y  sin t, t  0 dw w dx w dy   dt x dt y dt 

2y 2x sin t  cos t 1  4x2y2 1  4x2y2



2 cos t 2 sin t sin t  cos t 1  4 cos2 t sin2 t 1  4 cos2 t sin2 t



2 cos2 t  2 sin2 t 1  4 cos2 t sin2 t

d 2w 1  4 cos2 t sin2 t8 cos t sin t  2 cos2 t  2 sin2 t8 cos3 t sin t  8 sin3 t cos t  dt 2 1  4 cos2 t sin2 t2  At t  0,

15.

8 cos t sin t1  2 sin4 t  2 cos 4 t 1  4 cos2 t sin2 t2

d 2w  0. dt 2

w  x2  y2

17. w  x2  y2

xst

x  s cos t

yst

y  s sin t

w  2x  2y  2x  y  4s s

w  2x cos t  2y sin t s

w  2x  2y1  2x  y  4t t

 2s cos2 t  2s sin2 t  2s cos 2t w  2xs sin t  2ys cos t  2s2 sin 2t t

When s  2 and t  1, w w  8 and  4. s t

When s  3 and t 

19. w  x2  2xy  y2, x  r  , y  r   (a)

w  2x  2y1  2x  2y1  0 r w  2x  2y1  2x  2y1   4x  4y  4x  y  4r    r    8

(b)

w  r  2  2r  r    r  2  r 2  2r  2  2r 2  2  r 2  2r  2  4 2 w 0 r w  8 

http://librosysolucionarios.net

w  w ,  0 and  18. 4 s t

93

94

Chapter 12

Functions of Several Variables

y 21. w  arctan , x  r cos , y  r sin  x (a)

y x r sin  cos  r cos  sin  w  2 cos   2 sin    0 r x  y2 x  y2 r2 r2 w y x  r sin r sin  r cos r cos   2 r sin   2 r cos    1  x  y2 x  y2 r2 r2

(b)

w  arctan

r sin   arctantan    r cos 

w 0 r w 1  25. w  ze xy, x  s  t, y  s  t, z  st

23. w  xyz, x  s  t, y  s  t, z  st2

w zx z  e xy1   2 e xy1  e xyt s y y

w  yz1  xz1  xyt2 s  s  tst2  s  tst2  s  ts  tt2  2s2t2  s2t2  t4  3s2t2  t4  t23s2  t2

s st t  ss  ttst  t

 estst

2

sts  t  sst  tst 2

 estst

w  yz1  xz1  xy2st t  s  tst2  s  tst2  s  ts  t2st  2st3  2s3t  2st3  2s3t  4st3  2sts2  2t2

 estst



 estst  estst

31. Fx, y, z  x2  y2  z2  25

st sts  t  s st s  t2



sts  t  sts  t  ss  t2 s  t2



ss2  t2 s  t2

29. ln x2  y2  xy  4

Fxx, y 2x  3y  2 dy   dx Fyx, y 3x  2y  1 3y  2x  2 2y  3x  1



w zx z  e xy1   2 e xy1  e xys t y y





 ts  t2

ts2  4st  t2 s  t2

 estst 

27. x2  3xy  y2  2x  y  5  0

2

2

1 lnx2  y2  xy  4  0 2 x y Fxx, y dy x2  y2 x  x2y  y3    dx Fyx, y y y  xy2  x3 x 2 2 x y 33. Fx, y, z  tanx  y  tan y  z  1

Fx  2x

Fx  sec2x  y

Fy  2y

Fy  sec2x  y  sec2 y  z

Fz  2z

Fz  sec2 y  z

Fx x z   x Fz z

Fx z sec2x  y   2 x Fz sec  y  z

Fy z y   y Fz z

Fy sec2x  y  sec2 y  z z   y Fz sec2 y  z 

sec x  y  1

sec  y  z

http://librosysolucionarios.net

2

2

Section 12.5

37. exz  xy  0

35. x 2  2yz  z2  1  0 (i) 2x  2y (ii) 2y

Chain Rules for Functions of Several Variables

Fxx, y, z z zexz  y   x Fzx, y, z xexz

z z x z  2z  0 implies  . x x x yz

Fyx, y, z x 1 z   xz  xz  exz y Fzx, y, z xe e

z z z z  2z  2z  0 implies  . y y y yz

41. Fx, y, z, w  cos xy  sin yz  wz  20

39. Fx, y, z, w  xyz  xzw  yzw  w2  5 Fx  yz  zw

w Fx y sin xy   x Fw z

Fy  xz  zw

w Fy x sin xy  z cos yz   y Fw z

Fz  xy  xw  yw Fw  xz  yz  2w

w Fz y cos zy  w   z Fw z

Fx zy  w w   x Fw xz  yz  2w Fy zx  w w   y Fw xz  yz  2w Fz xy  xw  yw w   z Fw xz  yz  2w

43. f x, y  f tx, ty 

xy x2  y2



txty

t

tx2  ty2

xy x2  y2

 tf x, y

Degree: 1 x fxx, y  y fyx, y  x 

45.

x



y3 x3 y 2  y232 x  y232

2

xy x2  y2



 1 f x, y

f x, y  exy

47.

f tx, ty  etxty  exy  f x, y

dw w dx w dy (Page 876)   dt x dt y dt

Degree: 0 x fxx, y  y fyx, y  x

1y e  y  yx e  0 xy

xy

2

49. w  f x, y is the explicit form of a function of two variables, as in z  x2  y2. The implicit form is of the form F x, y, z  0, as in z  x2  y2  0.

51.

1  A  bh  x sin 2 2



x cos 2  x2 sin  2

b 2

dx x2 d dA  x sin   cos  dt dt 2 dt

  6 sin 4



1 62   cos 2 2 4





 32 2 2   m hr 90 2 10



x

h

θ 2

http://librosysolucionarios.net

x

95

96

Chapter 12

Functions of Several Variables

1 V   r 2h 3

53. (a)





dr 1 dV 1 dh   212366  1224  1536 in.3min   2rh  r 2 dt 3 dt dt 3 S   rr 2  h2   r 2 (Surface area includes base.)

(b)



144 3612   12  36   212 6  4 12  36 12  36 12 36   12 10  6  144  4 10

10

dS  dt

r 2  h2  

2

55.

I

2







r2 rh dh dr  2r  dt r 2  h2 r 2  h2 dt 2



2



2

2



36 648  144 in.2min   20  910  in.2min 5 10

1 mr12  r22 2





dr1 dr2 dI 1  m62  82  28m cm2sec  m 2r1  2r2 dt 2 dt dt

tan 

2 x

tan   

4 x

57. (a)

8 6 4

tan   tan 4  1  tan  tan x

θ φ

x

tan   2x 4  1  2xtan  x x tan   2  4 

8 tan  x

x2 tan   2x  8 tan   0 (b) Fx,   x2  8tan   2x  0 Fx d 2x tan   2 2 cos2   2x sin  cos    2  2 dx F sec x  8 x2  8 (c)

d 1  0 ⇒ 2 cos2   2x sin  cos  ⇒ cos   x sin  ⇒ tan   dx x Thus, x2

59.

1x  2x  8 1x  0 ⇒ 8x  x ⇒ x  22 ft.

w  f x, y xuv yvu w dy w w w w dx     u x du y du x y w w w w dx w dy     v x dv y dv x y w w  0 u v

http://librosysolucionarios.net

Section 12.5 61.

Chain Rules for Functions of Several Variables

w  f x, y, x  r cos , y  r sin  w w w  cos   sin  r x y w w w  r sin   r cos   x y (a)

r cos 

r cos 

w w w  r cos2   r sin  cos  r x y

sin 

w w w  r sin2   r sin  cos   x x

w w w  sin   r cos2   r sin2  r  x r

w w w  r cos   sin  x r  w w w sin   cos   x r  r

r sin  cos  r sin 

w w w  r sin  cos   r sin2  r x y w w w  r sin  cos   r cos2   x y

w w w  cos   r sin2   r cos2  r  y r

w w w  r sin   cos  y r  w cos  w w  sin   y r  r

(b)

w r

2



1 w r 2 

cos  w x

2

2

2

2

63. Given

2

w w w sin  cos   x y y



w w w sin  cos   x y y

cos 2

2



2

sin2  

w x

w 

w x

y 2

u v u v  and   , x  r cos  and y  r sin . x y y x

u u u v v  cos   sin   cos   sin  r x y y x v v v v v  r sin   r cos   r cos   sin   x y y x



Therefore,



u 1 v  . r r 

v v v u u  cos   sin    cos   sin  r x y y x u u u u u  r sin   r cos   r  cos   sin   x y y x



Therefore,



1 u v  . r r 

http://librosysolucionarios.net

2

2

sin2  

97

98

Chapter 12

Functions of Several Variables

Section 12.6 1.

Directional Derivatives and Gradients

f x, y  3x  4xy  5y v

3.

vij

1  i  3 j 2

f x, y  yi  xj

f x, y  3  4yi  4x  5j

f 2, 3  3i  2j

f 1, 2  5i  j

u

3 1 v  i j u v 2 2

gx, y  x2  y2

7.

g3, 4 

v  i h  e x sin yi  e x cos yj

y x i j 2 2 2 x  y x  y2

 2   ei

h 1,

3 4 i j 5 5

u

3 4 v  i j u v 5 5

 2   h1, 2   u  e

f x, y, z  xy  yz  xz

11.

hx, y, z  x arctan yz v  1, 2, 1

v  2i  j  k f x, y, z   y  zi  x  zj  x  yk f 1, 1, 1  2i  2j  2k u

v  i v

Duh 1,

7 Du g3, 4  g3, 4  u   25 9.

52 2

hx, y  e x sin y

v  3i  4j g 

2 2 v  i j v 2 2

Du f 2, 3  f 2, 3  u 

1  5  3  2

Du f 1, 2  f 1, 2  u 

5.

f x, y  xy

6 6 6 v  i j k v 3 6 6

Du f 1, 1, 1  f 1, 1, 1  u 

hx, y, z  arctan yz i  h4, 1, 1 

26 3

u

xz xy j k 1   yz2 1   yz2

 i  2j  2k 4



v 2 1 1  , , v 6 6 6

Du h4, 1, 1  h4, 1, 1  u 

1 2

i

  8   86  24 46

15. f x, y  sin2x  y

13. f x, y  x2  y2 u



1 2

u

j

f  2 cos2x  y i  cos2x  y j

f  2x i  2y j Du f  f  u 

3 1 i j 2 2

2 2

x

2 2

y  2 x  y

Du f  f  u  cos2x  y  

2 2 3 cos2x  y

http://librosysolucionarios.net



3

2

cos2x  y

Section 12.6

v  3i  3j  k

v  2i  2j f  2x i  8yj

h 

v 1 1 i j  v 2 2

Du f  

2 2

x

8 2

y   2x  4y

u

\

w  3x2y  5yz  z2

27.

2

\

5

i

Du g  g  u 

1 5

j

31.

1 5

i

2 5

j

2 8 10    25 5 5 5

hx, y  x tan y hx, y  tan yi  x sec2 yj

f x, y  ex cos yi  ex sin yj

 4   i  4j

f 0, 0  i

h 2,

Du f  f  u  

37.

PQ  2i  4j, u 

gx, y  2xi  2yj, g1, 2  2i  4j

w1, 1, 2  6i  13j  9k

2 5



3 x2  y2  gx, y  ln 

25 5

g1, 2 

1 2 4 2 i j  i  2j 3 5 5 15

35.

f 1, 4, 2 



1 x2  y2  z2

1 21

f 1, 4, 2  1

25 15

17

f x, y, z  x2  y2  z2 f x, y, z 



1 2x 2y i 2 j 3 x2  y2 x  y2



 h2, 4   

1 lnx2  y2 3

gx, y 

g1, 2 

719 19

z3, 4  6 sin 25i  8 sin 25j 0.7941i  1.0588j

wx, y, z  6xyi  3x2  5zj  2z  5yk

33.



zx, y  2x sinx2  y2i  2y sinx2  y2j

f 2, 1  3i  10j

PQ  2i  j, u 

7 19

z  cosx2  y2

23.

f x, y  3i  10yj

29.

v 1 3i  3j  k  v 19

Du h  h  u 

f x, y  3x  5y2  10

25.

1 i  j  k xyz

At 1, 0, 0, h  i  j  k.

At P  3, 1, Du f  72.

21.

99

19. hx, y, z  lnx  y  z

17. f x, y  x2  4y2

u

Directional Derivatives and Gradients

f x, y, z  xeyz f x, y, z  eyz i  xzeyz j  xyeyz k f 2, 0, 4  i  8j f 2, 0, 4  65

http://librosysolucionarios.net

xi  yj  zk

i  4j  2k

100

Chapter 12

Functions of Several Variables

For Exercises 39–45, f x, y  3 

39. f x, y  3 





x y 1 1  and D f x, y   cos   sin . 3 2 3 2

x y  3 2

41. (a) D43 f 3, 2  

z

(3, 2, 1)

3

 6

y

13 21  12 23  

2  33 12

(b) D6 f 3, 2  

9 x



v  3i  4j

43. (a)

(b)

v  9  16  5

13 23   12 21 

3  23 12

v  i  3j v  10

3 4 u i j 5 5 1 2 1 Du f  f  u     5 5 5

u

1 10

i

Du f  f  u 

3 10

j

11 1110  60  6 10

1 1 1 45. f   9  4  613

For Exercises 47 and 49, f x, y  9  x2  y2 and D f x, y  2x cos   2y sin   2x cos   y sin . 47. f x, y  9  x2  y2

49.

f 1, 2  2i  4j f 1, 2  4  16  20  25

z 9

(1, 2, 4)

3

3

y

x

51. (a) In the direction of the vector 4i  j. 1 1 (b) f  10 2x  3yi  10 3x  2yj 1 1 1 f 1, 2  10 4i  10 1j   25 i  10 j

(Same direction as in part (a).) 2 1 (c) f  5 i  10 j, the direction opposite that of the gradient.

53. f x, y  x2  y2, 4, 3, 7 z

(a)

x y

—CONTINUED–

http://librosysolucionarios.net

Section 12.6

Directional Derivatives and Gradients

101

53. —CONTINUED— (b) Du f x, y  f x, y  u  2x cos  2y sin Du f 4, 3  8 cos  6 sin y 12 8 4

π

−4



x

−8 −12

Generated by Mathematica

(c) Zeros: 2.21, 5.36 These are the angles for which Du f 4, 3 equals zero. (d) g   Du f 4, 3  8 cos  6 sin g    8 sin  6 cos Critical numbers: 0.64, 3.79 These are the angles for which Du f 4, 3 is a maximum 0.64 and minimum 3.79. (e) f 4, 3  24i  23j  64  36  10, the maximum value of Du f 4, 3, at  0.64. (f )

f x, y  x2  y2  7

y

f 4, 3  8i  6j is perpendicular to the level curve at 4, 3.

6 4 2

x

−6 −4

2

−2

4

6

−4 −6

Generated by Mathematica

57. f x, y 

55. f x, y  x2  y2 c  25, P  3, 4

x x2  y2

f x, y  2xi  2yj

1 c  , P  1, 1 2

x2  y2  25

f x, y 

f 3, 4  6i  8j

y2  x2 2xy i 2 j x2  y22 x  y22

1 x  x2  y2 2 x2  y2  2x  0 1 f 1, 1   j 2

59. 4x2  y  6

61. 9x2  4y2  40

y

f x, y  4x2  y

12

f x, y  8xi  j

8

y

f x, y  9x2  4y2

4

f x, y  18xi  8yj

2

f 2, 10  16i  j

f 2, 1  36i  8j

f 2, 10 1  16i  j f 2, 10 257

f 2, 1 1  9i  2j f 2, 1 85



257

257

16i  j

x

4

4



http://librosysolucionarios.net

85

85

9i  2j

x

−4

4 −2 −4

102

Chapter 12

Functions of Several Variables

x x2  y2

63. T 

T 

65. See the definition, page 885.

y2  x2 2xy i 2 j x2  y22 x  y22

T3, 4 

7 24 1 i j 7i  24j 625 625 625

67. Let f x, y be a function of two variables and u  cos i  sin j a unit vector.

z

69. 3

f . x

(a) If  0 , then Du f 

(b) If  90 , then Du f 

f . y

3 x

P

73. T x, y  400  2x2  y2,

71.

18

00

1671

B

5

y

P  10, 10

dx  4x dt

dy  2y dt

xt  C1e4t

yt  C2e2t

10  x0  C1

10  y0  C2

xt 

yt  10e2t

1994

A 18

00

x

10e4t

y2 10

y2t  100e4t

y2  10x 75. (a)

(b) The graph of D  250  30x2  50 sin y2 would model the ocean floor.

D 400 300

1 2 x

1 2 y

(c) D1, 0.5  250  301  50 sin (e)

 315.4 ft 4

D D y  and 1, 0.5  25 cos 55.5  25 cos y 2 y 4

(d)

D D  60x and 1, 0.5  60 x x

(f ) D  60x i  25 cos

2yj

D1, 0.5  60i  55.5j 77. True

81. Let f x, y, z  ex cos y 

79. True z2  C. Then f x, y, z  ex cos yi  ex sin yj  zk. 2

http://librosysolucionarios.net

Section 12.7

Section 12.7

Tangent Planes and Normal Lines

Tangent Planes and Normal Lines

1. Fx, y, z  3x  5y  3z  15  0

3. Fx, y, z  4x2  9y2  4z2  0 4x2  9y2  4z2 Elliptic cone

3x  5y  3z  15 Plane 5. Fx, y, z  x  y  z  4

7.

F  i  j  k n

Fx, y, z 

F 1  i  j  k F  3 

3

3

Fx, y, z  x2  y2  z

i  j  k

n

F 5 3 4  i jk F  52 5 5





Fx, y, z  x2y4  z

11.

Fx, y, z  2xy4 i  4x2y3j  k F 1  32i  32j  k F  2049 

2049

2049

n

32i  32j  k

 1 F 6, , 7   i  33 j  k 6 2



F 2 1   i  33 j  k F  113 2



 

15.

1 113 113

113



 i  63 j  2k  i  63 j  2k

f x, y  25  x2  y2, 3, 1, 15 Fx, y, z  25  x2  y2  z Fxx, y, z  2x Fx3, 1, 15  6

3i  4j  5k

y x z  ln x  ln y  z

F 1  i  j  k F  3

Fx, y, z  sin yi  x cos yj  k

n

10

3i  4j  5k

F1, 4, 3  i  j  k

Fx, y, z  x sin y  z  4



2

Fx, y, z  ln



13.

1 52



1 1 1 Fx, y, z  i  j k x yz yz

F1, 2, 16  32i  32j  k n

x y i jk 2 2 x  y2 y

3 4 F3, 4, 5  i  j  k 5 5



9.

x2

Fyx, y, z  2y Fy3, 1, 15  2

Fzx, y, z  1 Fz3, 1, 15  1

6x  3  2 y  1  z  15  0 0  6x  2y  z  35 6x  2y  z  35

http://librosysolucionarios.net

3

3

i  j  k

103

104 17.

Chapter 12

Functions of Several Variables

f x, y  x2  y2, 3, 4, 5 Fx, y, z  x2  y2  z Fxx, y, z  Fx3, 4, 5 

x

Fyx, y, z 

x2  y2

3 5

Fy3, 4, 5 

y

Fzx, y, z  1

x2  y2

4 5

Fz3, 4, 5  1

3 4 x  3   y  4  z  5  0 5 5 3x  3  4 y  4  5z  5  0 3x  4y  5z  0 19.

gx, y  x2  y2, 5, 4, 9 Gx, y, z  x2  y2  z Gxx, y, z  2x

Gyx, y, z  2y

Gzx, y, z  1

Gx5, 4, 9  10

Gy5, 4, 9  8

Gz5, 4, 9  1

10x  5  8y  4  z  9  0 10x  8y  z  9 z  exsin y  1,

21.

0, 2 , 2

Fx, y, z  exsin y  1  z Fxx, y, z  exsin y  1

Fyx, y, z  ex cos y

 Fx 0, , 2  2 2



 Fy 0, , 2  0 2







Fzx, y, z  1

 Fz 0, , 2  1 2





2x  z  2 23.

hx, y  ln x2  y2, 3, 4, ln 5 Hx, y, z  ln x2  y2  z  Hxx, y, z  Hx3, 4, ln 5 

x x2  y2 3 25

1 lnx2  y2  z 2 Hyx, y, z 

Hy3, 4, ln 5 

y x2  y2 4 25

Hzx, y, z  1 Hz3, 4, ln 5  1

3 4 x  3   y  4  z  ln 5  0 25 25 3x  3  4 y  4  25z  ln 5  0 3x  4y  25z  251  ln 5 25. x2  4y2  z2  36, 2, 2, 4 Fx, y, z  x2  4y2  z2  36 Fxx, y, z  2x Fx2, 2, 4  4

Fyx, y, z  8y Fy2, 2, 4  16

Fzx, y, z  2z Fz2, 2, 4  8

4x  2  16 y  2  8z  4  0

x  2  4 y  2  2z  4  0 x  4y  2z  18

http://librosysolucionarios.net

Section 12.7

Tangent Planes and Normal Lines

27. xy2  3x  z2  4, 2, 1, 2 Fx, y, z  xy2  3x  z2  4 Fxx, y, z  y2  3

Fyx, y, z  2xy

Fx2, 1, 2  4

Fzx, y, z  2z

Fy2, 1, 2  4

FZ2, 1, 2  4

4x  2  4 y  1  4z  2  0 xyz1 29. x2  y2  z  9, 1, 2, 4 Fx, y, z  x2  y2  z  9 Fxx, y, z  2x

Fyx, y, z  2y

Fzx, y, z  1

Fx1, 2, 4  2

Fy1, 2, 4  4

Fz1, 2, 4  1

Direction numbers: 2, 4, 1 Plane: 2x  1  4 y  2  z  4  0, 2x  4y  z  14 Line:

x1 y2 z4   2 4 1

31. xy  z  0, 2, 3, 6 Fx, y, z  xy  z Fxx, y, z  y Fx2, 3, 6  3

Fyx, y, z  x Fy2, 3, 6  2

Fzx, y, z  1 Fz2, 3, 6  1

Direction numbers: 3, 2, 1 Plane: 3x  2  2 y  3  z  6  0, 3x  2y  z  6 Line:

x2 y3 z6   3 2 1

y 33. z  arctan , x

1, 1, 4 

Fx, y, z  arctan Fxx, y, z 



Fx 1, 1,

y z x

y x2  y2

 1  4 2



Fyx, y, z 



Fy 1, 1,

x x2  y2

 1  4 2



Fzx, y, z  1



Fz 1, 1,

  1 4



Direction numbers: 1, 1, 2



Plane: x  1   y  1  2 z  Line:

   0, x  y  2z  4 2



x  1 y  1 z  4   1 1 2

http://librosysolucionarios.net

105

106

Chapter 12

35. z  f x, y 

Functions of Several Variables

4xy , 2 ≤ x ≤ z, 0 ≤ y ≤ 3 x2  1 y2  1

(a) Let Fx, y, z  Fx, y, z  

y2



4xy z x2  1 y2  1 4y x2  1  2x2 4x y2  1  2y2 i 2 jk 2 2  1 x  1 x  1  y2  12

y2









4y1  x2 4x1  y2 i 2 jk 2 2  1x  1 x  1 y2  12

F1, 1, 1  k. Direction numbers: 0, 0, 1. Line: x  1, y  1, z  1  t Tangent plane: 0x  1  0 y  1  1z  1  0 ⇒ z  1



(b) F 1, 2, 

4 43 6 jk  0i  jk 5 252 25



Line: x  1, y  2 

6 4 t, z    t 25 5





6 4 y  2  1 z  0 25 5

Plane: 0x  1 

6y  12  25z  20  0 6y  25z  32  0 (c)

z 1

1 2

3

2 x

(d) At 1, 1, 1, the tangent plane is parallel to the xy-plane, implying that the surface is level there. At  1, 2,  45 , the function does not change in the x-direction.

z

y

−1

x

−2 2

−1

3 y

37. Fxx0, y0, z0x  x0  Fyx0, y0, z0y  y0  F2x0, y0, z0z  z0  0 (Theorem 12.13) 39.

Fx, y, z  x2  y2  5

Gx, y, z  x  z

Fx, y, z  2x i  2y j

Gx, y, z  i  k

F2, 1, 2  4i  2j



i (a) F G  4 1

j 2 0

k 0  2i  4j  2k  2i  2j  k 1

Direction numbers: 1, 2, 1, (b) cos  

41.



G2, 1, 2  i  k

x2 y1 z2   1 2 1



10 F  G 4 2    ; not orthogonal F  G 202 10 5

Fx, y, z  x2  z2  25 F  2x i  2z k F3, 3, 4  6i  8k

Gx, y, z  y2  z2  25 G  2yj  2zk G3, 3, 4  6j  8k

—CONTINUED—

http://librosysolucionarios.net

Section 12.7



Tangent Planes and Normal Lines

41. —CONTINUED— i (a) F G  6 0

j 0 6

k 8  48i  48j  36k  124i  4j  3k 8

Direction numbers: 4, 4, 3, (b) cos  

43.



x3 y3 z4   4 4 3



64 F  G 16   ; not orthogonal F  G 1010 25

Fx, y, z  x2  y2  z2  6

Gx, y, z  x  y  z

Fx, y, z  2x i  2yj  2zk

Gx, y, z  i  j  k

F2, 1, 1  4i  2j  2k

G2, 1, 1  i  j  k



i (a) F G  4 1

j 2 1

k 2  6j  6k  6 j  k 1

Direction numbers: 0, 1, 1, x  2,

45. f x, y  6  x2 

(b) cos  





F  G  0; orthogonal F  G

y1 z1  1 1

y2 , gx, y  2x  y 4

(a) Fx, y, z  z  x2  Fx, y, z  2x i 

y2 6 4

Gx, y, z  z  2x  y

1 yj  k 2

Gx, y, z  2i  j  k G1, 2, 4  2i  j  k

F1, 2, 4  2i  j  k





The cross product of these gradients is parallel to the curve of intersection. F1, 2, 4 G1, 2, 4 

i 2 2

j 1 1

k 1  2i  4j 1

Using direction numbers 1, 2, 0, you get x  1  t, y  2  2t, z  4. cos   (b)

4  1  1 4 F  G   ⇒  48.2

F G 6 6 6

z 8

(1, 2, 4)

6 8

y

x

47. Fx, y, z  3x2  2y2  z  15, 2, 2, 5

49. Fx, y, z  x2  y2  z, 1, 2, 3

Fx, y, z  6xi  4yj  k

Fx, y, z  2xi  2yj  k

F2, 2, 5  12i  8j  k

F1, 2, 3  2i  4j  k

cos  

F2, 2, 5  k  F2, 2, 5



  arccos



1 209

1

86.03

209

cos  

F1, 2, 3  k  F1, 2, 3

  arccos

http://librosysolucionarios.net

1 21

1

77.40

21

107

108 51.

Chapter 12

Functions of Several Variables

Fx, y, z  3  x2  y2  6y  z

53. Tx, y, z  400  2x2  y2  4z2, 4, 3, 10

Fx, y, z  2xi  2y  6j  k 2x  0, x  0

z

2y  6  0, y  3 8

z  3  02  32  63  12

0, 3, 12 (vertex of paraboloid) 8

dx  4kx dt

dy  2ky dt

dz  8kz dt

xt  C1e4kt

yt  C2e2kt

zt  C3e8kt

x0  C1  4

y0  C2  3

z0  C3  10

x  4e4kt

y  3e2kt

z  10e8kt

6

x 8 y

55. Fx, y, z 

x2 y2 z2  2 21 2 a b c

57. Fx, y, z  a2x2  b2y2  z2 Fxx, y, z  2a2x

2x Fxx, y, z  2 a Fyx, y, z 

Fyx, y, z  2b2y Fzx, y, z  2z

2y b2

Plane: 2a2x0x  x0  2b2y0 y  y0  2z0z  z0  0

2z Fzx, y, z  2 c Plane:

a2x0x  b2y0y  z0z  a2x02  b2y02  z02  0 Hence, the plane passes through the origin.

2y 2z 2x0 x  x0  20  y  y0  20 z  z0  0 a2 b c x0x y0 y z0z x02 y02 z02  2  2  2  2  2 1 a2 b c a b c

59. f x, y  exy fxx, y  exy,

fyx, y  exy

fxxx, y  exy,

fyyx, y  exy,

fxyx, y  exy

(a) P1x, y f 0, 0  fx0, 0x  fy0, 0y  1  x  y 1 1 (b) P2x, y f 0, 0  fx0, 0x  fy0,0y  2 fxx0, 0x2  fxy0, 0xy  2 fyy0, 0y2

 1  x  y  12 x2  xy  12 y2 1 (c) If x  0, P20, y  1  y  2 y2. This is the second–degree Taylor polynomial for ey. 1 If y  0, P2x, 0  1  x  2 x2. This is the second–degree Taylor polynomial for ex.

(d)

x

y

f x, y

P1x, y

P2x, y

0

0

1

1

1

0

0

0.9048

0.9000

0.9050

(e)

f z

P2 P1

0.2

0.1

1.1052

1.1000

1.1050

0.2

0.5

0.7408

0.7000

0.7450

1

0.5

1.6487

1.5000

1.6250

4

−2

2 x

−2 1 −2

2

−4

y

61. Given w  Fx, y, z where F is differentiable at

x0, y0, z0 and Fx0, y0, z0 0, the level surface of F at x0, y0, z0 is of the form Fx, y, z  C for some constant C. Let Gx, y, z  Fx, y, z  C  0. Then Gx0, y0, z0  Fx0, y0, z0 where Gx0, y0, z0 is normal to Fx0, y0, z0  C  0. Therefore, Fx0, y0z0 is normal to Fx0, y0, z0  C.

http://librosysolucionarios.net

Section 12.8

Section 12.8

Extrema of Functions of Two Variables

109

Extrema of Functions of Two Variables

1. gx, y  x  12   y  32 ≥ 0

z

Relative minimum: 1, 3, 0

5

gx  2x  1  0 ⇒ x  1 gy  2 y  3  0 ⇒ y  3

1 3

2

1

x

(1, 3, 0)

4

y

3. f x, y  x2  y2  1 ≥ 1

z 5

Relative minimum: 0, 0, 1 Check: fx 

x x2  y2  1

0 ⇒ x0 −3

y fy  0 ⇒ y0 x2  y2  1 fxx 

3

(0, 0, 1)

2 2

x

3

y

y2  1 x2  1 xy , f  , f  x2  y2  132 yy x2  y2  132 xy x2  y2  132

At the critical point 0, 0, fxx > 0 and fxx fyy   fxy2 > 0. Therefore, 0, 0, 1 is a relative minimum. 5. f x, y  x2  y2  2x  6y  6  x  12   y  32  4 ≥ 4

z 2 1

Relative minimum: 1, 3, 4

2 1

Check: fx  2x  2  0 ⇒ x  1

x

−1 −2 −3 −4

fy  2y  6  0 ⇒ y  3

1 7

y

(−1, 3, − 4)

fxx  2, fyy  2, fxy  0

At the critical point 1, 3, fxx > 0 and fxx fyy   fxy2 > 0. Therefore, 1, 3, 4 is a relative minimum. 7. f x, y  2x2  2xy  y2  2x  3



fx  4x  2y  2  0 fy  2x  2y  0

Solving simultaneously yields x  1 and y  1.

fxx  4, fyy  2, fxy  2 At the critical point 1, 1, fxx > 0 and fxx fyy   fxy2 > 0. Therefore, 1, 1, 4 is a relative minimum. 9. f x, y  5x2  4xy  y2  16x  10



fx  10x  4y  16  0 fy  4x  2y  0

Solving simultaneously yields x  8 and y  16.

fxx  10, fyy  2, fxy  4 At the critical point 8, 16, fxx < 0 and fxx fyy   fxy2 > 0. Therefore, 8, 16, 74 is a relative maximum. 11. f x, y  2x2  3y2  4x  12y  13

13. f x, y  2x2  y2  3

fx  4x  4  4x  1  0 when x  1. fy  6y  12  6 y  2  0 when y  2.

fx 

2x x2  y2

2y



0

x  0, y  0

fxx  4, fyy  6, fxy  0

fy 

At the critical point 1, 2, fxx > 0 and fxx fyy   fxy2 > 0. Therefore, 1, 2, 1 is a relative minimum.

Since f x, y ≥ 3 for all x, y, 0, 0, 3 is relative minimum.

x2  y2

http://librosysolucionarios.net

0

110

Chapter 12

Functions of Several Variables

 

15. gx, y  4  x  y

0, 0 is the only critical point. Since gx, y ≤ 4 for all x, y, 0, 0, 4 is relative maximum. 4x x2  y2  1

17. z 

19. z  x2  4y2e1x

2 y2

Relative minimum: 0, 0, 0

Relative minimum: 1, 0, 2

Relative maxima: 0, ± 1, 4

Relative maximum: 1, 0, 2

Saddle points: ± 1, 0, 1

z

z 4 6 5 −4 y

4 x

−4

5

−4

−4 4

x

4

y

21. hx, y  x2  y2  2x  4y  4 hx  2x  2  2x  1  0 when x  1. hy  2y  4  2 y  2  0 when y  2. hxx  2, hyy  2, hxy  0 At the critical point 1, 2, hxx hyy  hxy2 < 0. Therefore, 1, 2, 1 is a saddle point. 23. hx, y  x2  3xy  y2 hx  2x  3y  0



hy  3x  2y  0

Solving simultaneously yields x  0 and y  0.

hxx  2, hyy  2, hxy  3 At the critical point 0, 0, hxx hyy  hxy2 < 0. Therefore, 0, 0, 0 is a saddle point. 25. f x, y  x3  3xy  y3 fx  3x2  y  0



fy  3x  y2  0

Solving by substitution yields two critical points 0, 0 and 1, 1.

fxx  6x, fyy  6y, fxy  3 At the critical point 0, 0, fxx fyy   fxy2 < 0. Therefore, 0, 0, 0 is a saddle point. At the critical point 1, 1, fxx  6 > 0 and fxx fyy   fxy2 > 0. Therefore, 1, 1, 1 is a relative minimum. 27. f x, y  ex sin y



fx  ex sin y  0 fy  ex cos y  0

29. z 

Since ex > 0 for all x and sin y and cos y are never both zero for a given value of y, there are no critical points.

x  y4 ≥ 0. z  0 if x  y  0. x2  y2

z 60

Relative minimum at all points x, x, x  0.

40

3 x

3

y

http://librosysolucionarios.net

Section 12.8 31. fxx fyy   fxy2  94  62  0

Extrema of Functions of Two Variables

111

33. fxx fyy   fxy2  96  102 < 0 f has a saddle point at x0, y0.

Insufficient information.

35. (a) The function f defined on a region R containing x0, y0 has a relative minimum at x0, y0 if f x, y ≥ f x0, y0 for all x, y in R. (b) The function f defined on a region R containing x0, y0 has a relative maximum at x0, y0 if f x, y ≤ f x0, y0 for all x, y in R. (c) A saddle point is a critical point which is not a relative extremum. (d) See definition page 906. z

37.

No extrema

z

39.

Saddle point

41. The point A will be a saddle point. The function could be

7 6

75 60

f x, y  x2  y2.

45 30

2

x

x 2

6

3

y

−3

y

43. d  fxx fyy  fxy2  28  fxy2  16  fxy2 > 0 ⇒ fxy < 16 ⇒ 4 < fxy < 4 2

45. f x, y  x3  y3 fx  3x2  0 fy  3y2  0

 Solving yields x  y  0

fxx  6x, fyy  6y, fxy  0 At 0, 0, fxx fyy   fxy2  0 and the test fails. 0, 0, 0 is a saddle point. 47. f x, y  x  12 y  42 ≥ 0 fx  2x  1 y  42  0 fy  2x  12y  4  0

 Solving yields the critical points 1, a and b, 4.

fxx  2 y  42, fyy  2x  12, fxy  4x  1 y  4 At both 1, a and b, 4, fxx fyy   fxy2  0 and the test fails. Absolute minima: 1, a, 0 and b, 4, 0 49. f x, y  x23  y23 ≥ 0 fx  fy 

2 3 x 3

2 3 y 3

fxx  



fx and fy are undefined at x  0, y  0. The critical point is 0, 0.

2 2 ,f  ,f 0 3 3 yy 3 y xy 9x  9y 

At 0, 0, fxx fyy   fxy2 is undefined and the test fails. Absolute minimum: 0 at 0, 0 51. f x, y, z  x2   y  32  z  12 ≥ 0 fx  2x  0



fy  2 y  3  0 fz  2z  1  0

Solving yields the critical point 0, 3, 1.

Absolute minimum: 0 at 0, 3, 1

http://librosysolucionarios.net

112

Chapter 12

Functions of Several Variables

53. f x, y  12  3x  2y has no critical points. On the line y  x  1, 0 ≤ x ≤ 1,

y

f x, y  f x  12  3x  2x  1  5x  10

3

and the maximum is 10, the minimum is 5. On the line y  2x  4, 1 ≤ x ≤ 2,

y=x+1 (1, 2)

2

f x, y  f x  12  3x  22x  4  x  4 and the maximum is 6, the minimum is 5. On the line y   12 x  1, 0 ≤ x ≤ 2,

y = −2x + 4

(0, 1)

1

f x, y  f x  12  3x  2  12 x  1  2x  10

(2, 0) 1

and the maximum is 10, the minimum is 6.

2

y=−

Absolute maximum: 10 at 0, 1

1x 2

x

3

+1

Absolute minimum: 5 at 1, 2 55. f x, y  3x2  2y2  4y

y

(−2, 4)

⇒ x0

fx  6x  0



(2, 4)

f 0, 1  2

fy  4y  4  0 ⇒ y  1

3

On the line y  4, 2 ≤ x ≤ 2,

2

f x, y  f x  3x  32  16  3x  16 2

2

1

and the maximum is 28, the minimum is 16. On the curve y  x2, 2 ≤ x ≤ 2, f x, y  f x 

3x2

 2   x2 2

4x2



2x4



x2





x2

2x2

−2

 1

x

−1

1

2

1

and the maximum is 28, the minimum is  8 . Absolute maximum: 28 at ± 2, 4 Absolute minimum: 2 at 0, 1





57. f x, y  x2  xy, R  x, y: x ≤ 2, y ≤ 1

xy0

fx  2x  y  0 fy  x  0

y 2

f 0, 0  0

x

−1

1 Along y  1, 2 ≤ x ≤ 2, f  x2  x, f  2x  1  0 ⇒ x   2 .

1

1 1 Thus, f 2, 1  2, f   2 , 1   4 and f 2, 1  6.

−2

1 Along y  1, 2 ≤ x ≤ 2, f  x2  x, f  2x  1  0 ⇒ x  2 . 1 1 Thus, f 2, 1  6, f  2 , 1   4 , f 2, 1  2.

Along x  2, 1 ≤ y ≤ 1, f  4  2y ⇒ f  2  0. Along x  2, 1 ≤ y ≤ 1, f  4  2y ⇒ f  2  0.

1 1 1 1 Thus, the maxima are f 2, 1  6 and f 2, 1  6 and the minima are f   2 , 1   4 and f  2 , 1   4 .

59. f x, y  x2  2xy  y2, R  x, y: x2  y2 ≤ 8

y

 y  x

fx  2x  2y  0

4

fy  2x  2y  0 f x, x 

x2



2x2



x2

2

0

On the boundary x2  y2  8, we have y2  8  x2 and y  ± 8  x2. Thus,

−4

2 −2

f  x2 ± 2x8  x2  8  x2  8 ± 2x8  x2 f  ± 8  x2122x  28  x212  ±

x

−2

−4

16  4x2 . 8  x2

Then, f  0 implies 16  4x2 or x  ± 2. f 2, 2  f 2, 2  16 and

f 2, 2  f 2, 2  0



Thus, the maxima are f 2, 2  16 and f 2, 2  16, and the minima are f x, x  0, x ≤ 2.

http://librosysolucionarios.net

4

Section 12.9

61. f x, y 

Applications of Extrema of Functions of Two Variables

4xy , R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 x2  1 y2  1

fx 

41  x2y  0 ⇒ x  1 or y  0   1x2  1

fy 

41  y2x ⇒ x  0 or y  1 2 x  1 y2  12

113

y

1

y2

R x 1

For x  0, y  0, also, and f 0, 0  0. For x  1, y  1, f 1, 1  1. The absolute maximum is 1  f 1, 1. The absolute minimum is 0  f 0, 0. In fact, f 0, y  f x, 0  0 63. False





Let f x, y  1  x  y .

0, 0, 1 is a relative maximum, but fx0, 0 and fy0, 0 do not exist.

Section 12.9

Applications of Extrema of Functions of Two Variables

1. A point on the plane is given by x, y, 12  2x  3y. The square of the distance from the origin to this point is S  x2  y2  12  2x  3y2

3. A point on the paraboloid is given by x, y, x2  y2. The square of the distance from 5, 5, 0 to a point on the paraboloid is given by S  x  52   y  52  x2  y22

Sx  2x  212  2x  3y2

Sx  2x  5  4xx2  y2  0

Sy  2y  212  2x  3y3 From the equations Sx  0 and Sy  0, we obtain the system 5x  6y  24

Sy  2 y  5  4yx2  y2  0. From the equations Sx  0 and Sy  0, we obtain the system 2x3  2xy2  x  5  0

3x  5y  18.

2y3  2x2y  y  5  0

12 18 Solving simultaneously, we have x  7 , y  7 54 6 z  12  24 7  7  7 . Therefore, the distance from

the origin to 

12 18 6 7 , 7 ,7

 is

127  187  67 2

2

2



Multiply the first equation by y and the second equation by x, and subtract to obtain x  y. Then, we have x  1, y  1, z  2 and the distance is

614 . 7

1  52  1  52  2  02  6.

5. Let x, y and z be the numbers. Since x  y  z  30, z  30  x  y. P  xyz  30xy  x2y  xy2 Px  30y  2xy  y2  y30  2x  y  0 2x  y  30



Py  30x  x2  2xy  x30  x  2y  0 x  2y  30 Solving simultaneously yields x  10, y  10, and z  10. 7. Let x, y, and z be the numbers and let S  x2  y2  z2. Since x  y  z  30, we have S  x2  y2  30  x  y2 Sx  2x  230  x  y1  0 2x  y  30



Sy  2y  230  x  y1  0 x  2y  30. Solving simultaneously yields x  10, y  10, and z  10.

http://librosysolucionarios.net

114

Chapter 12

Functions of Several Variables

9. Let x, y, and z be the length, width, and height, respectively. Then the sum of the length and girth is given by x  2y  2z  108 or x  108  2y  2z. The volume is given by V  xyz  108zy  2zy2  2yz2 Vy  108z  4yz  2z2  z108  4y  2z  0 Vz  108y  2y2  4yz  y108  2y  4z  0. Solving the system 4y  2z  108 and 2y  4z  108, we obtain the solution x  36 inches, y  18 inches, and z  18 inches. 11. Let a  b  c  k. Then V

13. Let x, y, and z be the length, width, and height, respectively and let V0 be the given volume.

4 abc 4   abk  a  b 3 3 

Then V0  xyz and z  V0 xy. The surface area is



4  kab  a2b  ab2 3

S  2xy  2yz  2xz  2 xy 



V0  0 x2y  V0  0 x2



V0  0 xy2  V0  0. y2

Va 

4 kb  2ab  b2  0 kb  2ab  b2  0 3

Sx  2 y 

Vb 

4 ka  a2  2ab  0 ka  a2  2ab  0. 3

Sy  2 x 





V0 V0  x y







3 V ,y   3 V , Solving simultaneously yields x   0 0 3 V . and z   0

Solving this system simultaneously yields a  b and substitution yields b  k 3. Therefore, the solution is a  b  c  k 3.

15. The distance from P to Q is x2  4. The distance from Q to R is y  x2  1 . The distance from R to S is 10  y. C  3kx2  4  2k y  x2  1  k10  y

 yx yx 1 k0 ⇒  2  y  x  1  y  x  1 1 x  2k  0 3k 2 x  4  C  2k

Cx  3k y





  y  x x  2k 0   y  x2  1 4

x2 



2

2

2

x x2  4



1 3

3x  x2  4 9x2  x2  4 x2  x

1 2 2

2

2 y  x   y  x2  1 4 y  x2   y  x2  1

 y  x2  y Therefore, x 

2

2

1 3 1 3



0.707 km and y 

1 2



23  32 6

23  32 1.284 kms. 6

http://librosysolucionarios.net

Section 12.9

Applications of Extrema of Functions of Two Variables

115

17. Let h be the height of the trough and r the length of the slanted sides. We observe that the area of a trapezoidal cross section is given by

w  2r  2w  2r  2x  w  2r  xh

Ah

where x  r cos  and h  r sin . Substituting these expressions for x and h, we have Ar,   w  2r  r cos r sin   wr sin   2r 2 sin   r 2 sin  cos  Now Arr,   w sin   4r sin   2r sin  cos   sin w  4r  2r cos   0 ⇒ w  r 4  2 cos  Ar,   wr cos   2r 2 cos   r 2 cos 2  0. Substituting the expression for w from Arr,   0 into the equation Ar,   0, we have r 24  2 cos cos   2r 2 cos   r 22 cos2   1  0 1 r 22 cos   1  0 or cos   . 2 Therefore, the first partial derivatives are zero when    3 and r  w 3. (Ignore the solution r    0.) Thus, the trapezoid of maximum area occurs when each edge of width w 3 is turned up 60 from the horizontal. 19. Rx1, x2  5x12  8x22  2x1x2  42x1  102x2 Rx1  10x1  2x2  42  0, 5x1  x2  21 Rx2  16x2  2x1  102  0, x1  8x2  51 Solving this system yields x1  3 and x2  6. Rx1x1  10 Rx1x2  2 Rx2x2  16 Rx1x1 < 0 and Rx1x1 Rx2x2  Rx1x22 > 0 Thus, revenue is maximized when x1  3 and x2  6. 21. Px1, x2  15x1  x2  C1  C2  15x1  15x2  0.02x12  4x1  500  0.05x22  4x2  275  0.02x12  0.05x22  11x1  11x2  775 Px1  0.04x1  11  0, x1  275 Px2  0.10x2  11  0, x2  110 Px1x1  0.04 Px1x2  0 Px2x2  0.10 Px1x1 < 0 and Px1x1 Px2x2  Px1x22 > 0 Therefore, profit is maximized when x1  275 and x2  110.

http://librosysolucionarios.net

116

Chapter 12

Functions of Several Variables

23. (a) Sx, y  d1  d2  d3  x  02   y  02  x  22   y  22  x  42   y  22  x2  y2  x  22   y  22  x  42   y  22 From the graph we see that the surface has a minimum. (b) Sxx, y  Syx, y 

S 24

x2 x x4   x2  y2 x  22   y  22 x  42   y  22 y x2  y2



y2 x  22   y  22



20

y2 x  42   y  22



4



8

1 2 1 i  j (c) S1, 1  Sx1, 1i  Sy1, 1j   2 2 10 tan  

 2 10    1 2   1  1 2

2 5





1 2

t, 1 



2 10



2

2

4

6

8

y

x

⇒  186.027

(d) x2, y2  x1  Sxx1, y1t, y1  Syx1, y1t  1 

S 1

6

4

1 2

t, 1 



2 10



1 2

t

2 t  2  2 510  2 2 t  1  2 5 5  25 t 

1 





2



10  2 510  2 2 t  1  2 5 5  25 t



10  2 510  4 2 t  1  2 5 5  25 t













2

2

Using a computer algebra system, we find that the minimum occurs when t 1.344. Thus, x2, y2 0.05, 0.90. (e) x3, y3  x2  Sxx2, y2t, y2  Syx2, y2t 0.05  0.03t, 0.90  0.26t S0.05  0.03t, 0.90  0.26t  0.05  0.03t2  0.90  0.26t2  2.05  0.03t2  1.10  0.26t2  3.95  0.03t2  1.10  0.26t2 Using a computer algebra system, we find that the minimum occurs when t 1.78. Thus x3, y3 0.10, 0.44.

x4, y4  x3  Sxx3, y3t, y3  Syx3, y3t 0.10  0.09t, 0.44  0.01t S0.10  0.09t, 0.45  0.01t  0.10  0.09t2  0.45  0.01t2  2.10  0.09t2  1.55  0.01t2  3.90  0.09t2  1.55  0.01t2 Using a computer algebra system, we find that the minimum occurs when t 0.44. Thus, x4, y4 0.06, 0.44. Note: The minimum occurs at x, y  0.0555, 0.3992 (f) Sx, y points in the direction that S decreases most rapidly. You would use Sx, y for maximization problems. 25. Write the equation to be maximized or minimized as a function of two variables. Set the partial derivatives equal to zero (or undefined) to obtain the critical points. Use the Second Partials Test to test for relative extrema using the critical points. Check the boundary points, too.

http://librosysolucionarios.net

Section 12.9

27. (a)

y

xy

x2

4

0

4

0

0

0

0

1

3

3

1

6

4

1

1

1

1

2

0

0

4

y

xy

x2

2

0

0

0

1

2

3

x  0  y  4  xy  6  x i

29. (a)

i i

2

i

8

x  4 y  8 xy  4 x i

36  04 3 1 3 4 a  , b 4  0  , 38  02 4 3 4 3



a

3 4 y x 4 3



 2

4  1 3

 2

3 4   3 2 3

 x  13, x y  46,



2

(b) S  4  42  2  32  2  12  0  02  2

a

546  1312 74 37   551  132 86 43

b y

 y  0,  x  205

i

i

i

2

i i

i

a

175 570  270 350   5205  272 296 148

37 7 1 12  13  5 43 43

b

175 945 1 0  27  5 148 148

37 7 x 43 43

y







175 945 x 148 148

8

7 y = 37 x + 43 43

(0, 6)

(5, 5)

(4, 3)

(3, 4)

−4

18

(5, 0) (8, − 4)

(4, 2) (1, 1) (0, 0)

10

−6

−1

(10, − 5)

y = − 175 x + 945 148 148

37. 1.0, 32, 1.5, 41, 2.0, 48, 2.5, 53

35. (a) y  1.7236x  79.7334

 x  7,  y  174,  x y  322,  x

240

i

i

i i

a  14, b  19, y  14x  19

When x  1.6, y  41.4 bushels per acre. 0 100

6

44  48 1  2, b  8  24  4, 46  42 4

 x  27,  x y  70,

i

2

i i

7

2

i

33. 0, 6, 4, 3, 5, 0, 8, 4, 10, 5

 y  12, x  51

i

(b)

i i

1 6

31. 0, 0, 1, 1, 3, 4, 4, 2, 5, 5

−2

i

y  2x  4

3 4 (b) S     0 2 3 

117

x

x

i

Applications of Extrema of Functions of Two Variables

100

(c) For each one-year increase in age, the pressure changes by 1.7236 (slope of line).

http://librosysolucionarios.net

2

i

 13.5

118

Chapter 12

Functions of Several Variables

n

  y  ax

39. Sa, b, c 

i

 bxi  c2

2

i

41. 2, 0, 1, 0, 0, 1, 1, 2, 2, 5

i1

n S  2xi2 yi  axi2  bxi  c  0 a i1



n S  2xi yi  axi2  bxi  c  0 b i1



n S  2  yi  axi2  bxi  c  0 c i1



n

a

x

b

4

i

n

x

c

3

i

n

x

i

i1

i1

i1

n

n

n

a

x

3

i

b

i1

x

2

i

c

i1 n

x

a

2

i



x

i

yi

2

i

i i

i1

−2

i

45. 0, 0, 2, 15, 4, 30, 6, 50, 8, 65, 10, 70

 x  30,  y  230,  x  220,  x  1,800,  x  15,664,  x y  1,670,  x y  13,500

i

i

i

i

2

2

i

i

3

3

i

i

4

4

i

i

i i

i i

i

2

i

353a  99b  29c  254

i

15,664a  1,800b  220c  13,500

99a  29b  9c  70

1,800a 

29a  9b  4c  20

220b  30c  1,670

220a 

a  1, b  1, c  0, y  x2  x

y

25 2  112 x

30b  

541 56

x

6c  25 14

14 120

(4, 12) (3, 6) (2, 2)

−5

(0, 0)

7

−1

−2

14 −20

47. (a) ln P  0.1499h  9.3018 (b) ln P  0.1499h  9.3018 P  e0.1499h9.3018  10,957.7e0.1499h (c)

(0, 1)

3 2 6 26 a  37 , b  65 , c  26 35 , y  7 x  5 x  35

i

x 9  y  20  x  29  x  99 x  353  x y  70  x y  254 i

6

(−2, 0)

34a  10c  22, 10b  12, 10a  5c  8

n

 x  cn   y

43. 0, 0, 2, 2, 3, 6, 4, 12

2

−9

i i

i1

i1

2

i

4

x  x y

i

(1, 2)

i

2

n

n

(2, 5)

(−1, 0)

i

3

n

i

8

i

i

i1

i1

b

i1

2

x 0 y 8  x  10 x  0  x  34  x y  12  x y  22

14,000

−2

24

−2,000

(d) Same answers.

http://librosysolucionarios.net

230

0.22x 2  9.66x  1.79

Section 12.10

Section 12.10

Lagrange Multipliers

119

Lagrange Multipliers

1. Maximize f x, y  xy.

3. Minimize f x, y  x2  y 2.

y

Constraint: x  y  10

10

f  g

2x i  2yj   i   j

6 4

y

xy x  

4

2

2x  

constraint x 2

4

6

8

10

x  y  10  ⇒ x  y  5

12

constraint

f  g

level curves

8

y i  xj  i  j

y

Constraint: x  y  4

12

2y  

x −4

4

x  y

−4

level curves

xy4 ⇒ xy2

f 5, 5  25

f 2, 2  8

5. Minimize f x, y  x2  y 2.

7. Maximize f x, y  2x  2xy  y.

Constraint: x  2y  6

Constraint: 2x  y  100

f  g

f  g

2x i  2yj   i  2 j

2  2y i  2x  1j  2 i   j

⇒ x

2x  

 2

2  2y  2 ⇒ y    1 2x  1  

2y  2 ⇒ y  



  1 y  2x 2

2x  y  100 ⇒ 4x  100

3 ⇒    6 2

x  2y  6

⇒ x

x  25, y  50

  4, x  2, y  4

f 25, 50  2600

f 2, 4  12 9. Note: f x, y  6  x2  y 2 is maximum when gx, y is maximum. Maximize gx, y  6  x2  y 2.

2y  

xe xy  2y

xy

xy2 f 2, 2 

f 1, 1  g1, 1  2 13. Maximize or minimize f x, y  x 2  3xy  y 2. Constraint:



y2

xy

x2  y 2  8 ⇒ 2x2  8

xy2 ⇒ xy1

x2

Constraint: x2  y 2  8 ye xy  2x

Constraint: x  y  2  2x  

11. Maximize f x, y  e xy.

e4

Case 2: Inside the circle

≤ 1

Case 1: On the circle

x2

fx  2x  3y  0



y2

2x  3y  2x 3x  2y  2y







2

Maxima: f ± Minima: f ±

2 2



,

fxx  2, fyy  2, fxy  3, fxx fyy   fxy2 ≤ 0

x2  y 2

x2  y2  1 ⇒ x  ± 2

xy0

fy  3x  2y  0

1

2

2

2 

2 2

2

Saddle point: f 0, 0  0

,y±

5  2

2

2

5

By combining these two cases, we have a maximum of 2 at



2

2

, ±

2

2

 1

and a minimum of  2 at

   12



2

2

,

http://librosysolucionarios.net

2

2

.

120

Chapter 12

Functions of Several Variables

15. Minimize f x, y, z  x2  y 2  z 2.

17. Minimize f x, y, z  x2  y 2  z 2.

Constraint: x  y  z  6

Constraint: x  y  z  1

2x   2y   x  y  z 2z  

2x   2y   x  y  z 2z  





xyz6 ⇒ xyz2

xyz1 ⇒ xyz

f 2, 2, 2  12

f 3 , 3 , 3  3 1 1 1

19. Maximize f x, y, z  xyz.

1 3

1

21. Maximize f x, y, z  xy  yz.

Constraints: x  y  z  32

Constraints: x  2y  6

xyz0

x  3z  0

f  g  h

f  g  h

yz i  xz j  xyk  i  j  k   i  j  k

y i  x  z j  yk  i  2j   i  3k

yz     xz     yz  xy ⇒ x  z xy    

y 8 3 x  z  2 y  ⇒ xz y 4 3 y  3





x  y  z  32

2x  2z  32 ⇒ x  z  8 xyz0  y  16

x  2y  6 ⇒ y  3  x  3z  0 ⇒ z 

f 8, 16, 8  1024 x

x 2

x 3



x 8 x  3 3 3 2



3 x  3, y  , z  1 2





3 f 3, , 1  6 2 23. Minimize the square of the distance f x, y  x2  y 2 subject to the constraint 2x  3y  1. 2x  2 2y  3

 y  3x2

2 3 The point on the line is   13 ,  13  and the desired distance is

    

2 13

2

f x, y, z  x  22   y  12  z  12 subject to the constraint x  y  z  1.

3 2 2x  3y  1 ⇒ x   , y   13 13

d

25. Minimize the square of the distance

 

3 13

2



13

13

2x  2   2 y  1   y  z and y  x  1 2z  1  



x  y  z  1 ⇒ x  2x  1  1 x  1, y  z  0

.

The point on the plane is 1, 0, 0 and the desired distance is d  1  22  0  12  0  12  3.

http://librosysolucionarios.net

Section 12.10 27. Maximize f x, y, z  z subject to the constraints x2  y 2  z2  36 and 2x  y  z  2. 0  2x  2 0  2y   x  2y 1  2z  



Lagrange Multipliers

121

29. Optimization problems that have restrictions or contstraints on the values that can be used to produce the optimal solution are called contrained optimization problems.

x2  y 2  z 2  36 2x  y  z  2 ⇒ z  2x  y  2  5y  2

2y2  y 2  5y  22  36 30y 2  20y  32  0 15y 2  10y  16  0 y

5 ± 265 15

Choosing the positive value for y we have the point 265 5  265 1  265

10  152

,

,

15

3

.

31. Maximize Vx, y, z  xyz subject to the constraint x  2y  2z  108.

33. Minimize Cx, y, z  5xy  32xz  2yz  xy subject to the constraint x yz  480.

yz   xz  2 y  z and x  2y xy  2

8y  6z  yz  8x  6z  xz  x  y, 4y  3z 6x  6y  xy





x  2y  2z  108 ⇒ 6y  108, y  18

xyz  480 ⇒ 43 y 3  480

x  36, y  z  18 Volume is maximum when the dimensions are 36 18 18 inches

z

3 360, z  4  3 360 x  y  3 3 360  3 360 4  3 360 Dimensions:  feet 3

z x

y

y

35. Maximize Vx, y, z  2x2y2z  8xyz subject to the constraint 8yz 

2x  a2

8xz 

2y  b2

8xy 

2z  c2



x

x2 y2 z2 2  2  2  1. a b c

x2 y2 z2 2  2  2 a b c

x2 y2 z2 3x2 3y 2 3z 2    1 ⇒ 2  1, 2  1, 2  1 a2 b 2 c 2 a b c x

a 3

,y

b 3

,z

c 3

Therefore, the dimensions of the box are

23a 23b 23c . 3 3 3

http://librosysolucionarios.net

122

Chapter 12

Functions of Several Variables

37. Using the formula Time 

d12  x2 d22  y 2 Distance , minimize Tx, y  subject to the constraint x  y  a.  Rate v1 v2

x  v1d22  x 2 x y  y v1d12  x2 v2d22  y 2  v2d22  y 2



Medium 1

P

d1

xya

θ1

Since sin 1  xd1  v1 2

x d12  x2

x2



and sin 2 

yd2  v2 2

y2

y d22  y

, we have 2

θ2

39. Maximize P p, q, r  2pq  2pr  2qr.

subject to the constraint 48x  36y  100,000.

P  g



⇒ 3  4 p  q  r  41 ⇒ 

4 3

25x0.75y0.75  48 ⇒

yx

0.75

75x0.25y0.25  36 ⇒

xy

0.25

pqr1

0.75

 ⇒ p



48 25



36 75

yx yx

pqr1 q  r  23

Q

41. Maximize Px, y  100x 0.25y 0.75

Constraint: p  q  r  1 2q  2r   2p  2r   2p  2q  

d2

a Medium 2

sin 1 sin 2  . v1 v2

or

y

x

1 3,

q  13 , r  13

0.25



48253675

y 4 x

P 13 , 13 , 13   2 13  13   2 13  13   2 13  13   23 .

y  4x 48x  36y  100,000 ⇒ 192x  100,000 x Therefore, P

3125 6250 6 , 3

43. Minimize Cx, y  48x  36y subject to the constraint 100x0.25y0.75  20,000. 48  25x0.75y0.75 ⇒

yx

0.75

36  75x0.25y0.25 ⇒

xy

0.25



48 25



36 75

yx yx 0.75

0.25



25487536

y  4 ⇒ y  4x x 100x0.25y0.75  20,000 ⇒ x0.254x0.75  200 x

200 200   502 40.75 22

y  4x  2002 Therefore, C 502, 2002  $13,576.45.

http://librosysolucionarios.net

 147,314.

3125 6250 ,y 6 3

Review Exercises for Chapter 12

123

45. (a) Maximize g, ,   cos  cos  cos  subject to the constraint       .  sin  cos  cos   cos  sin  cos   tan   tan   tan  ⇒      cos  cos  sin     ⇒  3



g

3 , 3 . 3   81

γ 3

(b)        ⇒       

2

g    cos  cos  cos      α

 cos  cos cos  cos    sin  sin  

3

3

β

 cos  cos  cos  

Review Exercises for Chapter 12 1. No, it is not the graph of a function. 3. f x, y  ex

5. f x, y  x2  y 2

2 y 2

The level curves are of the form c

The level curves are of the form c  x2  y 2

2 2 ex y

ln c  x2  y 2.

1

The level curves are circles centered at the origin.

x2 y 2  . c c

The level curves are hyperbolas.

y

y 2

c = 10 4

c = −12 c = − 2 c=2

c=1 c = 12

x

−2

1

2

x

−4

1

−1

4

−2

Generated by Mathematica

−4

Generated by Mathematica

7. f x, y  ex

2

9. f x, y, z  x2  y  z2  1

y 2

z

y  x2  z2  1

z 3

3

Elliptic paraboloid

−3 −3

2 x 3

3 x

11.

y

y

−3

xy 1  x, y → 1, 1 x  y 2 2 lim

3

2

Continuous except at 0, 0.

13.

lim

x, y → 0, 0

4x2y x4  y2

For y  x 2, For y  0,

4x 4 4x 2y  4  2, for x 0 4 2 x y x  x4 4x 2y  0, for x 0 x4  y 2

Thus, the limit does not exist. Continuous except at 0, 0.

http://librosysolucionarios.net

124

Chapter 12

Functions of Several Variables

15. f x, y  ex cos y

z  ey  yex x

fx  ex cos y fy  e sin y x

19. gx, y 

z  xey  yex

17.

z  xey  ex y

xy x2  y 2

21. f x, y, z  z arctan

y x

gx 

yx2  y 2  xy2x y y2  x2  2 x2  y 22 x  y 22

fx 

z y yz   2 1   y2 x2 x2 x  y2

gy 

xx2  y 2 x2  y 22

fy 

z xz 1  2 1   y 2 x2 x x  y2

  

fz  arctan

23. ux, t  cen t sinnx 2

y x

z

25.

u 2  cnen t cosnx x

3

u 2  cn2en t sinnx t

−1 3

y

3 x

27. f x, y  3x2  xy  2y 3

29. hx, y  x sin y  y cos x

fx  6x  y

hx  sin y  y sin x

fy  x 

hy  x cos y  cos x

6y 2

z  x2  y2

31.

z  2x x 2z 2 x2

fxx  6

hxx  y cos x

fyy  12y

hyy  x sin y

fxy  1

hxy  cos y  sin x

fyx  1

hyx  cos y  sin x

z  2y y 2z  2 y 2 Therefore,

33.

z

y x2  y 2

35. z  x sin

z 2xy  x x2  y 22

dz 

y x

y y y z z y dx  dy  sin  cos dx  cos dy x y x x x x

2z 4x2 1 3x2  y 2  2y 2   2y 2 x2 x  y 23 x2  y 22 x  y 23





z x2  y2 x2  y 2  2y   2 y x2  y 22 x  y 22

x2  y 222y  2x2  y 2x2  y 22y 2z  2 y x2  y 24  2y Therefore,

2z 2z  2  0. 2 x y

3x2  y 2 x2  y 23

2z 2z  2  0. 2 x y

http://librosysolucionarios.net









Review Exercises for Chapter 12 37.

z2  x2  y 2

39.

V  13 r 2h dV  23 rh dr  13 r 2 dh  23 25± 18   13 22± 18 

2z dx  2x dx  2y dy dz 





y 5 1 12 1 17 x dx  dy    0.654 cm z z 13 2 13 2 26

Percentage error:

dz 17 26  0.0503 5% z 13

41. w  lnx2  y2, x  2t  3, y  4  t Chain Rule:

dw w dx w dy   dt x dt y dt 

2x 2y 2  2 1 x2  y2 x  y2



22t  32 24  t  2t  32  4  t2 2t  32  4  t2



10t  4 5t2  4t  25

Substitution: w  lnx2  y2  ln2t  32  4  t2 10t  4 dw 22t  32  24  t   2 dt 2t  32  4  t2 5t  4t  25 43. u  x2  y 2  z2, x  r cos t, y  r sin t, z  t Chain Rule:

u u x u y u z    r x r y r z r  2x cos t  2y sin t  2z0  2r cos2 t  r sin2 t  2r u u x u y u z    t x t y t z t  2xr sin t  2yr cos t  2z  2r 2 sin t cos t  r 2 sin t cos t  2t  2t

Substitution: ur, t  r 2 cos2 t  r 2 sin2 t  t 2  r 2  t 2 u  2r r u  2t t x2y  2yz  xz  z2  0

45. 2xy  2y

z z z x  z  2z 0 x x x 2xy  z 2xy  z z   x 2y  x  2z x  2y  2z

x2  2y

125

z z z  2z  x  2z 0 y y y z x2  2z x2  2z   y 2y  x  2z x  2y  2z

http://librosysolucionarios.net

5 1  ± 6 ± 6  ±  in.3

126

Chapter 12

47.

f x, y  x2y

Functions of Several Variables

w  z i  2yj  xk

f  2xyi  x 2j

w1, 2, 2  2i  4 j  k

f 2, 1  4 i  4j u

1

2

v

2

2

i

2

2

2 1 2 1 u v i j k 3 3 3 3

j

Duw1, 2, 2  w1, 2, 2 u 

Du f 2, 1  f 2, 1 u  2 2  2 2  0 z

51.

y x2  y 2



4 4 2 2    3 3 3 3

z  ex cos y

53.

z  ex cos yi  ex sin y j

2xy x2  y 2 z   2 i 2 j x  y 22 x  y 22

 4    22 i 

z 0,



1 1 z1, 1   i   , 0 2 2  z1, 1 

w  y 2  xz

49.

2

2



j 

2

2

,

 z0, 4    1

1 2

55. 9x2  4y2  65

57.

f x, y  9x2  4y2

Fx, y, z  x2y  z  0 F  2xy i  x 2j  k

f x, y  18xi  8yj

F2, 1, 4  4i  4j  k

f 3, 2  54i  16j

Therefore, the equation of the tangent plane is

Unit normal:

4x  2  4 y  1  z  4  0 or

54i  16j 1 27i  8j 

54i  16j 793

4x  4y  z  8, and the equation of the normal line is x2 y1 z4   . 4 4 1

59.

Fx, y, z  x2  y2  4x  6y  z  9  0 F  2x  4i  2y  6j  k

61.

Fx, y, z  x2  y 2  z  0 Gx, y, z  3  z  0

F2, 3, 4  k

F  2x i  2yj  k

Therefore, the equation of the tangent plane is

G  k

z  4  0 or

F2, 1, 3  4i  2j  k

z  4,

 

and the equation of the normal line is

i F  G  4 0

x  2, y  3, z  4  t.

j 2 0

k 1  2i  2j 1

Therefore, the equation of the tangent line is x2 y1  , z  3. 1 2 63.

f x, y, z  x2  y2  z2  14 f x, y, z  2xi  2yj  2zk f 2, 1, 3  4i  2j  6k Normal vector to plane. cos  

n k  n

6

56



3 14 14

  36.7

http://librosysolucionarios.net

2

2



Review Exercises for Chapter 12 65. f x, y  x3  3xy  y 2

127

z

fx  3x2  3y  3x2  y  0

30

fy  3x  2y  0

x

fxx  6x

2 −30

y

fyy  2 fxy  3 From fx  0, we have y  x2. Substituting this into fy  0, we have 3x  2x2  x2x  3  0. Thus, x  0 or 32 . At the critical point 0, 0, fxx fyy   fxy2 < 0. Therefore, 0, 0, 0 is a saddle point.

3 9 3 9 27 At the critical point  2 , 4 , fxx fyy   fxy2 > 0 and fxx > 0. Therefore,  2 , 4 ,  16  is a relative minimum.

67. f x, y  xy 

1 1  x y

fx  y 

1  0, x2y  1 x2

fy  x 

1  0, xy 2  1 y2

x2y



fxx 

2 x3

Thus,

xy2

z

20

3 4

or x  y and substitution yields the critical point 1, 1.

4 x

−20 −24

y

(1, 1, 3)

fxy  1 fyy 

2 y3

At the critical point 1, 1, fxx  2 > 0 and fxx fyy   fxy2  3 > 0. Thus, 1, 1, 3 is a relative minimum. 69. The level curves are hyperbolas. There is a critical point at 0, 0, but there are no relative extrema. The gradient is normal to the level curve at any given point at x0, y0. 71. Px1, x2  R  C1  C2  225  0.4x1  x2x1  x2  0.05x12  15x1  5400  0.03x22  15x2  6100  0.45x12  0.43x22  0.8x1x2  210x1  210x2  11,500 Px1  0.9x1  0.8x2  210  0 0.9x1  0.8x2  210 Px2  0.86x2  0.8x1  210  0 0.8x1  0.86x2  210 Solving this system yields x1 94 and x2 157. Px1x1  0.9 Px1x2  0.8 Px2x2  0.86 Px1x1 < 0 Px1x1 Px2x2  Px1x22 > 0 Therefore, profit is maximum when x1 94 and x2 157.

http://librosysolucionarios.net

128

Chapter 12

Functions of Several Variables 75. (a) y  2.29t  2.34

73. Maximize f x, y  4x  xy  2y subject to the constraint 20x  4y  2000. 4  y  20 x  2  4

30

 5x  y  6

20x  4y  2000 ⇒

5x  y  500

−2

5x  y  6 (b)

 494

10x

11 −5 20

x  49.4 y  253

−1

3

f 49.4, 253  13,201.8

−5

Yes, the data appears more linear. (c) y  8.37 ln t  1.54 (d)

25

−1

10 −5

The logarithmic model is a better fit. 77. Optimize f x, y, z  xy  yz  xz subject to the constraint x  y  z  1. yz xz xyz xy



x  y  z  1 ⇒ x  y  z  13 Maximum: f  13 , 13 , 13   13 79. PQ  x2  4, QR  y2  1, RS  z; x  y  z  10 C  3 x2  4  2 y2  1  2 Constraint: x  y  z  10 C  g 3x

x2  4

i

2y

y2  1

j  k  i  j  k

3x  x2  4 2y  y2  1 1 9x2  x2  4 ⇒ x2 

1 2

4y2  y2  1 ⇒ y2 

1 3

Hence, x 

2

2

,y

3

3

, z  10 

2

2



3

3

8.716 m.

http://librosysolucionarios.net

Review Exercises for Chapter 12

123

45. (a) Maximize g, ,   cos  cos  cos  subject to the constraint       .  sin  cos  cos   cos  sin  cos   tan   tan   tan  ⇒      cos  cos  sin     ⇒  3



g

3 , 3 . 3   81

γ 3

(b)        ⇒       

2

g    cos  cos  cos      α

 cos  cos cos  cos    sin  sin  

3

3

β

 cos  cos  cos  

Review Exercises for Chapter 12 1. No, it is not the graph of a function. 3. f x, y  ex

5. f x, y  x2  y 2

2 y 2

The level curves are of the form c

The level curves are of the form c  x2  y 2

2 2 ex y

ln c  x2  y 2.

1

The level curves are circles centered at the origin.

x2 y 2  . c c

The level curves are hyperbolas.

y

y 2

c = 10 4

c = −12 c = − 2 c=2

c=1 c = 12

x

−2

1

2

x

−4

1

−1

4

−2

Generated by Mathematica

−4

Generated by Mathematica

7. f x, y  ex

2

9. f x, y, z  x2  y  z2  1

y 2

z

y  x2  z2  1

z 3

3

Elliptic paraboloid

−3 −3

2 x 3

3 x

11.

y

y

−3

xy 1  x, y → 1, 1 x  y 2 2 lim

3

2

Continuous except at 0, 0.

13.

lim

x, y → 0, 0

4x2y x4  y2

For y  x 2, For y  0,

4x 4 4x 2y  4  2, for x 0 4 2 x y x  x4 4x 2y  0, for x 0 x4  y 2

Thus, the limit does not exist. Continuous except at 0, 0.

http://librosysolucionarios.net

124

Chapter 12

Functions of Several Variables

15. f x, y  ex cos y

z  ey  yex x

fx  ex cos y fy  e sin y x

19. gx, y 

z  xey  yex

17.

z  xey  ex y

xy x2  y 2

21. f x, y, z  z arctan

y x

gx 

yx2  y 2  xy2x y y2  x2  2 x2  y 22 x  y 22

fx 

z y yz   2 1   y2 x2 x2 x  y2

gy 

xx2  y 2 x2  y 22

fy 

z xz 1  2 1   y 2 x2 x x  y2

  

fz  arctan

23. ux, t  cen t sinnx 2

y x

z

25.

u 2  cnen t cosnx x

3

u 2  cn2en t sinnx t

−1 3

y

3 x

27. f x, y  3x2  xy  2y 3

29. hx, y  x sin y  y cos x

fx  6x  y

hx  sin y  y sin x

fy  x 

hy  x cos y  cos x

6y 2

z  x2  y2

31.

z  2x x 2z 2 x2

fxx  6

hxx  y cos x

fyy  12y

hyy  x sin y

fxy  1

hxy  cos y  sin x

fyx  1

hyx  cos y  sin x

z  2y y 2z  2 y 2 Therefore,

33.

z

y x2  y 2

35. z  x sin

z 2xy  x x2  y 22

dz 

y x

y y y z z y dx  dy  sin  cos dx  cos dy x y x x x x

2z 4x2 1 3x2  y 2  2y 2   2y 2 x2 x  y 23 x2  y 22 x  y 23





z x2  y2 x2  y 2  2y   2 y x2  y 22 x  y 22

x2  y 222y  2x2  y 2x2  y 22y 2z  2 y x2  y 24  2y Therefore,

2z 2z  2  0. 2 x y

3x2  y 2 x2  y 23

2z 2z  2  0. 2 x y

http://librosysolucionarios.net









Review Exercises for Chapter 12 37.

z2  x2  y 2

39.

V  13 r 2h dV  23 rh dr  13 r 2 dh  23 25± 18   13 22± 18 

2z dx  2x dx  2y dy dz 





y 5 1 12 1 17 x dx  dy    0.654 cm z z 13 2 13 2 26

Percentage error:

dz 17 26  0.0503 5% z 13

41. w  lnx2  y2, x  2t  3, y  4  t Chain Rule:

dw w dx w dy   dt x dt y dt 

2x 2y 2  2 1 x2  y2 x  y2



22t  32 24  t  2t  32  4  t2 2t  32  4  t2



10t  4 5t2  4t  25

Substitution: w  lnx2  y2  ln2t  32  4  t2 10t  4 dw 22t  32  24  t   2 dt 2t  32  4  t2 5t  4t  25 43. u  x2  y 2  z2, x  r cos t, y  r sin t, z  t Chain Rule:

u u x u y u z    r x r y r z r  2x cos t  2y sin t  2z0  2r cos2 t  r sin2 t  2r u u x u y u z    t x t y t z t  2xr sin t  2yr cos t  2z  2r 2 sin t cos t  r 2 sin t cos t  2t  2t

Substitution: ur, t  r 2 cos2 t  r 2 sin2 t  t 2  r 2  t 2 u  2r r u  2t t x2y  2yz  xz  z2  0

45. 2xy  2y

z z z x  z  2z 0 x x x 2xy  z 2xy  z z   x 2y  x  2z x  2y  2z

x2  2y

125

z z z  2z  x  2z 0 y y y z x2  2z x2  2z   y 2y  x  2z x  2y  2z

http://librosysolucionarios.net

5 1  ± 6 ± 6  ±  in.3

126

Chapter 12

47.

f x, y  x2y

Functions of Several Variables

w  z i  2yj  xk

f  2xyi  x 2j

w1, 2, 2  2i  4 j  k

f 2, 1  4 i  4j u

1

2

v

2

2

i

2

2

2 1 2 1 u v i j k 3 3 3 3

j

Duw1, 2, 2  w1, 2, 2 u 

Du f 2, 1  f 2, 1 u  2 2  2 2  0 z

51.

y x2  y 2



4 4 2 2    3 3 3 3

z  ex cos y

53.

z  ex cos yi  ex sin y j

2xy x2  y 2 z   2 i 2 j x  y 22 x  y 22

 4    22 i 

z 0,



1 1 z1, 1   i   , 0 2 2  z1, 1 

w  y 2  xz

49.

2

2



j 

2

2

,

 z0, 4    1

1 2

55. 9x2  4y2  65

57.

f x, y  9x2  4y2

Fx, y, z  x2y  z  0 F  2xy i  x 2j  k

f x, y  18xi  8yj

F2, 1, 4  4i  4j  k

f 3, 2  54i  16j

Therefore, the equation of the tangent plane is

Unit normal:

4x  2  4 y  1  z  4  0 or

54i  16j 1 27i  8j 

54i  16j 793

4x  4y  z  8, and the equation of the normal line is x2 y1 z4   . 4 4 1

59.

Fx, y, z  x2  y2  4x  6y  z  9  0 F  2x  4i  2y  6j  k

61.

Fx, y, z  x2  y 2  z  0 Gx, y, z  3  z  0

F2, 3, 4  k

F  2x i  2yj  k

Therefore, the equation of the tangent plane is

G  k

z  4  0 or

F2, 1, 3  4i  2j  k

z  4,

 

and the equation of the normal line is

i F  G  4 0

x  2, y  3, z  4  t.

j 2 0

k 1  2i  2j 1

Therefore, the equation of the tangent line is x2 y1  , z  3. 1 2 63.

f x, y, z  x2  y2  z2  14 f x, y, z  2xi  2yj  2zk f 2, 1, 3  4i  2j  6k Normal vector to plane. cos  

n k  n

6

56



3 14 14

  36.7

http://librosysolucionarios.net

2

2



Review Exercises for Chapter 12 65. f x, y  x3  3xy  y 2

127

z

fx  3x2  3y  3x2  y  0

30

fy  3x  2y  0

x

fxx  6x

2 −30

y

fyy  2 fxy  3 From fx  0, we have y  x2. Substituting this into fy  0, we have 3x  2x2  x2x  3  0. Thus, x  0 or 32 . At the critical point 0, 0, fxx fyy   fxy2 < 0. Therefore, 0, 0, 0 is a saddle point.

3 9 3 9 27 At the critical point  2 , 4 , fxx fyy   fxy2 > 0 and fxx > 0. Therefore,  2 , 4 ,  16  is a relative minimum.

67. f x, y  xy 

1 1  x y

fx  y 

1  0, x2y  1 x2

fy  x 

1  0, xy 2  1 y2

x2y



fxx 

2 x3

Thus,

xy2

z

20

3 4

or x  y and substitution yields the critical point 1, 1.

4 x

−20 −24

y

(1, 1, 3)

fxy  1 fyy 

2 y3

At the critical point 1, 1, fxx  2 > 0 and fxx fyy   fxy2  3 > 0. Thus, 1, 1, 3 is a relative minimum. 69. The level curves are hyperbolas. There is a critical point at 0, 0, but there are no relative extrema. The gradient is normal to the level curve at any given point at x0, y0. 71. Px1, x2  R  C1  C2  225  0.4x1  x2x1  x2  0.05x12  15x1  5400  0.03x22  15x2  6100  0.45x12  0.43x22  0.8x1x2  210x1  210x2  11,500 Px1  0.9x1  0.8x2  210  0 0.9x1  0.8x2  210 Px2  0.86x2  0.8x1  210  0 0.8x1  0.86x2  210 Solving this system yields x1 94 and x2 157. Px1x1  0.9 Px1x2  0.8 Px2x2  0.86 Px1x1 < 0 Px1x1 Px2x2  Px1x22 > 0 Therefore, profit is maximum when x1 94 and x2 157.

http://librosysolucionarios.net

128

Chapter 12

Functions of Several Variables 75. (a) y  2.29t  2.34

73. Maximize f x, y  4x  xy  2y subject to the constraint 20x  4y  2000. 4  y  20 x  2  4

30

 5x  y  6

20x  4y  2000 ⇒

5x  y  500

−2

5x  y  6 (b)

 494

10x

11 −5 20

x  49.4 y  253

−1

3

f 49.4, 253  13,201.8

−5

Yes, the data appears more linear. (c) y  8.37 ln t  1.54 (d)

25

−1

10 −5

The logarithmic model is a better fit. 77. Optimize f x, y, z  xy  yz  xz subject to the constraint x  y  z  1. yz xz xyz xy



x  y  z  1 ⇒ x  y  z  13 Maximum: f  13 , 13 , 13   13 79. PQ  x2  4, QR  y2  1, RS  z; x  y  z  10 C  3 x2  4  2 y2  1  2 Constraint: x  y  z  10 C  g 3x

x2  4

i

2y

y2  1

j  k  i  j  k

3x  x2  4 2y  y2  1 1 9x2  x2  4 ⇒ x2 

1 2

4y2  y2  1 ⇒ y2 

1 3

Hence, x 

2

2

,y

3

3

, z  10 

2

2



3

3

8.716 m.

http://librosysolucionarios.net

Problem Solving for Chapter 12

129

Problem Solving for Chapter 12 1. (a) The three sides have lengths 5, 6, and 5. Thus, s  16 2  8 and A  8323  12 (b) Let f a, b, c  area2  ss  as  bs  c, subject to the constraint a  b  c  constant (perimeter). Using Lagrange multipliers, ss  bs  c   ss  as  c   ss  bs  b   From the first 2 equations s  b  s  a ⇒ a  b. Similarly, b  c and hence a  b  c which is an equilateral triangle. (c) Let f a, b, c  a  b  c, subject to Area2  ss  as  bs  c constant. Using Lagrange multipliers, 1    ss  bs  c 1    ss  as  c 1    ss  as  b Hence, s  a  s  b ⇒ a  b and a  b  c. 1 (b) V  baseheight 3

3. (a) Fx, y, z  xyz  1  0 Fx  yz, Fy  xz, Fz  xy



1 1 3 3  3 2 y0 z0 x0 z0

Tangent plane:

z

3

 

9 3  x0 y0 2

3 x 0 y0

3 x 0 y0 Tangent plane

y0 z 0x  x0  x0 z 0y  y0  x0 y0z  z0  0

3 x0 z0

y0 z 0 x  x0 z 0 y  x0 y0 z  3x0 y0 z 0  3

3 3 x

3 y0 z0

5. We cannot use Theorem 12.9 since f is not a differentiable function of x and y. Hence, we use the definition of directional derivatives. f x  t cos , y  t sin   f x, y t

Du f x, y  lim

t →0

    

f 0 Du f 0, 0  lim

t

t

,0

2

t →0

2

 f 0, 0

t

1  lim t→0 t

 t 2 t 2

  4





t2 t2  2 2

 lim

t →0

 

1 2t2 2  lim which does not exist. t →0 t t t2

If f 0, 0  2, then



f 0 Du f 0, 0  lim

t →0

t 2

,0 t

t 2

  2  lim 1 t →0

tt

2t2 2



2 0

which implies that the directional derivative exists.

http://librosysolucionarios.net

Base

y

130

Chapter 12

Functions of Several Variables

7. H  k5xy  6xz  6yz z

9. (a)





1000 6000 6000  ⇒ H  k 5xy  . xy y x

Hx  5y 

f f  Caxa1y1a,  C1  ax aya x y x

f f y  Cax ay1a  C1  ax ay1a x y

6000  0 ⇒ 5yx2  6000 x2

 Ca  C1  a x ay1a  Cx ay1a  f

By symmetry, x  y ⇒ x3  y3  1200. Thus, x  y 

3 150 2

a 1a  Ct a x at1a y1a (b) f tx, ty  Ctx ty

5 3 150. and z   3

 Cx ay1at  t f x, y

11. (a) x  64cos 45 t  322t y  64sin 45 t  16t2  322t  16t2 y (b) tan   x  50

  arctan (c)

d  dt

(d)

30

x y 50  arctan32322t2t16t50  

1 322t  16t2 1 322t  50



0

2



2

64 82t2  25t  252  16 82t2  25t  252   2 4 64t  2562t3  1024t2  8002t  625  322t  50

4

−5

No. The rate of change of  is greatest when the projectile is closest to the camera. (e)

d  0 when dt 82t2  25t  252  0 t

25  252  4 82 252  2 82 

0.98 second.

No, the projectile is at its maximum height when dy dt  322  32t  0 or t  2 1.41 seconds. 13. (a) There is a minimum at 0, 0, 0, maxima at 0, ± 1, 2 e and saddle point at ± 1, 0, 1 e:

z 1

fx  x2  2y2ex

2

y2

 ex

y2

2

2y

2 y2

 x2

 ex

2 y2

2

2

2

y

2

2x3  4xy2  2x  0 ⇒ x3  2xy2  x  0

fy  x2  2y2ex

 ex

2

x2  2y22x  2x

 ex

2

2x  2xex y 

y2

 4yex

x



2 y2

 2y22y  4y

4y3  2x2y  4y  0 ⇒ 2y3  x2y  2y  0

y2

Solving the two equations x3  2xy2  x  0 and 2y3  x2y  2y  0, you obtain the following critical points: 0, ± 1, ± 1, 0, 0, 0. Using the second derivative test, you obtain the results above. —CONTINUED—

http://librosysolucionarios.net

Problem Solving for Chapter 12

131

13. —CONTINUED— (c) In general, for  > 0 you obtain

(b) As in part (a), you obtain fx  e fy 

0, 0, 0 minimum

2xx2  1  2y2

2y2  x2  2y2



x2 y2

2 2 ex y 

0, ± 1, e maxima

The critical numbers are 0, 0, 0, ± 1, ± 1, 0. These yield

± 1, 0,  e saddle For  < 0, you obtain

± 1, 0, 1 e minima 0, ± 1, 2 e maxima

± 1, 0,  e minima 0, ± 1, e maxima

0, 0, 0 saddle

0, 0, 0 saddle

z 1

1 x

2

y

−1

15. (a)

(b)

6 cm

6 cm

1 cm

1 cm

(c) The height has more effect since the shaded region in (b) is larger than the shaded region in (a).

(d) A  hl ⇒ dA  l dh  h dl If dl  0.01 and dh  0, then dA  10.01  0.01. If dh  0.01 and dl  0, then dA  60.01  0.06.

17. Essay

19. ux, t 

1 f x  ct  f x  ct

2

1 Let r  x  ct and s  x  ct. Then ur, s  f r  f s . 2 u u r u s 1 df 1 df    c  c t r t s t 2 dr 2 ds 2u 1 d 2f 1 d 2f 2 c2 d 2f d 2f  c2  c   t2 2 dr2 2 ds2 2 dr2 ds2





u u r 1 df u s 1 df 1  1    x r x s x 2 dr 2 ds 2u 1 d 2f 2 1 d 2f 2 1 d 2f d 2f  1  1   x2 2 dr2 2 ds2 2 dr2 ds2



Thus,



2u 2u  c2 2 . 2 t x

http://librosysolucionarios.net

C H A P T E R 13 Multiple Integration Section 13.1 Iterated Integrals and Area in the Plane

. . . . . . . . . . . . . 365

Section 13.2 Double Integrals and Volume . . . . . . . . . . . . . . . . . . . 369 Section 13.3 Change of Variables: Polar Coordinates . . . . . . . . . . . . . 375 Section 13.4 Center of Mass and Moments of Inertia . . . . . . . . . . . . . 379 Section 13.5 Surface Area

. . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Section 13.6 Triple Integrals and Applications . . . . . . . . . . . . . . . . . 388 Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates . . . . 393 Section 13.8 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . 397 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

http://librosysolucionarios.net

C H A P T E R 13 Multiple Integration Section 13.1

Iterated Integrals and Area in the Plane

Solutions to Even-Numbered Exercises



2

x

2.

x



 

y 1 y2 dy  x 2 x

x

6.

3



x





 1y2



 2

 13 x

x 2  y 2 dx 

sin3 x cos y dx 

y





 2

2

 1y2

1  cos2 x sin x cos y dx  2

 cos x  31 cos x cos y



 1

2

  1

1 2

x2  y2 dy dx 

 4

16 4x3 16 dx   x 3 3 3

4

64  x3 dy dx 

4 0



4x2 

 

2

x



y3 3

1

1

dx 

2

x2y 

1



 1



4

2

 2

16.

0

4



10  2x2  2y2 dx dy 

y

  2



0

0

2yy2

3y2 6y

   2

20.

0

2

0

0

cos 

r dr d 



 2



0



2

2 cos 

 4

0

0



 4

0

y

d 

3

sin 

4 4

2

2 2048 2  0  1283 2  9 9

20y 

0

 

16 3 2 y  4y3  10y  y3  2y3 3 3



 3 y

8y2  4y3 dy  3



 2

cos 



8



2 cos2  d   

0

r



 

0

0

 

dy 



dy  3

2

3r 2 sin  dr d 

2y

2

3y 6y

r2

43  163   34  163  8

14 3 7y4 y4 y  2y3 dy  5y2   3 6 2

10y 

2yy2

3xy

0

2 cos

   4

22.

 2

3y dx dy 

1



2 64  x33 2 9

2x3  2y2x 3

10x 

0

2

1

x2

64  x3 x2 dx  

2y





0



18.



8 8 dx  2x2  3 3

2x2 

 dx

y 64  x3

4



1



1 cos3 y cos y 3

 cos y 

3

y

14.

2 1  y 2 1  2y 2 3



 y 21  y 21 2 

2 3 2

y



12.

 y cos y

0

  x2x3  x33  x5 2  x3 2  x5  x9

 13 1  y 

1y2

cos y

 

y dx  yx

0

3

 y 2x

3

4.

 x2 x   x

x3



cos y



1 x 4 x2 x   x 2  1 2 x x 2



1y2

10.

x



x2  3y2 dy  x2y  y3

x

8.

x2

3

 y4



2

 20 

0



2

 dy

56 140 8 3 3

 16

0

1 sin 2 2

 2





0

 2

d

0



cos3 sin  d  

cos4  4

 4



0



1 4

  2 1

4



1 

3 16 365

http://librosysolucionarios.net

366

Chapter 13





3

24.

0

x2 dy dx  1  y2

0



 

26.

0

Multiple Integration

xyex

2

y2

 3



0

  3

28. A 

3

1

1

3

A

3

y

3

dx dy 

1

 2 ye



1

dy 

1



dy 





0



1 y2 1 2 ye dy   ey 2 4

 

 

4

1

2 dy  2y

3







0

1 4

y

4

3

2 dx  2x

1

9 2



0

0

3

3

x

1

 

x2 y2

2  dx   2  x3 

3 3

x2

0

3

dx 

1

1

3

1

  3

dy dx 

3

0



0



dx 

0

dx dy 





x 2 arctan y

3

2

1

1

1

x

1

            1 x1

5

30. A 

2

5

x

1

3 dy 

0

1 2

 

1 2

 3y

0

   

1





1

0

2

3

2

y=

34. A 

4 − x2



1

 2

cos2  d

x 1

2

 x  2 sin ,

4

1 sin 2 2

 2





dx

x3 2

2x  x3 2 dx



 

0



 2 

 y  2 sin ,

1 sin 2 2



dx dy

y 2

y2 3 

0

1  cos 2 d

0

 2

0

2 3

8



4  y2 dy

 2

4

y

0

0

cos2  d  2

  8

A

2

dx dy 



16 2  16  32  5 5

dx  2 cos  d, 4  x 2  2 cos 

0

 2

y



0

4y 2

0

2x

4

2  x 2  x5 2 5

1  cos 2 d



 

6 5 4 3 2 1

0

 2 

2

8 7

4

0

A

dy dx

x 3 2

0

0

2

y

2x

0

2

0

   4

y

dy dx

4  x2 dx

4

5

4

1 2

0

 2

x−1

x 1

2



1

y=

1  1 dy y2

4x 2

2

3

dy

2

1   y y

2

2

5

2

1 2

1 2

32. A 

x

2

0

5

4

1 1 y2

1

dy 



3

y

dx dy

1 2 2

1 2



2



1 dx  2 x  1 x  1

1 1 y2

1

dx dy 

2



5

dx 

0

2

5

0



1 x1

y

0

1 2

A

5

dy dx 

2



 5y 3

5 3



y2 4



y dy 2



8 0

3 16  32  16  5 5



0

dy  2 cos  d, 4  y 2  2 cos 

http://librosysolucionarios.net

−1

(4, 8) y = 2x

y = x 3/2 x 1 2 3 4 5 6 7

8

Section 13.1

  3

36. A 

x

0

0

3



x

9 x

   9 ln x

9

0

3



3

dx 

0

3

3



9

x dx 

0

3

  

A



0



y

dy 

y

x

2

y dy 2

2 4

0

2

9  y dy 

1

0

x

2x  x dx 

0

 x2 

2 2

2

0

y

y = 2x

4

dy

3 2



9  y dy y

  1

1  9y  y 2 2



2

dy dx 

y

3

0

dx dy

9 y

1



2

2x

0

y

3

1



4

2



A

9 y

1

x

0

dx dy

y 2

   2y  y4 

y2  4

9   9ln 9  ln 3 2

   3

9

2

2

y dy  2

2

9

1

y 2

367

 1  4  3  2

dx dy 

0

4

dx dy 

2

9 dx x

9  1  ln 9 2 1

y

0

y

0

1  x2 2

2

38. A 

dy dx

0

9

dx 

    

9 x

3

y

0

  9

dy dx 

Iterated Integrals and Area in the Plane

1

y=x x



3

1  9 ln y  y 2 2

1

9  1  ln 9 2 1

2

3

4

y 6

y=x 4

(3, 3)

y = 9x

2

(9, 1) x 2

4

6

8

−2

 4

40.

0

 2

2

y

f x, y dx dy, y ≤ x ≤ 2, 0 ≤ y ≤ 4



0

 0

2

4x

f x, y dy dx, 0 ≤ y ≤ 4  x2, 0 ≤ x ≤ 2

0



y

x2

2

42.

f x, y dy dx

4

4



y = x2

0

0

y

4y

f x, y dx dy

4

0

3

3 2 2

1

1

x

−1

 2

44.

2

3

x

f x, y dy dx, 0 ≤ y ≤ ex, 1 ≤ x ≤ 2

 2

e



2

1

0

 e

f x, y dx dy 

e

2

   2

46.

f x, y dx dy

cos x

 2 0

ln y

1

3

4

4

e

1 0

2

−1

x 1

1

f x, y dy dx, 0 ≤ y ≤ cos x, 

 1



0

  ≤ x ≤ 2 2 y

arccos y

arccos y

f x, y dx dy

2 3 2

y

3 1 2

2 −π 4

−1

x 1

2

http://librosysolucionarios.net

π 4

x

368

Chapter 13

 2

48.



4

1

Multiple Integration 4

dx dy 

2

2

2

  2

dy dx  2

50.

4x2

2  4x2

1

2

y

 2

dy dx 

2



4  x2  4  x2 dx  4

4y 2

dx dy  4

2  4y 2

4

y

3 2

1

1 x 1

2

3

x

−1

4

1 −1

 4

52.

x 2

0

  6

dy dx 

0

6x

4

0

2

0

6y

0

 

4

dy dx 

2

dx dy 

2y

0

x dx  2



y

6

6  x dx  4  2  6

6

4

5



3y2 6  3y dy  6y  2



2

4

6

3

0

2

y= x 2

(4, 2) y = 6 − x

1 −1 −1

  9

54.

3

x

0

3

0

2

y

0

  9

dy dx 



3

dx dy 

y2 dy 

3

y3 3

9

2

5 4 3 2 1

0

9



4y 2

56.

dx dy 

2 0

 4

0

y=

y

4x

32 dy dx  3  4x

2

x 1

2

3

−1

x = 4 − y2

−2

58. The first integral arises using vertical representative rectangles. The second integral arises using horizontal representative rectangles.



2x

x2

0



2

x sin y dy dx 

y

x cos2x  x cosx 2 dx

0

4

0

y

y 2

 4

x sin y dx dy 

0

(2, 4) 4 3

1 1 1   cos4  sin4  4 2 4



5

6

2



1 1 y sin y  y 2 sin y dy 2 8

1

1 1 1   cos4  sin4  4 2 4

http://librosysolucionarios.net

x 1

2

x

1 2 3 4 5 6 7 8 9

1

2

4

x

−1 −2 −3 −4 −5

2

3

y

 27  18  9

0

0

0



2 3  x  dx  3x  x3 2 3

x 1

Section 13.2

 2

60.

0

2

  2

ey dy dx  2

x

0

ey dx dy 2

0



y

xey

2

 2

0

4

 

y2

2

0

0



 1

0

x

y x sin x

2y

sin x  y dx dy 

y

2 0



4

dx 

0

0

64.







1 1 1 1   e4  e0  1  4 0.4908 2 2 2 e

x sin x dy dx

0

4





1 2 2 yey dy   ey 2

x

4

x sin x dx dy 



dy 

0

0

62.





x sin x dx  sin x  x cos x

0

 sin 4  4 cos 4 1.858

0

 a

sin 2 sin 3  0.408 2 3

4

66.

0

ax

x 2  y 2 dy dx 

0

a4 6

68. (a) y  4  x 2 ⇔ x  4  y 2 y4

 2

(b)

x2 ⇔ x  16  4y 4

2

4y 2

0

xy dx dy  x2  y 2  1

y 4

 3

2

2

xy dx dy  x2  y 2  1

0

3



164y

4

3

0

2

xy dx dy x2  y 2  1

1

(c) Both orders of integration yield 1.11899.

 2

70.

0

369

y

2



Double Integrals and Volume

x 1

   2

2

16  x3  y3 dy dx 6.8520

72.

x

0

1sin 

15r dr d 

0

2

45 2 135  30.7541 32 8

74. A region is vertically simple if it is bounded on the left and right by vertical lines, and bounded on the top and bottom by functions of x. A region is horizontally simple if it is bounded on the top and bottom by horizontal lines, and bounded on the left and right by functions of y. 76. The integrations might be easier. See Exercise 59-62. 78. False, let f x, y  x.

Section 13.2

Double Integrals and Volume

For Exercises 2 and 4,  xi  yi  1 and the midpoints of the squares are

12, 21 , 32, 12 , 52, 12 , 72, 12 , 12, 32 , 32, 32 , 52, 32 , 72, 32 .

y 4 3 2

1 x 1

1 2. f x, y  x2y 2 

1

9

1 2 x y dy dx  2



25

49

3

27

75

 f x , y x y  16  16  16  16  16  16  16  i

i

i

i

i1

 4

0

2

0

4

0

x2y 2 4



2 0



4

dx 

0

x2 dx 

x3 3



4 0



147  21 16

64 21.3 3

http://librosysolucionarios.net

2

3

4

370

Chapter 13

Multiple Integration

1 x  1 y  1

4. f x, y  8

4

4

4

4

4

4

4

4

7936

 f x , y  x y  9  15  21  27  15  25  35  45  4725 1.680 i

i

i

i

i1

 4

0

2

0

  4

1

x  1 y  1

dy dx 

0

4



0

 2

6.

0

 2

sin2 x cos 2 y dy dx 

0

   

0



0

  



y

4

0

  4

x2y2 dx dy 

1 2y

0

4

  

 1

0



4 0

 ln 3ln 5 1.768

0

y1

0

3



2

1

1  cos 2x dx

x

1

2

3

 0

2 8



1 2y 5



3

y

y



dy

4



3



1

y dy 24

y6 144

(2, 4)

2

4

x

0

1

2

3

4

1024 256 256   27 9 27

 1

exy dx dy 



dx

0

7 2

9 2

y

 2

 8 x  21 sin 2x

y

 2y27



1 1 2 sin x y  sin 2y 2 2

1 2  sin x dx 2 2



 8

x3y2 3

0

12.



ln 3 dx  ln 3 lnx  1 x1

f x, y dy dx 4  2  8  6  20



10.

dx

0

0

 0

2

2



8.



1 ln y  1 x1

0

1y

  1

e xy dx dy 

0

0

 1



0

exy

dy 

y1

0



y

1y

e xy

dy

0

1



e  e2y1 dy

2

y=x+1

y = −x + 1

0





1  ey  e2y1 2

1 0

1  e  e1 2

http://librosysolucionarios.net

−1

x 1

Section 13.2

   2

14.



sin x sin y dx dy 



0

   



 4

16.

sin x sin y dy dx

 0





 2

0

 4

xey dy dx 

0

0



dx



4x

4

0





4x

4y

xey dx dy

0

For the first integral, we obtain:

 2



sin x cos y

Double Integrals and Volume

xey

x dx 

0

0



4x

xe 4  xdx

0

sin x dx





0 y

 e 4x1  x 

x2 2



 5  8 

e4

 13.

e4



y

5π 2

4

2π 3π 2

3

π

2 1

x − 3π − π − π 2 2

π 2

π

3π 2

x 1

 2

18.

0

4

y 2 dx dy  y2 1  x   

 0

0

0

4

1 2

0

4

1 2

0

y2 1  x2



  

4

4 3

x

y=

dx

0

2

x dx 1  x2

1

x

x 1

 14 ln1  x 

4



2

0

2

3

4

1 ln17 4 y

x 2  y 2 dx dy

4y 2

3

y

y dy dx 1  x2

4y 2

2

20.

  

x

4

2

   2

4x2





1  y3 3



x2

2 0 2

x 2y

2 2

2

4

y2

x=−

 dy dx

4 − y2

3

x=

4 − y2

1

4x 2

dx

−2

0

x

−1

1

2



1 x 2 4  x 2  4  x 23 2 dx 3









x 1 x 1 x   4  x23 2  x 4  x2  4 arcsin  x4  x23 2  6x 4  x2  24 arctan 4 2 2 12 2

 4

22.

0

2

  4

6  2y dy dx 

0

0



6y  y 2

0

 2

2

dx

24.

0



4x dx  2x2

2

y=x 4 1

3 x

2

1

1 x 1

2

3

4

http://librosysolucionarios.net

2

2 0

0

y

8 dx  32

0

y



2

4 dy dx 

0

4



x



8

2 2

 4

4 0

371

372

Chapter 13

 2

26.

0

Multiple Integration

2x

2  x  y dy dx 

0

  2

y2 2

2y  xy 

0



2

0



 2

2x

dx

28.

0

y

0

0



2



y4 4

 2y 2 

4  3

0

4y  y3 dy

0

1 2  x2 dx 2

1   x  23 6



2

4  y 2 dx dy 



2 0

4 y

y 2

2

y=2−x 1

y=x

1

x 1

x 1



 

30.

0

 0

exy 2 dy dx 

0

1

32.

x

1  x2 dy dx 

0

34. V 



 

2e





xy 2

0

dx 



xy

0

dx 



3

dx

0

2

125  3 0

    

1 x 2

1

3

4

5

r 2x 2

r

0

r 2  x 2  y 2 dy dx

y

0

y=

r

y r 2  x 2  y 2  r 2  x 2 arcsin

4

0

 2

y



r 2x 2

r 2  x2

r2 − x2

r

dx

0

r

r 2  x 2 dx

r

0

 

1  2 r 2x  x3 3

x



r 0

4 r3 3

   2

0

2

4x

40. V 

y

0

0

4

4 

4 

x2

 dx

x2

y=4−



x2

16  8x2  x4 dx



1

0



5 2

x x  16x  8  3 5

0

1 dy dx 1  y2

x 1

2

3

4

y

2

dx

0

 dx 2

x  2





arctan y

2

0

3

0

0

2

2

 32 



2

3

0



   2

4  x2 dy dx

2



4

y=x

4

x2

5

36. V  8



0

5

 

38. V 





5

x

0





2ex 2 dx  4ex 2

1 3

x dy dx

5

4



y

0

1  x3 3



0

x

0





0

5

2

2

 

2 0

1

x 1



64 32 256   3 5 15

http://librosysolucionarios.net

2

Section 13.2

 



5

42. V 

0

0

 

0



0

1

0

x 2

1

3

5

4

5 2



4 y

ln1  x  y dx dy 38.25

0

x y z   1 a b c



V

81 2

3

5

zc 1



z

x y  a b



a

  

b1 x a

a

f x, y dA 

0

R



xy y2 y  a 2b

c

0

a

c



ab x 1 2 a

  2

ab

c

  ln 10

0

10

e

x

1 dy dx  ln y

   10

1

10



1

10



ln y

0





dx



2

y

a

0







  dx





x 2b ab x x3b  2 1 2a 3a 6 a

 

ab ab ab    3 2 6

2

3 a 0

  abc6

  2

52.

0

2

 2

y cos y dy dx 

1 2x

2

0

2y

y cos y dx dy

0

2



ln y



dy

y cos y 2y dy

0

0



y

2



10

dy  y

1



1 dx dy ln y

x ln y

a x

b1 x a



0



R

x xb x b2 x  1  1 a a a 2b a

b 1

c 



x y  dy dx a b

c 1

0

a

50.

9  y dx dy 

2

 2 y

0

48.

9y

373

4

 dy 2

16

46. V 

 9

44. V 

5

0

5



y

sin2 x dx dy

Double Integrals and Volume

1

 2

9

2

(2, 2)

y cos y dy

0





 2 cos y  y sin y

y 10

1

2

y = 12 x 2

0

x

 2cos 2  2 sin 2  1

8

1

2

6

y = ex

4 2

x 1

2

3

1 54. Average  8

5

4

 4

0

2

0

1 xy dy dx  8



4

0

 

x2 2x dx  8

4 0

2

56. Average 

1 1 2

 1

0



1

1

e xy dy dx  2

x





1  2 e x1  e2x 2  e2  2e  1  e  12

http://librosysolucionarios.net

e x1  e 2x dx

0

1 0



1 1  2 e2  e2  e  2 2



374

Chapter 13

Multiple Integration

58. The second is integrable. The first contains



sin y2 dy

60. (a) The total snowfall in the county R. (b) The average snowfall in R.

which does not have an elementary antiderivation.

62. Average 

1 150

 60

45

50

192x  576y  x2  5y 2  2xy  5000 dx dy 13,246.67

40

64. f x, y ≥ 0 for all x, y and

 



 

  2

f x, y dA 

0

2

0

1

P0 ≤ x ≤ 1, 1 ≤ y ≤ 2 

0

1 xy dy dx  4

2

1

 

2

0 1

1 xy dy dx  4

0

x dx  1 2 3 3x dx  . 8 16

66. f x, y ≥ 0 for all x, y and

  







f x, y dA 

   



0





lim

0

1

P0 ≤ x ≤ 1, x ≤ y ≤ 1 

exy dy dx

0

b→ 

e



xy

b 0

1



x

1   e2x  ex1 2





ex dx  lim

b→ 

0

 1

exy dy dx 

0

dx 

0



1 0

exy



1 x

: Input A : Input B

b 0

1

e2x  ex1 dx

0

1 1 1  e2  e1   e1  12 0.1998. 2 2 2

70.

 0

Program: DOUBLE

x

1

dx 

2

68. Sample Program for TI-82:



e 

4

20ex 8 dy dx 3

0

(a) 129.2018 (b) 129.2756

: Input M : Input C : Input D : Input N :0 → V : B  A M → G : D  C N → H : For I, 1, M, 1 : For J, 1, N, 1 : A  0.5G2I  1 → x : C  0.5H2J  1 → y

: V  sin  x  y  G H → V : End : End : Disp V

http://librosysolucionarios.net

m  10, n  20

Section 13.3

 4

72.

1

Change of Variables: Polar Coordinates

2

x3  y3 dx dy

74. V  50

m  6, n  4

1

Matches a.

(a) 13.956

z

(b) 13.9022 4 3

y

3

3

x

76. True



2

78.

1





1 exy dy   exy x

2 1

Thus,



 ex

0

 e2x dx  x

ex  e2x x



   

 2



2



exy dx dy

1

0

1

exy dx dy

0

2





1

2



1

Section 13.3

exy y





dy

0

 

2

1 dy  ln y y

1

 ln 2.

Change of Variables: Polar Coordinates

2. Polar coordinates

4. Rectangular coordinates

6. R  r,  : 0 ≤ r ≤ 4 sin , 0 ≤  ≤ 

8. R  r,  : 0 ≤ r ≤ r cos 3, 0 ≤  ≤ 

   4

10.

0

4

r 2 sin  cos dr d 

0



 4

0

 r3 sin  cos 

4

3

0

64 sin2  2



 3



16 3

   2

d

12.

0

3

rer dr d  2

0



 2

0

 4

0 1

2

3

4

r 2

3 0





1   e9  1  2

0



 1 1 9 4 e



π 2

π 2

 21e 

0 1

2

http://librosysolucionarios.net

3



d  2



0

375

376

Chapter 13

   2

14.

0

1cos 

Multiple Integration

 

 2

sin  r dr d 



0

0



 2



 a

16.

0

0

x dy dx 

   2

     4

x 2  y 2 dx dy 

0

4yy 2

x 2 dx dy 

 2

0

0

0

a3 3



4 sin 

 2

  52 2

0

x

0

22 d  3 3



 22 3  3

 2

sin4   sin6  d 

24.

   2

r dr d 

e

0

25x 2

52 2



 

xy dy dx 

3

0

0

a3 3

 4

3



 42  4 3

64 sin4  cos2 d

    4

 4

 2



0

5

r3 sin  cos  dr d

0

625 sin  cos d 4  4



sin   625 8



625 16

2

0

y

 2

e 

5

r2 2

 2

 2

d

5 4 3 2 1

0

1  e25 2 d

 2





 22 3





0

0

 1  e25 2 

26.



64 sin3  cos  3    sin  cos  sin5  cos   6 4 8

0

r2 2



0



r3 cos2  dr d 

 

5



 2

r 2 dr d



 2



a3 sin  3

cos  d 

0

5

xy dy dx 

1

0

0

22.

0

1 6



 2

0

 64

(x, y) = (0, 1)

0

 4

  

π 2

d

22

0

y

 2



0

4

0

1 1  cos  3 6

0

8y 2





r 2 cos  dr d 



20.

1cos 

a

0

0

 2

18.

a2 x 2

r2 2

sin  1  cos  2 d 2

0



sin 

9x 2

9  x 2  y 2 dy dx 

0

 2

     2

0



 2



 2

0

3

−5 −4 −3 −2 −1

  1  e25 2

9  r 2 r dr d

0 3

0

x 1 2 3 4

−2 −3 −4 −5

9r  r 3 dr d 



 2

0





9 2 1 4 r  r 2 4

3 0

d 

http://librosysolucionarios.net

81 4



 2

0

d 

81 8

 2

Section 13.3

   2

28. V  4

 

1

0

 2

r 2  3 r dr d  4

0

0

 4

4

0

7



r 4 3r 2  4 2



1

d

30.

0



Change of Variables: Polar Coordinates

lnx2  y 2 dA 

R

    2

2

7 d 4

2

2

2

2

0

2

2

r ln r dr d

1

0

4  74

ln r 2 r dr d

1

0

2



r2 1  2 ln r 4

ln 4 

0



 4 ln 4 

32. V 

 2

0

4

16  r 2 r dr d 

1



2

0







4

1  16  r 2 3 3

1

d 



2

3 4

2 1



3 d 4



515 d  1015

0

34. x 2  y 2  z 2  a2 ⇒ z  a2  x 2  y 2  a2  r 2

      2

V8

a

0

 2

8

a2  r 2 r dr d



0

 2

8

0

36.

(8 times the volume in the first octant)

0 a

 3 a2  r 2 3 20 d

1 2

2



a3 8a3 d   3 3

 2



0



4a3 3

9 9 ≤ z ≤ ; 4x2  y2  9 4x2  y2  9 (a)

1 1 ≤ r ≤ 1  cos2 4 2

9 9 ≤ z ≤ 2 4r 2  36 4r  36

(b) Perimeter 



r2 



ddr

0.7

−1

2

1

−0.7

d.

1 1 1 r  1  cos2    cos2  2 2 2

z

dr  cos  sin  d Perimeter  2

1

 

0

(c) V  2

 2

0

38. A 

 2

0

 2

40.

0

1 21cos2 

1 4

4

r dr d 

2

2sin 



2

1 1  cos2  2  cos2  sin2  d  5.21 4

1 1

x

y

9 r dr d  0.8000 4r 2  36

6 d  12

0

r dr d 

0



1 2



2

0



2  sin  2 d 

1 2



2

4  4 sin   sin2  d 

0

1 1 1 4  4 cos     sin 2 2 2 4

2



0

1 2

 2

4  4 sin  

0

1 9  8  4    4  2 2

http://librosysolucionarios.net

1  cos 2 d 2



d

377

378

Chapter 13

   4

3 cos 2

42. 8

0

Multiple Integration

r dr d  4



 4

9 cos2 2 d  18

0

0



 4



1  cos 4 d  18  

0

44. See Theorem 13.3.

1 sin 4 4

 4



0



9 2

46. (a) Horizontal or polar representative elements (b) Polar representative element (c) Vertical or polar

48. (a) The volume of the subregion determined by the point 5,  16, 7 is base height  5  10 volumes, ending with 45  10   8 12 , you obtain  V  10  57  9  9  5  158  10  11  8  2510  14  15  11 8  3512  15  18  16  459  10  14  12  5 5  150  555  1250  2135  2025  6115  24013.5 ft3 4 4

  8 7 . Adding up the 20

(b) 56 24013.5  1,344,759 pounds (c) 7.48 24103.5  179,621 gallons

   4

50.

4

0

5er r dr d  87.130

52. Volume  base height

0

9  4  3  21

z

6 4

Answer (a)

2 y 4 2 4 x

54. True





56. (a) Let u  2x, then

(b) Let u  2x, then



 

58.

0

kex

2 y2



2









ex dx 

e4x dx 

dy dx 

2

   2

0

0







eu 2





1

2



eu

2



2



 2

0

0

1 2

 2  .

1 1 du  . 2 2

ker r dr d  2

du 



k 2  er 2





0

d 



 2

0

k k d  2 4

For f x, y to be a probability density function, k 1 4 4 . 

k

    2

60. (a) 4

0

f dy dx

0

 2

0

(x − 2) 2 + y 2 = 4

2

1

4 x2 2

(b) 4

(c) 2

f dx dy

2

2

0

y

2 4y2

4 cos 

x 1

3

−1

f r dr d

−2

0

http://librosysolucionarios.net

Section 13.4

Section 13.4

 3

2. m 

0

2

9x

  3

xy dy dx 

0

0

3

0





 0

xy2 2

1 9  x23 4 3

     x

0

3



0

  

   a

0

b

kxy dy dx 

0

a

0

kxy2 dy dx 

0

0



3 0

3 9x2

dx

3

x 3  9  x2   9 dx 2 3

1 2

y2 2

0

6x 9  x2  9x  x3 dx



1 9x2 x 4 29  x232   2 2 4





3 0



297 1 81 81   54  2 2 4 8

(b) m 

0

a

ka2b3 6

Mx 

ka3b2 6

My 

b

kx 2y dy dx 

0

   a

ka2b2 4

b

a

My 

dx

0

3

xy dy dx 

3

Mx 

9x2

243 1 0  93  12 4

3 9x2

6. (a) m 



x9  x22 dx 2

 

3

379

Center of Mass and Moments of Inertia



4. m 

Center of Mass and Moments of Inertia

0

a

0

b

kx 2  y 2 dy dx 

0

kab 2 a  b2 3

b

kx 2y  y3 dy dx 

kab2 2 2a  3b2 12

kx3  xy 2 dy dx 

ka2b 2 3a  2b2 12

0 b

0

x

My 2  2 2  a m ka b 4 3

x

My ka2b123a2  2b2 a 3a2  2b2   m kab3a2  b2 4 a2  b2



y

Mx ka2b36 2  2 2  b m ka b 4 3

y

Mx kab2122a2  3b2 b 2a2  3b2   m kab3a2  b2 4 a2  b2



8. (a) m 

ka3b26

a2k 2

y

 a

Mx 

0



ax

ky dy dx 

0

ka3 6

a

y=a−x

My  Mx by symmetry xy

Mx ka36 a  2  m ka 2 3

a

x

—CONTINUED—

http://librosysolucionarios.net



380

Chapter 13

Multiple Integration

8. —CONTINUED—

    a

(b) m 

ax

0

x 2  y 2 dy dx

0

a



x 2y 

0

a

My 

 a



ax

dx 

0

0



1 a4 ax 2  x3  a  x3 dx  3 6

ax

0

x3  xy 2 dy dx

0

a



y3 3



1 1 1 ax3  x 4  a3x  a2x2  ax3  x 4 dx  3 3 3

0



a

a3x  3a2x2  6ax3  4x4 dx 

0

a5 15

a515

x

My 2a  4  m a 6 5

y

2a by symmetry 5

10. The x-coordinate changes by h units horizontally and k units vertically. This is not true for variable densities.

  

a2 x 2

a

12. (a) m 

0

0

ka2 4

0



kx dy dx

Mx 





a 0



ka3 3



   0

2

Mx 

0

2

My 

0

3



2

kx dy dx 

kx 4 dx 

0

0

32k 5

2

0

32k 3

5

My 32k  m 3

y

Mx 16k 5  5  m 32k 2

5

 32k  3

8

kx 2 dy dx  30k

0 4x

kx 2 y dy dx  24k

0

4

My 

1

x

ka5 5

4x

kx3 dy dx  84k

0

x

My 84k 14   m 30k 5

y

My 24k 4   m 30k 5

y 4

y = 4x

3 2

1 x 1

2

http://librosysolucionarios.net

3

4

8a

 ka4  5

4x

4

Mx 

1

kx2 dy dx 

kr 4 sin  dr d 

My ka5  m 5

   1

3

x

a

0

4

16. m 

3

0

kx 2  y 2 y dy dx

0

xy

x

kxy dy dx  16k

ka4 8

My  Mx by symmetry

4a y by symmetry 3

x

kr3 dr d 

0

0

My ka33 4a   x m ka24 3

a

a2 x 2

0

k   a2  x 232 3

2

2

a

x a2  x 2 dx

kx 2  y 2 dy dx

0

0

0

0

14. m 

a2 x 2

0

a

k

      a

(b) m 

a2 x 2

a

My 

k dy dx 

Section 13.4

Center of Mass and Moments of Inertia

    L2

18.

x  0 by symmetry

 

ky 2 dy dx 

3 0

23,328k 35

L2

Mx 

0

9x 2

3

Mx 

0

9x 2

3

m

20. m 

ky3

3 0

139,968k dy dx  35

M 139,968k y x m 35



cos xL

cos xL

0

35 6 23,328k

ky dy dx 

kL 8

cos xL

kx dy dx 

L 2  2k 2 2

0

My L 2  2k  x m 2 2

y

y 12

Mx kL  m 8



 kL 



 kL 

 8

y = 9 − x2 t 6 3

−6

1

y = cos π x L

x

−3

3

6

x L 2

  

22. m 

k x 2  y 2 dA 

y

Mx ka4 2  2   m 8

   e

Mx 

1

e

My 

1

4

0

My ka4 2  m 8

1

4

k x 2  y 2 dA 

x

24. m 

kr 2 dr d 

ln x

0 ln x

0 ln x

0

12

 ka3 

ka3 12

a

0

R

e

a

0

k x 2  y 2 y dA 

R

My 

4

0

R

Mx 

     

kr3 sin  d 

0

a

kr 3 cos  d 

0

π 2

ka4 2  2  8

y=x r=a

ka4 2 8

a

3 2a 2 12

 ka3 

3 2  2 a 2 y

k k dy dx  x 2 k k y dy dx  x 6

3

2

y = ln x 1

k x dy dx  k x

x

My k  m 1

k2

y

Mx k  m 6

k3

1

2

e 3

x

2 2

kL 

0

L2

My 

k dy dx 

0

1

http://librosysolucionarios.net

0

L  2 2

381

382 26.

Chapter 13

Multiple Integration

y  0 by symmetry m

        k dA 

R

My 

2

0

2

  x

0

2

k 3

0 1

kr 2 cos  dr d

0

3 1 cos   1  cos2   3 cos 1  sin2   1  cos 22 d 2 4

0

5k 4 My 5k  m 4

  

2

5

dy dx 

bh 2

 3k  6

h hxb

0 h hxb

b

0

h hxb

0

30. m 

y2 dy dx 

bh3 12

Ix 

x2 dy dx 

b3h 12

Iy 

0

b

Iy 

1cos 

cos 1  3 cos   3 cos2   cos3  d

2

k 3

0

Ix 

0

I bh 12  y  m bh2 Iy  m

x

3

a2 2

 

y 2 dA 

R

x 2 dA 

I0  Ix  Ix 

6 h  h 6 6

xy

  



a4 8

r3 sin2  dr d 

a4 8

r3 cos2  dr d 

a4 8

a

0

0

R

6 b3h12 b   b bh2 6 6

x

a

0

0



a4 a4  8 4

mI  a8  2a 4

x

2

32. m  ab

 

ba a2 x 2

a

Ix  4

0

y 2 dy dx

0

a

b3 2 4b3 a  x 232 dx  3 3 3a 3a

4

0



 a

0



a2 a2  x 2  x 2 a2  x 2 dx





x 1 x 4b3 a2 x a2  x 2  a2 arcsin  x2x 2  a2 a2  x 2  a4 arcsin 3a3 2 a 8 a



ab b2 y 2

b

Iy  4

0

x 2 dx dy 

0

I0  Iy  Ix 

a3b 4

a3b ab3 ab 2   a  b2 4 4 4

m  a 4b  1ab  2a I ab  1 b y   ab  2 m 4

x

r = 1 + cos θ

3k kr dr d  2

0

b

28. m 

1cos 

0

kx dA 

R



π 2

Iy

x

3

3

http://librosysolucionarios.net



a 0



ab3 4



a 2

Section 13.4 34.   ky

36.   kxy

   

m  2k

0

1

0

a2 x 2

a

Ix  k

a 0

a2 x 2

a

Iy  k

a 0

I0  Ix  Iy 

1

2ka3 3

y3 dy dx 

Ix  k

1

Iy  k

2

3

  

x

0

x

1

Iy 

x 2  y 2 y 2 dy dx 

x2

0

0

x 2  y 2x 2 dy dx 

x2

I0  Ix  Iy 

   0

2

158 2079

Ix  2

0

2

158 2079

Iy  2

0

316 2079

4

2

0

2

0

    

a2 x 2

a 0

k

a a



k

a

k

y4 2ay3 a2y 2   4 3 2

32,768k 65

4x

kx 2 y dy dx 

x3

2048k 45

321,536k 585



2kx  6 dx  2

 2k3 x  6  3

4 0

416k 3





a2 x2

dx

0



1 4 2a a2 a  2a2x 2  x 4   a2 a2  x 2  x 2 a2  x 2  a2  x 2 dx 4 3 2 2 3

4







x5 2a a2 x  x a2  x 2  a2 arcsin 5 3 2 a



1 x x2x 2  a2 a2  x 2  a4 arcsin 8 a

 14 a

 2k

ky3 dy dx 

x3

ky  y  a2 dy dx

 14 a x  2a3x



4x

x

0

a





512k 21

Iy

x

4

kx  6 dy dx 

a

44. I 

k 48

0

21 28 2 105  512k  15  15 m  2048k 45 I 32,768k 21 8 1365 y   512k  65 m 65

Iy



ky dy dx 

x3

I0  Ix  Iy 

x

42. I 

x5  x7 dx 

1

9k 3k  240 80

4x

m2

158 35 395  6  891 m  2079 I 395 y x m 891 x

k 60



2

6 35

x 2  y 2 dy dx 

x

x5  x9 dx 

0

40.   ky

x2

1

Ix 

k 2

1



38.   x 2  y 2 1

k 4

5

k 24

2

3

m

x3  x5 dx 

0

x



5

x

x3y dy dx 

1

Iy

x

5

x

  

1  m  k48 k24 2 I k60 2 y  m k24 5

2ka5 5

Iy

xy3 dy dx 

I0  Ix  Iy 

a 15 a   m  2ka 2ka 3 5 5 I 2a 4ka 15 2a   y  m 2ka 3 5 10 x

x

x2

0

2ka5 15

x 2y dy dx 

k 2

x2

0

4ka5 15

xy dy dx 

x2

0

0

a2  x 2 dx 

x

mk

y dy dx

a

k

  

a2 x 2

a

Center of Mass and Moments of Inertia

  a2 a x  x3  2

3



a

2

a

2 1 2a a4 a4 a2 3 a3  a5  a5    a  3 5 3 4 16 2 3









  2k 7a15  a8  ka 56 6015 5

5

http://librosysolucionarios.net

5

383

384

Chapter 13

 

4x 2

2

46. I 

Multiple Integration

2 0



2

ky  22 dy dx 

2



k y  13 3

2

k 3



2k 192 128 1408k 32  32    3 5 7 105

2

16  12x 2  6x 4  x6 dx 





dx 

0

 3k 16x  4x





2

4x2

3

k 2  x 2  8 dx 3 2

6 5 1  x  x7 5 7



2 2





48. x, y  k 2  x .

50. x, y  k4  x4  y. Both x and y will decrease

x, y will be the same.

52. Ix 

 

y2 x, y dA Moment of inertia about x-axis.

R

Iy 

x2 x, y dA Moment of inertia about y-axis.

R

54. Orient the xy-coordinate system so that L is along the y-axis and R is in the first quadrant. Then the volume of the solid is V

      2 x dA

y

R

 2

x dA

R

L R ( x, y )

x dA

 2

R

dA

dA

x

R

R

 2 x A. By our positioning, x  r. Therefore, V  2 rA.

a a 56. y  , A  ab, h  L  2 2

 b

Iy 

0

   a

a

0

58. y  0, A  a2, h  L

y

a 2



2

dy dx 

3

ab 12

a3b12 a3L  2a a  ya   2 L  a2 ab 32L  a

Iy  

2

a

r3 sin2  dr d

0

2

0



y 2 dy dx

a  a2 x 2

0



a2 x 2

a4 2 sin  d 4

a4 4

ya  

a2 a44 2   La 4L

http://librosysolucionarios.net

Section 13.5

Section 13.5

Surface Area 4. f x, y  10  2x  3y

2. f x, y  15  2x  3y

R  x, y: x 2  y 2 ≤ 9

fx  2, fy  3

fx  2, fy  3

1   fx 2   fy 2  14

 3

S

3

0

Surface Area



1   fx 2   fy 2  14

3

14 dy dx 

0

314 dx  914

 

9x 2

3

0

S

y

3



R

2

3

14 r dr d  914

0

0

2

14 dy dx

3 9x 2

y

y = 9 − x2

1 2

x

1

2

R

3

1

−2 −1

x

1

−1 −2

y = − 9 − x2

6. f x, y  y 2

y

R  square with vertices 0, 0, 3, 0, 0, 3, 3, 3

3

fx  0, fy  2y

2

R

1   fx 2   fy 2  1  4y 2

 3

S

0



3



1

3

1  4y 2 dx dy 

0

31  4y 2 dy

x

1

 34 2y1  4y

2

3

3

10. f x, y  9  x 2  y 2 fx  2x, fy  2y

fx  0, fy  y1 2 1  fx2  fy2  1  y

S

 0

2y

1   fx 2   fy 2  1  4x 2  4y 2



2

1  y dx dy 

0

1  y 2  y dy

S



3 2

 2  33 2 

2 5



2  1  y5 2 5

2

 35 2  2  5

2

   2

2



2

1 1  4r2 3 2 12

0

0



2

0

1  4r2 r dr d

0

0

0

 21  y

12 8 3  5 5 R

y

1

x

−1 2

1

1 −1

y=2−x R

x 1

d 2 0

1  173 2  1 d  1717  1 12 6 y



3

0  4  637  ln 6  37 



 ln 2y  1  4y 2 

2 8. f x, y  2  y 3 2 3

2

2

0

2

http://librosysolucionarios.net

385

386

Chapter 13

Multiple Integration

12. f x, y  xy

y

R  x, y:

x2



y2

x 2 + y 2 = 16

≤ 16 2

fx  y, fy  x 1   fx 2   fy 2  1  y 2  x 2

S

 



4 16x 2 2

1 

y2



x2

4

1  r 2 r dr d 

0

0

dy dx

2  1717  1 3

14. See Exercise 13.



a2 x 2

a

S

a

a dy dx  2  x2  y 2 2 2 a   a x

 2

0

a

0

a a2  r 2

1  fy 2  fy2  1  4x 2  4y 2

  

16x

4

0



1  fx2  fy2 

2

1  4x 2  y 2 dy dx

0

 2

0

r dr d  2a2

18. z  2x2  y2

16. z  16  x 2  y 2

S

2 −2

16x 2

4

x

−2

4

1  4r 2 r dr d 

0

S

 2

2

2

2



4y2  5 x2  y2

2

5r dr d  45

0

0

  6565  1 24

1  x 4x y

y

x2 + y2 = 4

y 1 6

16 − x 2

y=

x

−1

4

1 −1

2

x

2

4

6

20. f x, y  2x  y 2

22. f x, y  x 2  y 2

R  triangle with vertices 0, 0, 2, 0, 2, 2

R  x, y: 0 ≤ f x, y ≤ 16

1   fx    fy   5  4y

0 ≤ x 2  y 2 ≤ 16

2

 2

S

2

x

0

5  4y 2 dy dx 

0

2

1 2121  55  12

fx  2x, fy  2y 1   fx 2   fy 2  1  4x 2  4y 2

y

 

16x 2

4

S

3

y=x 2

 R

1

4 16x 2 2

1  4x 2  4y 2 dy dx

4

1  4r 2 dr d 

0

0

y

x 2 + y 2 = 16

x

1

2

3

2

x

−2

2 −2

http://librosysolucionarios.net

 6565  1 6

Section 13.5

R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 fx  x

Matches (c)

 sin x, fy  0

z



1   fx 2   fy 2  1  x  sin x

  1

S

0

1

2

3 2

1   x  sin x dy dx 1.02185

0

2

3

3

x

28. f x, y  25 y5 2

y

30. f x, y  x 2  3xy  y 2

R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

R  x, y: 0 ≤ x ≤ 4, 0 ≤ y ≤ x

fx  0, fy  y3 2

fx  2x  3y, fy  3x  2y   3x  2y

1   fx    fy   1  2

  1

S

0

2

1   fx    fy 2  1  2x  3y2  3x  2y2

y3

 1  13x 2  y 2

1

1  y3 dx dy

 4

0

S

1



387

26. Surface area 9

24. f x, y  23 x3 2  cos x

1 2

Surface Area

1  y dy 1.1114

0

3

x

1  13x 2  y 2 dy dx

0

0

32. f x, y  cosx 2  y 2



 2

R  x, y: x 2  y 2 ≤



fx  2x sinx 2  y 2, fy  2y sinx 2  y 2 1   fx 2   fy 2  1  4x 2 sin2x 2  y 2  4y 2sin2x 2  y 2  1  4 sin2x 2  y 2x 2  y 2

S

   2

( 2)x 2

 2

( 2)x 2

1  4x2  y 2 sin2x 2  y 2 dy dx

34. f x, y  ex sin y

36. (a) Yes. For example, let R be the square given by

R  x, y: 0 ≤ x ≤ 4, 0 ≤ y ≤ x

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

fx  ex sin y, fy  ex cos y

and S the square parallel to R given by

1   fx 2   fy 2  1  e2x sin2 y  e2x cos2 y

 1  e

2x

 4

S

0

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z  1. (b) Yes. Let R be the region in part (a) and S the surface given by f x, y  xy.

x

1  e2x dy dx

(c) No.

0

38. f x, y  kx 2  y 2 1   fx 2   fy 2 

S

 R

1  x kx y 2 2

2

1   fx 2   fy 2 dA 

2

 R



k2y 2  k2  1 x  y2 2

k2  1 dA  k2  1



dA  Ak2  1  r2k2  1

R

http://librosysolucionarios.net

388

Chapter 13

Multiple Integration

 15

1 3 4 16 y  y 2  y  25 75 25 15

40. (a) z 

(b) V  250



0



1 3 4 16 y  y 2  y  25 dy 75 25 15

 100266.25  26,625 cubic feet 1 4 16 (c) f x, y   y 3  y 2  y  25 75 25 15 fx  0, fy  

 50

(d) Arc length  30.8758 Surface area of roof  25030.8758  3087.58 sq ft

1 2 8 16 y  y 25 25 15

15

S2

0

1  fy2  fx2 dy dx  3087.58 sq ft

0

42. False. The surface area will remain the same for any vertical translation.

Section 13.6

 1

2.

1

1

1 1 1

0

0



2 3

z dz dx dy 

1 2

0

  e2

4

1

1 xz

0

1

1

9

   2

8.

y 2

0

0

0

0

e2

2x 2y 2

0

 3

0

2(2y 3)

1 ln z2 x 2

0

 

y dz dy dx 





1 xz

ln zy

1

4y 2

 2

0



e2 1

y 2

0

0

0

0

1

3 2

1

2 18





dz 

9

4 9



1

1

z2 dz 

 1

1

274 z

1

3

1



 2

0

9

4

0

4 1

 2 ln 4



0

0

3(x 2)

0

 2



1 sin y dy   cos y 2

4y  2x 2y  2y3 dy dx 

(6x) 2

729 4



ln z dz dx xz

2 dx  2 ln x x



361 y

y3 dy 

0

e2

4

dz dx 

    0

 

y z

1

sin y 1 dx dy  y 2

6

14.

1

dy 

1

6

dx dz dy 

0

2x



0



3

y 3

4

2x 2

62y3z 2y 2



dx 

 2

0

zex

2 9

 y 2  9x 2 dx dy

xy 2  3x3

0

2x 2

0

12.

sin y dz dx dy 

  2

10.

1 y

dy dz

0

9

1

1

y 3

0

4



1

y 2z2 dy dz 

 

  1



x3y 2z2

1

1 1

4

ln z dy dz dx 

1

1 1

1 2



6.

1

1 3

y 29x 2

y 3

 

x 2y 2z2 dx dy dz 

  9

4.

Triple Integrals and Applications

0



162 15

(6x2y) 3

zex

2y 2

dz dy dx

0

1 6  x  2y 2 3



2

ex

2 2

y

dy dx  2.118

2

9x

dz dy dx

0

http://librosysolucionarios.net

1 2



8 27

Section 13.6

Triple Integrals and Applications

1 16. z  x2  y2 ⇒ 2z  x2  y2 2 x2  y2  z2  2z  z2  80 ⇒ z2  2z  80  0 ⇒ z  8z  10  0 ⇒ z  8 ⇒ x2  y2  2z  16



16x

4

16x

 1

18.

2

4

1

0



80x2 y2

2

dz dy dx

1 2x y  2

xy

0

 1

dz dy dx 

0

0

 

2

36x y

36x2

6

2

0



1

xy dy dx 

0

0



0

6

4

0

0



1 4



36x2

6

6

36  x2  y2dy dx  4

dz dy dx  4

0

1

x x2 dx  2 4

 

2

20. 4

0

1

0

0

2

0

2x

0

 

9x 2

2

dz dy dx 

  0

0



 4162  648

9  x 22  x dx





2 0



50 3

26. Elliptic cone: 4x 2  z2  y 2

z 6

Side cylinder: x2  y2  9 9y2

dx

0

0

24. Top plane: x  y  z  6 3

6

2 3 2

9 2 1 18  9x  2x 2  x3 dx  18x  x 2  x3  x 4 2 3 4

0

36x2

2

9  x 2 dy dx 

0

2



6x   61x36  x 

0

2x

0

0







 

y3 3

1 3636  x2  x236  x2  36  x23 2 dx 3

 4 9x36  x2  324 arcsin

22.

36y  x2y 

z 5

6xy

dz dx dy

4

0

3 2 3

3

y

6

1

6

3

2

1

x

x

5

 4

0

4

z

y

y 2z2 2

dx dy dz

0

28. Q  x, y, z: 0 ≤ x ≤ 2, x 2 ≤ y ≤ 4, 0 ≤ z ≤ 2  x



           2

xyz dV 

0

2



2

2

0

4



0

2

2x

xyz dz dx dy

2

0

2x

0

x

4

x2

2z

0

0

4

x2

(2z)2

0

2 y

0

y

0

    2

xyz dx dy dz 

0

0 y

4

4

xyz dy dx dz

0



y

xyz dy dz dx

0



4

x2 0

4



z

2x

xyz dz dy dx

0

Q

4

4

xyz dx dz dy 

0

4

2z

xyz dx dy dz

(2z)2 0 2

2 y

2z

0



dx dz dy 

104 21



http://librosysolucionarios.net

(2, 4)

y

389

390

Chapter 13

Multiple Integration

30. Q  x, y, z: 0 ≤ x ≤ 1, y ≤ 1  x2, 0 ≤ z ≤ 6



        1

xyz dV 

0

Q

0

0

0

0

0

1

0

xyz dz dy dx

6

xyz dz dx dy

0

1y2

xyz dx dz dy

0

1y2

xyz dx dy dz

5x

mk

0

5

0

2

1x2

5x

0

0

xyz dy dz dx

1x2

xyz dy dx dz

0

1 5153x3y

y dz dy dz 

1 5153x3y

125 k 8

y 2 dz dy dx 

0

125 k 4

    a

b

0

a

0

b

c

a

0

b

a

0

b

0

z2 dz dy dx 

kabc3 3

xz dz dy dx 

ka2bc2 4

yz dz dy dx 

kab2c2 4

0 c

0 c

Mxz  k

0

0

b

0

0

0

Mxz kab2c2 4 b   m kabc2 2 2

z

Mxy kabc3 3 2c   m kabc2 2 3

38. z will be greater than 8 5, whereas x and y will be unchanged.

40. x, y and z will all be greater than their original values.

http://librosysolucionarios.net

dz dx dy 

kabc 6

c[1(y b)(x a)]

0

kab2c 24

b Mxz   m kabc 6 4

Myz ka2bc2 4 a   x m kabc2 2 2 y

c1(y b)(x a)

0

a[1(y b)]

Mxz  k

0

 

a1(y b)

mk

kabc2 2

c

Myz  k

0

z dz dy dx 

0

Mxy  k

0

  b

34.

y

mk

y

2

0

M y  xz  2 m

36.

1

x

0

Mxz  k

1

0

    5

32.

6

0

6



1

0

1



6

0

6



1y 2

0

1



6

6

0

0

1



1x2

z

y dz dx dy 

kab2c 24

Section 13.6

    



4x 2

2

42.

m  2k

0

y

dz dy dx

0

0

2

4  x 2 dx 

k

0

2

y

4x 2

2

0

y

4x 2

2

0

x dz dy dx  0 y dz dy dx  2k

0

0

Mxy  2k

16k 3

0

0

Mxz  2k

44.

  

4x 2

2

Myz  k

y

z dz dy dx  k

0

0

x

Myz 0  0 m 16k 3

y

Mxz 2k 3   m 16k 3 8

z

Mxy k 3   m 16k 3 16

x0

    2

1 (y 21)

1

m  2k

0

0

2

0

2

0

2

k

0

1

0

1

0

0

2

y dy dx  k y2  1

ln 2 dx  k ln 4

0

z dz dy dx

1 dy dx  k  y 2  12

 2

0

Mxz k ln 4 ln 4   m k 

z

Mxy 2 1  k  k  m 2 4 4





1 y  arctan y 2 y 2  1 2

1 0

dx  k

   

mk

0

5

Myz  k

0

5

Mxz  k

0

5

Mxy  k

0

(3 5)x3

0 (3 5)x3

0 (3 5)x3

0 (3 5)x3

0



1   4 8



2

dx  k

0



1 60  12x  20y 15 5

dx  k

0

0

y

46. f x, y 

2

2

1 (y 21)

1

Mxy  2k

0

0

y dz dy dx  2k

0

  

1  dy dx  2k y2  1 4

1

0

1 (y 21)

1

  2

dz dy dx  2k

0

Mxz  2k

0

Triple Integrals and Applications

   

y 5

(1 15)(6012x20y)

dz dy dx  10k

0

y = 35 (5 - x)

3

(1 15)(6012x20y)

x dz dy dx 

0

25k 2

2 1 x

(1 15)(6012x20y)

0

4

y dz dy dx 

15k 2

1

2

3

4

(1 15)(6012x20y)

z dz dy dx  10k

0

x

Myz 25k 2 5   m 10k 4

y

Mxz 15k 2 3   m 10k 4

z

Mxy 10k  1 m 10k

http://librosysolucionarios.net

5

12  4 

391

392

Chapter 13

Multiple Integration

   a 2

48. (a) Ixy  k

a 2

a 2

a 2 a 2 a 2

ka5 by symmetry 12

Ixz  Iyz 

Ix  Iy  Iz 

ka5 ka5 ka5   12 12 6

      a 2

(b) Ixy  k

a 2

   

a 2

a 2

a3k 12

z2x 2  y 2 dz dy dx 

a 2 a 2 a 2 a 2

Ixz  k

ka5 12

z2 dz dy dx 

a 2

a 2 a 2 a2

a 2

x 2  y 2 dy dx 

a 2 a 2

a 2

y 2x 2  y 2 dz dy dx  ka

a 2

a7k 72

a 2

a 2 a 2

7ka7 360

x 2y 2  y 4 dy dx 

Iyz  Ixz by symmetry Ix  Ixy  Ixz 

a7k 30

Iy  Ixy  Iyz 

a7k 30

Iz  Iyz  Ixz 

7ka7 180

       4

2

50. (a) Ixy  k

0

 

k 4 k 4

0

4



4y 2

4

2

1 4  y 24 dy dx 4

z3 dz dy dx  k

0

0

0

2

256  256y 2  96y4  16y6  y8 dy dx

0

0

4

256y 

0

4

2

4y 2

Ixz  k

0

0

4

2

k

0

0

4

2

0

4

2

k

0

0

 4

y 2z dz dy dx  k

0

0

2

0

4y 2

0

 4

x 2z dz dy dx  k

0

2

0

2 0



4

dx  k

0

16,384 65,536k dx  945 315

 4

0

16y3 8y5 y7   3 5 7



2 0

dx 

k 2



4

0

1024 2048k dx  105 105

1 2 x 4  y 22 dy dx 2

1 2 k x 16  8y 2  y4 dy dx  2 2

Ix  Ixz  Ixy 



1 2 y 4  y 22 dy dx 2

1 k 16y 2  8y4  y6 dy dx  2 2

Iyz  k

0

256y3 96y5 16y7 y9    3 5 7 9

 4

0



x 2 16y 

8y3 y5  3 5



2 0

dx 

k 2

2048k 8192k 63,488k , Iy  Iyz  Ixy  , Iz  Iyz  Ixz  9 21 315

—CONTINUED—

http://librosysolucionarios.net



4

0

256 2 8192k x dx  15 45

Section 13.7

Triple Integrals in Cylindrical and Spherical Coordinates

50. —CONTINUED—

      4

(b) Ixy 

4y 2

2

0

0

z24  z dz dy dx

0

4

Ixz 

0

0

4

2

4y 2

0

0

4

0

4

4

a2

Iyz 

0

0

b2

z2 dz dy dx 

b2

c2

a2

c2 a2

dy dx 

Iz  Ixz  Iyz 

1 ma2  c2 12

1 2 1 b abc  mb2 12 12

a2

c2 a2

x 2 dz dy dx  ab

1 mb2  c2 12

1 1x 2 0

4096k 8192k 4096k   9 45 15

0

y 2 dy dx 

c2

Iy  Ixy  Iyz 

4x 2y 2

0

c2

y 2 dz dy dx  b

1 ma2  b2 12

 

x 2z dz dy dx 

4y 2

2

    

b3 12

b2

c2 a2 b2

1x 2

1024k 2048k 1024k   15 105 21

48,128k 118,784k 11,264k , Iy  Iyz  Ixy  , Iz  Ixz  Iyz  315 315 35

Ix  Ixy  Ixz 

1

54.

a2

4

4x 2 dz dy dx  k

c2 a2 b2 c2



4y 2

c2 a2 b2 c2

Ixz 

y 2z dz dy dx 

0

x 24  z dz dy dx

         a2

0

0

2

0

4y 2

2

0

Ix  Ixz  Ixy 

c2

32,768k 65,536k 32,768k   105 315 315

4y 2

2

0

 4

0

k

52. Ixy 

z3 dz dy dx 

0

4y 2 dz dy dx  k

Iyz  k

0

0

y 24  z dz dy dx

4y 2

2

0

4y 2

2

0

k

0

4

4z2 dz dy dx  k

0

0



4y 2

2

k

c2

x 2 dx 

ba3 12



c2

c2

dx 

ba3c 1 1  a2abc  ma2 12 12 12

abc3 1 1  c2abc  mc2 12 12 12

kx 2x 2  y 2 dz dy dx

56. 6

58. Because the density increases as you move away from the axis of symmetry, the moment of intertia will increase.

Section 13.7

  4

2.

0

2

0

Triple Integrals in Cylindrical and Spherical Coordinates

2r

rz dz dr d 

0

  2

0



0

4

0



4.

   

1 2

2

0

e 2 d d d  3

2

0

4

0

rz2 2



2r

dr d

0

2

1 2

4r  4r 2  r 3dr d 

0

  2

0



0

2



1 3  e 3

0

d d 



4

0

  2

0



0

2r

2



4r 3 r 4  3 4

2



0

d 

2 3



4

d 

0

1 2 1  e8 d d  1  e8 3 6

http://librosysolucionarios.net

 6

393

394

Chapter 13

   4

6.

0

4

cos 

0

Multiple Integration 1 3

2 sin cos d d d 

0

1 3



1 3



  2



0

0

0

3

0

3r2

0

r dz dr d 

   2



4

0

sin cos cos 1  sin2  d d

0

4



sin cos sin  

0

sin3  3

4

sin cos d 

0

r 3  r 2dr d



4



d

0

52 sin2 36 2



4

52 144



0

z

0

2

4

3r 2 r 4  2 4

0



4

3

0

0

cos3  sin cos d d

0

8 9

2 cos 2 d d d 

 2

10.

sin 

4

0

52 36



8.

      4

2



3

d

0

9 9 d  4 2

0

2

2

3

y

3

x

  2

12.



0

0

5

2 sin d d d 

2

117 3

117  3 

     2

14. (a)

0

2

(b)

0

0

16r2

0

0

1

0

2



0

sin d d

2

r 2 dz dr d 

cos

0

   2

2

0

7

3 sin2 d d d 

4

y

8 2  23 3

   2

 8

(b)

0

  2

r

r dz dr d 

0

0

2 csc

6

rr 2  z2 dz dr d 

0

0

r=2

d 7

1r2

22



x

0

2



8 2  23 3

3 sin2 d d d 

  

r=5

7

0

4

2 18. V   43  4 3

z

0

468 3

0

6

  2

16. (a)

2

 

16r2

4

22 0

0

r dz dr d

2

1

0

3 sin d d d 

0



z 7

(Volume of lower hemisphere)  4(Volume in the first octant) V 

128 4 3





2

0

22

0

128 82 4  3 3



r 2 dr d 

  2

0



2

0

r16  r 2 dr d

22

 3 16  r   1

4

2 32

22



128 82 82 4  3 3 3



128 642 64    2  2 3 3 3



4

d



x



 http://librosysolucionarios.net

7

7

y

 8

Section 13.7

20. V 

    2

2

0

0

2



r dz dr d

22.

0

r

2

0

k r dz dr d 

0

0

r4  r 2  r 2 dr d

1 r3  4  r 232  3 3



2

0

 

d

    0

2

2

2kh  2 r0

26.



2

2kh r02

r0 r  2r0 2

r2



0

h2

kr0   2 12

r0 12

2

Mxy kr02h2 3 h   z m 12 r02hk 4



28. Iz 

         



 4kh

0

2

0

2

2

 4kh

0

 4kh



0

h(r0 r)r0

2

2

r0

0

 z

0

h(r0 r)r0

zr dz dr d

z2r dz dr d

0

1 k r02h3 30 Mxy k r02h330 2h   m k r02h212 5

   2

0

2a sin 

0

3  ka4h 2 3  ma2 2



1 5 r d 30 0

1 5 r 30 0 2

1 5 r  kh 15 0

http://librosysolucionarios.net

h

0

r 3 dz dr d

2

2



0

6ke4  6k d

0

 

Mxy  4k

r05 r05  d 5 6

0

2

r0  r 4 r dr d r0

r 6 r0 r5 d  5 6r0 0

0

 4kh

r 4 dz dr d

0

r0

r

6ke

1 k r02h2 12

Iz  2k

0

 4kh

dr d



r3

hr0 rr0

r0

r0

0

30. m  ka2h

2

0

2

x2  y2x, y, z dV

Q

 4k

 

z r dz dr d

r0

4

2

  kz

m  4k

hr0 rr0

r dr d

0

x  y  0 by symmetry

0

0

2

 3k 1  e4

r0

0

r

12ke

0

1 m   r02hk from Exercise 23 3 Mxy  4k

2

0

x  y  0 by symmetry

2

     2

12e

8  2  2 3





2

0

2

0

24.

  2

r

2

0



4r2

Triple Integrals in Cylindrical and Spherical Coordinates

395

396

Chapter 13

Multiple Integration

      4

32. V  8

2

0

b

2 sin d d d

0

4

8  b3  a3 3  

0

4 3 b  a3 3

4

3



 1

b

a a

x

2

2

0

3

3



2 b3  a3

0

0

2

2

3 sin2 d d d

36.

 ka4

x  y  0 by symmetry mk

d d

sin2

23 R

sin2



3

Mxy  4k

d

2

0

1 1  sin 2 2 4



2 2  r 3  kR3  r3 3 3

     

0

2

0



y

a

2ka4

 ka4

b

4

3 b  a   23 2 

0



sin d



2

ka4

b

 a3cos 

2 4

0

z

sin d d

0

     

34. m  8k 

2

0

 43 b

(includes upper and lower cones)

a

2

0

1  kR4  r 4 2

2



0

R

3 cos sin d d d

r

2

0

1  kR4  r 4 4

 1 2 4  k a 4 4

2

sin 2 d d

0

2

sin 2 d

0



1   kR4  r 4 cos 2 8

2



0

1  kR4  r 4 4

Mxy kR4  r44 3R4  r4   z 3 3 m 2kR  r 3 8R3  r3

      2

38. Iz  4k

0

 

0

4k 5 R  r5 5

R

4 sin3 d d d

2

0

2k 5 R  r5 5

2

sin 1  cos2  d

4k 5 R  r5 15 2

2

1

2  x2  y2  z2

y   sin sin 

tan  

z   cos

cos 

y x z x2  y2  z2

0





1

sin3 d d

cos3 2k 5 R  r5 cos  5 3



1

2

0



40. x   sin cos 

r



2

42.

2

2



0

f   sin cos ,  sin sin ,  cos 2 sin d d d

44. (a) You are integrating over a cylindrical wedge.

(b) You are integrating over a spherical block.

46. The volume of this spherical block can be determined as follows. One side is length . Another side is  . Finally, the third side is given by the length of an arc of angle  in a circle of radius  sin . Thus:

z

ρi sin φi ∆ θi ∆ ρi

V     sin   2 sin  

ρi ∆φi

y x

http://librosysolucionarios.net

Section 13.8

Section 13.8

Change of Variables: Jacobians

Change of Variables: Jacobians

2. x  au  bv

4. x  uv  2u

y  cu  dv

y  uv

x y y x   ad  cb u v u v

x y y x   v  2u  vu  2u u v u v

6. x  u  a

8. x 

yva

1 10. x  4u  v 3 1 y  u  v 3

y x 1 u 1 u uv x y   1  1  2   2  u v u v v v v v v2



x, y

u, v

0, 0

0, 0

1 −1

−1

3, 0

uxy

2, 2

0, 6

−4

v  x  4y

6, 3

3, 6

−6

uxy

1 y   u  v, 2

vxy

x y y x 1 1 1     u v u v 2 2 2

   12  21

       

 

v

4, 1

1 12. x  u  v, 2

u v

yuv

x y y x   11  00  1 u v u v

(0, 0) 1

(3, 0) 2

4

u 5

6

−2 −3 −5

(0, −6)

(3, −6)

x, y

u, v

0, 1

1, 1

2, 1

1, 3

1, 2

1, 3

1, 0

1, 1

60xy dA

R

1









1 u  v 2

60

1 1 1



3

3

1 1 1

1 1

1





 15

 21u  v12 dv du

15 2 v  u2 dv du 2

15 v 3  u2v 2 3





15 26 2u2  du 2 3

 152 23u

3



397

3 1

du

v

(−1, 3)

(1, 3) 2

(−1, 1) −2

(1, 1) u

−1

1 −1



26 u 3

1 1

23  263  120

http://librosysolucionarios.net

2

398

Chapter 13

Multiple Integration v

1 14. x  u  v 2

u 1

1 y  u  v 2

−1

y x 1 x y   u v u v 2



v=u−2

−2

  2

4x  yexy dA 

0

R

0

12 dv du

4uev

u2

2



 u2  ue

2u1  eu2 du  2

0

16. x 

2

2

u2

 eu2



2

 21  e2

0

u v

yv y x 1 x y   u v u v v



 4

y sin xy dA 

1

R

4

vsin u

1

18. u  x  y  ,

1 dv du  v

4





3 sin u du  3 cos u

1

vxy0

u  x  y  2,

vxy

1 x  u  v, 2

1 y  u  v 2

1 x, y  u, v 2





4 1

y

3π 2

π

x−y=0

x + y = 2π

π 2

x− y=π

x+y=π

x  y2 sin2 x  y dA 

R

  

π 2

2

u2 sin2 v



0





0

π

12 du dv

1 u3 1  cos 2v 2 3 2

u  3x  2y  16,

v  2y  x  8

1 x  u  v, 4

1 y  u  3v 8



2





dv 



 712 v  21 sin 2v 3

0

y

  8

0

R

−2

u v3 2

3

(4, 2) 2y − x = 0

−1

18 du dv

16v 3 2 dv 

0

(2, 5)

2

8



2y − x = 8

3x + 2 y = 0

16

0

7 4 12

3x + 2y = 16

(−2, 3)

 

3x  2y2y  x3 2 dA 



5

x y y x 1 3 1 1 1      u v u v 4 8 8 4 8



x

3π 2

v  2y  x  0

20. u  3x  2y  0,



 3cos 1  cos 4 3.5818

2516v 

8

5 2

0



4096

2 5

http://librosysolucionarios.net

x −1

1

(0, 0)

2

3

4

Section 13.8 22. u  x  1,

v  xy  1

u  x  4,

v  xy  4

x  u,

y

y x 1 x y   u v u v u

 R

Change of Variables: Jacobians

y

x=1 4 3

v u

xy = 4 2

x=4 1 x

xy dA  1  x 2y 2

  4

1

1

4



1

4

1

2

3

4

xy = 1



v 1 dv du 1  v2 u



4

1 ln1  v 2 2

1





4

1 1 du  ln 17  ln 2 ln u u 2

1







1 17 ln ln 4 2 2

24. (a) f x, y  16  x 2  y 2 R:

y2 x2  ≤ 1 16 9

V



f x, y dA

R

Let x  4u and y  3v.



   

1u2

1

16  x 2  y 2 dA 

R



1  1u2 2

16  16u2  9v2 12dv du

1

16  16r 2 cos2   9r 2 sin2  12r dr d

0

0

2

 12

0

2

 12

9 8r2  4r 4 cos2   r 4 sin2  4 84

0





2

 398   167 sin 2

R:



1 0

0



2

d  12

1  cos 2 9 1  cos 2  2 4 2

 12 (b) f x, y  A cos

Let u  r cos , v  r sin .



0



2

2

2

 394  117

 12

x2 y 2  2 ≤ 1 a2 b

Let x  au and y  bv.



 1

f x, y dA 

R

1u2

 2 u

2

A cos

1  1u

2



 v 2 ab dv du

Let u  r cos , v  r sin .

 2

Aab

0

1

0

 2 rr dr d  Aab 2r sin2r  4 cos2r

1

cos

2

0

2

 2  0  0  4   4 2Aab

 2 Aab

2



d  12

2 ax  yb  2

8  4 cos

2

http://librosysolucionarios.net

2

0





9 2 sin  d 4

 398  87 cos 2 d

399

400

Chapter 13

Multiple Integration 28. x  4u  v, y  4v  w, z  u  w



26. See Theorem 13.5.

4 x, y, z  0 u, v, w 1 30. x  r cos , y  r sin , z  z



cos  r sin  x, y, z  sin  r cos  r, , z 0 0

1 4 0

0 1  17 1



0 0  1 r cos2   r sin2   r 1

Review Exercises for Chapter 13



2y

2.

 x3  xy  2

y

y

 2

4.

0

x2

dx dy  2





0

2 4y2

3

dy dx 

0

2

 

 0

0





2

y

 3 

2



0

4 3

0

1 1 1y

x2 2x



1 1y

8

0



3 9y

4

 1

dx dy 

0

 5

dy dx 

0

1





2

x1

1 1x

0

dx dy 



2

3 x

dy dx 

 1

dy dx 

4 0



dx dy

64 3

14 3

1 1x

1 1x

0

3 9y

3 9y

8

2 8x  2x2 dx  4x2  x3 3 0

dy dx 

 9

dx dy 

dy dx 

9 2

16. Both integrations are over the common region R shown in the figure. Analytically,

  2

0

3

0

5y

e xy dx dy 

2 8 5  e 5 5

exy dy dx 



3y 2 2x 3

0

88 15

3

2

1 1y

2yy 2

0

0



1 2  x4  x5 2 5

dx dy

dy dx 

0

3

14. A 

3



3

y

 126y  23 y 

6xx2

y 21

2

0

6  3y dy 







y 2

 43 x

6y 2

2

0

0

4

12. A 

0



dy dx 

0

0

4x 2  2x 3  2x 4 dx 

dx dy

dy dx 

A



2

dx 

y

6xx2

x2 2x

x2

2 4  y 2 dy  y4  y  4 arcsin

62x

2

1 2



2x

6y 2

2

0

3

0

x

4



x 2y  y 2



2 4y2

A

10.

10y3 3

0

 2



2

x 2  2y dy dx 

0

8.



2x

3

6.

2y

3

x 2  y 2 dx 

5

3

5x

0

y

5 4 3





3 2 8 2 exy dy dx  e5  e 3   e 5  e 3  e5  5 5 5 5

(3, 2)

2 1 x 1

http://librosysolucionarios.net

2

3

4

5

Review Exercises for Chapter 13

   3

18. V 

x

0

3



x  y dy dx

20. Matches (c)

z

0 3



1 xy  y 2 2

0

x

dx

2

0

1 y

3

3  2

2

x2

dx 2

0

x

 

3

1  x3 2

 1

22.

0

27  2 0

 

x

1

kxy dy dx 

0

0

1



0

kxy 2 2

1

24. False,

dx

0

0

1

 2

x dy dx 

0

1

2

x dy dx

1

kx 3 dx 2

 kx8 

4 1





x



0



k 8

Since k 8  1, we have k  8.

 0.5

P

0.25

0

 1

26. True,

0

1

0

 4

28.

0

8xy dy dx  0.03125

0

1 dx dy < 1  x2  y2

16y2

x 2  y 2 dx dy 

0

     2

0



8 3

1

1

0

0

   2

0

30. V  8

 4

0

1  dx dy  1  x2 4

r 3 dr d 



 2

0

 r4 

4 4 0

d 



 2

64 d  32

0

R

R 2  r 2r dr d

32. tan  

b

 2



R 2  r 23 2

0



8  R2  b23 2 3

 2

R b

d

The polar region is given by 0 ≤ r ≤ 4 and 0 ≤  ≤ 0.9828. Hence,





arctan3 2

d

4

r cos r sin r dr d 

0

0

0

4  R 2  b23 2 3

1213 3  ⇒   0.9828 2 813

y

(8/ 13, 12/ 13) 4 3

x 2 + y 2 =16 y = 23 x

2 1

θ x 1

8/ 13

http://librosysolucionarios.net

4

288 13

401

402

Chapter 13

   

h 2 2 x L  x2 L2

L

34. m  k

0

0

 

2

0

L

kh2 8

4

0



y



x x2 2  2 dx L L

 





L 0



kh2 8



17L 17kh2L  10 80

h 2 2 x L  x2 L2

x dy dx

0

L

kh 2

2x 

0



 





L 0



kh 2



5L2 5khL2  12 24

12 5L  7khL 14 12

51h

7khL  140

  2

y2 x, y dA 

0

x, y dA 

0

R

2

4x

ky3 dy dx 

0

2

x2



x2 x3 kh 2 x3 x4  2 dx  x   2 L L 2 3L 4L

Mx 17kh2L  m 80

16,384 k 315

2

4x

kx2y dy dx 

0

512 k 105

16,384k 512k 17,920 512 I0  Ix  Iy    k k 315 105 315 9



 2

x, y dA 

0

R

2

4x

ky dy dx 

0

128 k 15

4   512k 105 128k 15 7 I 16,384k 315 128  y  m 128k 15 21 Iy  m

x

x

38. f x, y  16  x  y2 R  x, y: 0 ≤ x ≤ 2, 0 ≤ y ≤ x fx  1, fy  2y 1   fx2   fy2  2  4y2

 2

S

0

 

( x

4x 3x2 2x3 x4  2  3  4 dx L L L L

R

m

(

2 x y = h 2 − L − x2 2 L

L



My 5khL2  x m 24

Iy 

0

x x 7khL  dx  L L2 12 h

kh2 2x 2 x3 x4 x5 4x   2 3 4 8 L L 2L 5L

0

36. Ix 

2

2

y dy dx

L

My  k

y

L

0

2

L





kh 2

h 2 2 x L  x2 L2

Mx  k

kh 8

dy dx 

0

L



Multiple Integration

2

 2

2  4y2 dx dy 

y

0

22  4y2  y2  4y2 dy



122y

  121 2  4y  

2  4y2  2 ln 2y  2  4y2

2

2 3 2

0

 2418  2 ln 4  18   12 1818   ln2  1

1





 62  ln 4  32 

22 12







2 92 52  ln2    ln 22  3 2 6 3

http://librosysolucionarios.net

Review Exercises for Chapter 13

(b) Surface area 

40. (a) Graph of

403



1  fxx, y2  fyx, y2 dA

R

f x, y  z



 25 1  ex

2

y x 1000  2

y 2 1000

cos2

Using a symbolic computer program, you obtain surface area  4,540 sq. ft.

2

over region R z 50

R

50 x



4x2

2

42.

50

0

2

x 2  y 2 dz dy dx 

0

25x2

25x2 y2

0

1

0

x2

r 2 2

2

0

0

  5

 

(x2 y2) 2

2 4x2

44.



y

0

1 r3 dz dr d  2

         2

1 dz dy dx   y2  z2

0

 2



0

 2

0

5

0

2

2

0

0

 arctan



5 0

  2

0

4x 2

4x 2 y 2

0

xyz dz dy dx 

0

     2

48. V  2

2 sin 

0

0

0



 2

0

Mxz  2k

 2

0

Mxy  2k

 2

0

a

0

a

0

a

0

cr sin 

32 3

0

d 

 5  arctan 5 2

r16  r 2 dr d

0

8 sin2   sin4  d



     

r dz dr d  2kc

 2

0

0

0

 2

0

0

r 2 sin  dr d   2

0

rz dz dr d  kc2

 2



a

r 2 sin  dz dr d  2kc

0 cr sin 

 2



5  arctan 5cos 

1 3 3 1 1 sin  cos     sin 2 4 4 2 4

0 cr sin 

d 

0

0

 8 4  2 sin 2 

     

2

 2

32 sin2   4 sin4  d  8

m  2k

2 sin 

0

 2

2

50.

 2

r dz dr d  2

0



4 3

  

16r 2

16 3

sin d d

0

46.

r 5 dr d 

2 sin d d d 1  2

0

 2



 2







2 kca3 3

 2

sin  d 

0

a

0



1 r3 sin2  dr d  kca4 2

a

r 3 sin2  dr d 

0

29 2

1 2 4 kc a 4



 2

 2

Mxz kca4 8 3a   m 2kca3 3 16

z

Mxy kc2a4 16 3ca   m 2kca3 3 32

sin2  d 

0

sin2  d 

0

x0 y

2 kca3 3

http://librosysolucionarios.net

1  kca4 8

1  kc2a4 16

404

52.

Chapter 13

 

500  3

m

0

    2

Mxy 

3

0

0

2



0



0

by symmetry

60.

2





0

2

r25  r2  4rd dr

500 64 125 500 14  2   18     162 3 3 3 3 3



25r 2

1 4 9 2 r  r 8 4

0

0



25r 2

5

3

0

1 3 9 r  r dr d  2 2

3

0

  

zr dz dr d 

2

zr dz dr d 

  2

0

0



3



d  

0

81  8

3

2





1 8  25  r2 r dr d  0 2



0

81  4

0

a

2 sin2   2 sin d d d

0

4ka6 9

y2

  

  

z2  21 a

58.

0

a

1z2 a2

a

1z2 a2



1y 2z2 a2

1r2

2

0

r dz dr d

0

Since z  1  r 2 represents a paraboloid with vertex 0, 0, 1, this integral represents the volume of the solid below the paraboloid and above the semi-circle y  4  x2 in the xy-plane.

x2  y2 dV

Q





25r 2

 

54. Iz  k



4

2

3

Mxy 81 1 1   m 4 162 8

z

Iz 

0

 

500  3

r dz d dr 

4

3

0

56. x 

25r2



xy0

2

2

3

500 1  2  25  r23 2  2r 2 3 3





Multiple Integration

x 2  y 2 dx dy dz

1y 2z2 a2

8 a 15

x, y x y y x   u, v u v u v  2u2v  2u2v  8uv y

x, y x y x y 1 1  1  0 62. u, v u v v u u u



5 4

y = 1x

x=1

v x  u, y  ⇒ u  x, v  xy u

3 2

x=5

Boundary in xy-plane

Boundary in uv-plane

x1

u1

x5

u5

xy  1

v1

xy  5

 R

x dA  1  x2y2

 5

1

5

1

x 1

v5



u 1 du dv  1  u2v u2 u



 4 arctan v

5 1

1

 5

1

5

1

1 du dv  1  v2



5

1

4 dv 1  v2

 4 arctan 5  

http://librosysolucionarios.net

y = 1x

4

5

400

Chapter 13

Multiple Integration 28. x  4u  v, y  4v  w, z  u  w



26. See Theorem 13.5.

4 x, y, z  0 u, v, w 1 30. x  r cos , y  r sin , z  z



cos  r sin  x, y, z  sin  r cos  r, , z 0 0

1 4 0

0 1  17 1



0 0  1 r cos2   r sin2   r 1

Review Exercises for Chapter 13



2y

2.

 x3  xy  2

y

y

 2

4.

0

x2

dx dy  2





0

2 4y2

3

dy dx 

0

2

 

 0

0





2

y

 3 

2



0

4 3

0

1 1 1y

x2 2x



1 1y

8

0



3 9y

4

 1

dx dy 

0

 5

dy dx 

0

1





2

x1

1 1x

0

dx dy 



2

3 x

dy dx 

 1

dy dx 

4 0



dx dy

64 3

14 3

1 1x

1 1x

0

3 9y

3 9y

8

2 8x  2x2 dx  4x2  x3 3 0

dy dx 

 9

dx dy 

dy dx 

9 2

16. Both integrations are over the common region R shown in the figure. Analytically,

  2

0

3

0

5y

e xy dx dy 

2 8 5  e 5 5

exy dy dx 



3y 2 2x 3

0

88 15

3

2

1 1y

2yy 2

0

0



1 2  x4  x5 2 5

dx dy

dy dx 

0

3

14. A 

3



3

y

 126y  23 y 

6xx2

y 21

2

0

6  3y dy 







y 2

 43 x

6y 2

2

0

0

4

12. A 

0



dy dx 

0

0

4x 2  2x 3  2x 4 dx 

dx dy

dy dx 

A



2

dx 

y

6xx2

x2 2x

x2

2 4  y 2 dy  y4  y  4 arcsin

62x

2

1 2



2x

6y 2

2

0

3

0

x

4



x 2y  y 2



2 4y2

A

10.

10y3 3

0

 2



2

x 2  2y dy dx 

0

8.



2x

3

6.

2y

3

x 2  y 2 dx 

5

3

5x

0

y

5 4 3





3 2 8 2 exy dy dx  e5  e 3   e 5  e 3  e5  5 5 5 5

(3, 2)

2 1 x 1

http://librosysolucionarios.net

2

3

4

5

Review Exercises for Chapter 13

   3

18. V 

x

0

3



x  y dy dx

20. Matches (c)

z

0 3



1 xy  y 2 2

0

x

dx

2

0

1 y

3

3  2

2

x2

dx 2

0

x

 

3

1  x3 2

 1

22.

0

27  2 0

 

x

1

kxy dy dx 

0

0

1



0

kxy 2 2

1

24. False,

dx

0

0

1

 2

x dy dx 

0

1

2

x dy dx

1

kx 3 dx 2

 kx8 

4 1





x



0



k 8

Since k 8  1, we have k  8.

 0.5

P

0.25

0

 1

26. True,

0

1

0

 4

28.

0

8xy dy dx  0.03125

0

1 dx dy < 1  x2  y2

16y2

x 2  y 2 dx dy 

0

     2

0



8 3

1

1

0

0

   2

0

30. V  8

 4

0

1  dx dy  1  x2 4

r 3 dr d 



 2

0

 r4 

4 4 0

d 



 2

64 d  32

0

R

R 2  r 2r dr d

32. tan  

b

 2



R 2  r 23 2

0



8  R2  b23 2 3

 2

R b

d

The polar region is given by 0 ≤ r ≤ 4 and 0 ≤  ≤ 0.9828. Hence,





arctan3 2

d

4

r cos r sin r dr d 

0

0

0

4  R 2  b23 2 3

1213 3  ⇒   0.9828 2 813

y

(8/ 13, 12/ 13) 4 3

x 2 + y 2 =16 y = 23 x

2 1

θ x 1

8/ 13

http://librosysolucionarios.net

4

288 13

401

402

Chapter 13

   

h 2 2 x L  x2 L2

L

34. m  k

0

0

 

2

0

L

kh2 8

4

0



y



x x2 2  2 dx L L

 





L 0



kh2 8



17L 17kh2L  10 80

h 2 2 x L  x2 L2

x dy dx

0

L

kh 2

2x 

0



 





L 0



kh 2



5L2 5khL2  12 24

12 5L  7khL 14 12

51h

7khL  140

  2

y2 x, y dA 

0

x, y dA 

0

R

2

4x

ky3 dy dx 

0

2

x2



x2 x3 kh 2 x3 x4  2 dx  x   2 L L 2 3L 4L

Mx 17kh2L  m 80

16,384 k 315

2

4x

kx2y dy dx 

0

512 k 105

16,384k 512k 17,920 512 I0  Ix  Iy    k k 315 105 315 9



 2

x, y dA 

0

R

2

4x

ky dy dx 

0

128 k 15

4   512k 105 128k 15 7 I 16,384k 315 128  y  m 128k 15 21 Iy  m

x

x

38. f x, y  16  x  y2 R  x, y: 0 ≤ x ≤ 2, 0 ≤ y ≤ x fx  1, fy  2y 1   fx2   fy2  2  4y2

 2

S

0

 

( x

4x 3x2 2x3 x4  2  3  4 dx L L L L

R

m

(

2 x y = h 2 − L − x2 2 L

L



My 5khL2  x m 24

Iy 

0

x x 7khL  dx  L L2 12 h

kh2 2x 2 x3 x4 x5 4x   2 3 4 8 L L 2L 5L

0

36. Ix 

2

2

y dy dx

L

My  k

y

L

0

2

L





kh 2

h 2 2 x L  x2 L2

Mx  k

kh 8

dy dx 

0

L



Multiple Integration

2

 2

2  4y2 dx dy 

y

0

22  4y2  y2  4y2 dy



122y

  121 2  4y  

2  4y2  2 ln 2y  2  4y2

2

2 3 2

0

 2418  2 ln 4  18   12 1818   ln2  1

1





 62  ln 4  32 

22 12







2 92 52  ln2    ln 22  3 2 6 3

http://librosysolucionarios.net

Review Exercises for Chapter 13

(b) Surface area 

40. (a) Graph of

403



1  fxx, y2  fyx, y2 dA

R

f x, y  z



 25 1  ex

2

y x 1000  2

y 2 1000

cos2

Using a symbolic computer program, you obtain surface area  4,540 sq. ft.

2

over region R z 50

R

50 x



4x2

2

42.

50

0

2

x 2  y 2 dz dy dx 

0

25x2

25x2 y2

0

1

0

x2

r 2 2

2

0

0

  5

 

(x2 y2) 2

2 4x2

44.



y

0

1 r3 dz dr d  2

         2

1 dz dy dx   y2  z2

0

 2



0

 2

0

5

0

2

2

0

0

 arctan



5 0

  2

0

4x 2

4x 2 y 2

0

xyz dz dy dx 

0

     2

48. V  2

2 sin 

0

0

0



 2

0

Mxz  2k

 2

0

Mxy  2k

 2

0

a

0

a

0

a

0

cr sin 

32 3

0

d 

 5  arctan 5 2

r16  r 2 dr d

0

8 sin2   sin4  d



     

r dz dr d  2kc

 2

0

0

0

 2

0

0

r 2 sin  dr d   2

0

rz dz dr d  kc2

 2



a

r 2 sin  dz dr d  2kc

0 cr sin 

 2



5  arctan 5cos 

1 3 3 1 1 sin  cos     sin 2 4 4 2 4

0 cr sin 

d 

0

0

 8 4  2 sin 2 

     

2

 2

32 sin2   4 sin4  d  8

m  2k

2 sin 

0

 2

2

50.

 2

r dz dr d  2

0



4 3

  

16r 2

16 3

sin d d

0

46.

r 5 dr d 

2 sin d d d 1  2

0

 2



 2







2 kca3 3

 2

sin  d 

0

a

0



1 r3 sin2  dr d  kca4 2

a

r 3 sin2  dr d 

0

29 2

1 2 4 kc a 4



 2

 2

Mxz kca4 8 3a   m 2kca3 3 16

z

Mxy kc2a4 16 3ca   m 2kca3 3 32

sin2  d 

0

sin2  d 

0

x0 y

2 kca3 3

http://librosysolucionarios.net

1  kca4 8

1  kc2a4 16

404

52.

Chapter 13

 

500  3

m

0

    2

Mxy 

3

0

0

2



0



0

by symmetry

60.

2





0

2

r25  r2  4rd dr

500 64 125 500 14  2   18     162 3 3 3 3 3



25r 2

1 4 9 2 r  r 8 4

0

0



25r 2

5

3

0

1 3 9 r  r dr d  2 2

3

0

  

zr dz dr d 

2

zr dz dr d 

  2

0

0



3



d  

0

81  8

3

2





1 8  25  r2 r dr d  0 2



0

81  4

0

a

2 sin2   2 sin d d d

0

4ka6 9

y2

  

  

z2  21 a

58.

0

a

1z2 a2

a

1z2 a2



1y 2z2 a2

1r2

2

0

r dz dr d

0

Since z  1  r 2 represents a paraboloid with vertex 0, 0, 1, this integral represents the volume of the solid below the paraboloid and above the semi-circle y  4  x2 in the xy-plane.

x2  y2 dV

Q





25r 2

 

54. Iz  k



4

2

3

Mxy 81 1 1   m 4 162 8

z

Iz 

0

 

500  3

r dz d dr 

4

3

0

56. x 

25r2



xy0

2

2

3

500 1  2  25  r23 2  2r 2 3 3





Multiple Integration

x 2  y 2 dx dy dz

1y 2z2 a2

8 a 15

x, y x y y x   u, v u v u v  2u2v  2u2v  8uv y

x, y x y x y 1 1  1  0 62. u, v u v v u u u



5 4

y = 1x

x=1

v x  u, y  ⇒ u  x, v  xy u

3 2

x=5

Boundary in xy-plane

Boundary in uv-plane

x1

u1

x5

u5

xy  1

v1

xy  5

 R

x dA  1  x2y2

 5

1

5

1

x 1

v5



u 1 du dv  1  u2v u2 u



 4 arctan v

5 1

1

 5

1

5

1

1 du dv  1  v2



5

1

4 dv 1  v2

 4 arctan 5  

http://librosysolucionarios.net

y = 1x

4

5

Problem Solving for Chapter 13

405

Problem Solving for Chapter 13

4. A:

S

  R

 

0

2

2



a  b  c 2

2

2

c a2

6. (a) V 

b2 c2

10

9



523 r r2 r dr d    1.71 ft3 16 160 960



The distribution is not uniform. Less water in region of greater area. In one hour, the entire lawn receives

 2

0

dA

10

0

125 r r2 r dr d    32.72 ft3. 16 160 12



R

 b2  c2 AR c

    2

0

(b) V 



a2 b2  2 dA c2 c

1

2

B

1  ac

r2 r 1333   4.36 ft3 r dr d  16 160 960

5

4

0

a b fx   , fy   c c 1  fx2  fy2 

   2

1 2. z  d  ax  by Plane c

2

0

2

0

8r 2

r dz dr d 

2

 4

0

8 42  5 3

22

2 sec 

2 sin  d d d 

8 42  5 3

8. Volume  5  6  5  5 4  84 m3

10. Let v  ln

1x , dv   dxx.

1 ev  , x  ev, dx  ev dv x



1



0

ln1 x dx 

0

v ev dv 







v ev dv

0

Let u  v, u2  v, 2u du  dv.



1

0

12. Essay

ln1 x dx 





0

u eu 2u du  2 2





0

u2eu du  2 2

 4   



2

(PS #9)

14. The greater the angle between the given plane and the xyplane, the greater the surface area. Hence: z2 < z1 < z4 < z3

http://librosysolucionarios.net

C H A P T E R 13 Multiple Integration Section 13.1 Iterated Integrals and Area in the Plane

. . . . . . . . . . . . . 133

Section 13.2 Double Integrals and Volume . . . . . . . . . . . . . . . . . . . 137 Section 13.3 Change of Variables: Polar Coordinates . . . . . . . . . . . . . 143 Section 13.4 Center of Mass and Moments of Inertia . . . . . . . . . . . . . 146 Section 13.5 Surface Area

. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Section 13.6 Triple Integrals and Applications . . . . . . . . . . . . . . . . . 157 Section 13.7 Triple Integrals in Cylindrical and Spherical Coordinates . . . . 162 Section 13.8 Change of Variables: Jacobians . . . . . . . . . . . . . . . . . . 166 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

http://librosysolucionarios.net

C H A P T E R 13 Multiple Integration Section 13.1

Iterated Integrals and Area in the Plane

Solutions to Odd-Numbered Exercises



x

1.

0





4x 2

5.

x 2y dy 



y

e

y



 12 x y 

4x 2

2 2





y

y ln x 1 dx  y ln2 x x 2

x3

9.

0

y x

ye



0

3.





y dx  y ln x x

1

2y

 y ln 2y  0  y ln 2y

1

4x 2  x 4 2



1 y  y ln2y  ln2ey  ln y2  y 2 2 2

ey

y x



x3

x3



dy  xye



2y

3  x2 2

0

0

7.



x

1 2x  y dy  2xy  y 2 2

x

0



2

0

x3



ey x dy  x 4 ex  x 2ey x

 x 21  ex  x 2ex  2

0

2

u  y, du  dy, dv  ey x dy, v  xey x



x  y dy dx 



1  x2 dy dx 



x 2  2y 2  1 dx dy 

1

11.

0

1

13.

0

2

15.

1

2

 1

0

0



x

4

  2

0

1



1y 2

  1

x  y dx dy 

0

0

1



 2

0

4y2

0

   2

21.

0

sin 

2 dx dy  4  y 2

r dr d 

    2

0

0



1 4

 2

0

dx 





1 3

4

dy

0



1y 2

1

2 3 2

0

0



3

0

 21 23 1  x  

1 3 x  2xy 2  x 3

1 2 x  xy 2

1

x1  x2 dx  

64 4  8y 2  4 dy  3 3



2

19  6y 2 dy 

1

 3 19y  2y  4

3

 0

r2 2

2x 4  y 2

sin 



0

2



20 3



2 3

1

dy

0



2





1

x







1 1 1 1 2 1  y 2  y1  y 2 dy  y  y3  1  y 23 2 2 2 6 2 3

0

19.



2x  2 dx  x 2  2x

0

0

0

1

0

0



2

1

dx 

y1  x 2



17.

2

1

0



1



1 2 y 2

xy 

d 



4y2



2

dy 

0

 

2 dy  2y

 2

0

1 0

4

0

0



2



1  sin2  d 2

   cos 2 d 

1 2 1   cos 2  sin 2 4 2 4 2





 2



0



2 1  32 8

133

http://librosysolucionarios.net

134

Chapter 13



y dy dx 



1 dx dy  xy

 1 x

23.

0

1

1





 y2 

2 1 x

1

1 2

dx 

0

1

 

25.

Multiple Integration







 y ln x 1





1

dy 

1

1



1 1 dx   x2 2x





1





0

1

1 1  2 2

 y   1y 0 dy 1

Diverges

  8

27. A 

0

8

dy dx 

3

dx dy 

8

x

0

dx 

 

 24

8

0 6

3

dy 

8

3 dx  3x

0

0

0

 

y

8

0

0

8

0

3

y

0

3

A

   

3

 

8 dy  8y

3

 24

4

0

0

2 x 2

 

29. A 



4x2

2

0

2

dy dx 

y

dx

8

y = 4 − x2

4

0

3

2



6

y

4x2

0

0

4

4 

x2

 dx





2

0



x3 3

 4x 

  0

x

4y



4

dy 

    

0

0

dy dx



0

dx

−2

−1

4

0

y2

4y

3



2



0

3



0



0

2 y 1

1 2



9 2

 

4y

3

0

3

y = (2 −

0

4

dy  2

dx dy 

x

x )2

2

4y

dy

1

0

3



x 1

4

3 0

2

4  y dy

3

   3 4  y 

2  2y  4  y3 2 3

4  4x  x dx



4



0

8 3

4

dx dy

y  2  4  y  dy  2

2

2 y 2

y

4y

4

dx

0

Integration steps are similar to those above.

dx dy  2

y2

x



2 x 2

8 x2  4x  xx  3 2 4



y

0

0

x 1

  4

dy dx 

1



  

2

0

2

1 1  2x  x 2  x3 2 3 3

2 16  8  3 3



2  x  x 2 dx

2

0

y=x+2

4  x  x  2 dx

2

4

2

x2

2

2 x 



(1, 3)

3

4x 2

y

 4

33.

1

A

3

y

y = 4 − x2

1



2

2 4  y1 21 dy   4  y3 2 3

2 x2 1





4

4  y dy  

4x2

1



1

dx dy

0

0

31. A 

x

−1

0

4



0

1

16 3

4y

4

A

2

4

4

3 2

3



9 2

http://librosysolucionarios.net

3

4

8 3

Section 13.1

         3

2x 3

5

0

0

3

3



3



y

0

0

3

dx 0

3

3

1

5

1

2

2

0

     2

A

3

3y 2

2

3y dy 2





0

0

 2

cos2  d

0

ab 2



 2

1  cos 2 d 

0

 2

 2   21 sin 2  ab

0

ab 4



a bb2 y2

b

0

dx dy 

0

ab 4

y



5y 5 dy  5y  y 2 2 4

5

a2  x 2 dx  ab

dx

0

Therefore, A  ab. Integration steps are similar to those above.



5y

2

a

b a

b aa2 x2

y

0

0

A  4

dy

2

0

  a

dy dx 

Therefore, A  ab.

5y

0





dx dy

x



5

3y 2

2





5y

0

 

b aa2 x2

a

135

x  a sin , dx  a cos  d

5  x dx

 3 x   5x  2 x 





5

2x dx  3

0

5x

dx 

y

dy dx

0

5

2x 3

A 37.  4

5x

dy dx 

35. A 

Iterated Integrals and Area in the Plane

2 0

5

y = ba

b

a2 − x2

y x

a

4 3

y = 23 x

2

y=5−x

1 x 1

2

3

4

5

−1

 4

39.

0

 2

y

f x, y dx dy, 0 ≤ x ≤ y, 0 ≤ y ≤ 4

0

 4



0

41.

4x2

2 0

f x, ydy dx, 0 ≤ y ≤ 4  x2, 2 ≤ x ≤ 2



4y 2

2

4

f x, y dy dx



dx dy

4y 2

0

x

y

y 3

3 1

2 1

−2

 10

43.

1

2

3

 1

f x, ydx dy, 0 ≤ x ≤ ln y, 1 ≤ y ≤ 10

  ln 10



0

2

4

ln y

0

1 −1

x 1

x

−1

45.

1

1 x2

10

e

x

f x, y dy dx, x 2 ≤ y ≤ 1, 1 ≤ x ≤ 1

 1

f x, ydy dx



y

0

y

y

f x, y dx dy

y 4

8 3

6 2

4 2 x 1

2

3

−2

−1

x 1

http://librosysolucionarios.net

2

136

Chapter 13

 1

47.

0

2

Multiple Integration

 2

dy dx 

0

1

0

 1

dx dy  2

49.

0

1y2

1y2

0

y

 1

dx dy 

1

1x2

dy dx 

0

 2

y

3

1

2 x

−1

1

1

x

1

 2

51.

0

2

x

3

 4

dy dx 

0

4x

2

 2

dy dx 

0

0

4y

 2

dx dy  4

53.

y

0

1

 1

dy dx 

x 2

0

2y

dx dy  1

0

y

y

3

2 2

1

1 x 1

2

3

4

x

−1

1

 1

55.

0

3 y 



x

1

dx dy 

y2

0

x= 3 y

5 dy dx  12

x3

2

y

x = y2

2

1

(1, 1) x

1

2

57. The first integral arises using vertical representative rectangles. The second two integrals arise using horizontal representative rectangles.

 5

0

50x 2

0

x



 5

0

y

x 2y 2 dx dy 

0

  52

5

50y 2

y=



0

0



1 2 1 x 50  x 23 2  x5 dx 3 3

15625  24 5

x 2y 2 dx dy  

y

 5

x 2y 2 dy dx 

1 5 y dy  3



52

5

15625  24

50 − x 2

(0, 5 2 ) 5



1 15625 15625 15625 50  y23 2 y2 dy    3 18 18 18

(5, 5) y=x x 5

http://librosysolucionarios.net



Section 13.2

 2

59.

0

2

x

 1

0

1

y

0

 2

0

x

2







y sin x 2

0





1 0

0

dx

0

1 1 1   cos 1  1  1  cos 1 0.2298 2 2 2

 4

65.

0

y

2 dx dy  ln 52 2.590 x  1y  1

0

y

x2 32

4

x = y3

(8, 2)

2

x

 2

1 1 26  27  1  9 9 9

x

1664 15.848 105

x 2y  xy 2 dy dx

x 2 −2

(c) Both integrals equal 67520693 97.43

69.

dy

0

13

x232

0

y

2

1

sinx 2 dy dx 

x  42y ⇔ x2  32y ⇔ y  (b)



3 32

67. (a) x  y3 ⇔ y  x13

8

x2 2

 12  13  23 1  y  

1 x sin x 2 dx   cos x 2 2

x3  3y 2 dy dx 



0

0

0

2x

1  y3

0

x

0

1

0

1  y3 y 2 dy 

 

 2

x1  y3 dx dy 

2

1 2

1

sin x 2 dx dy  

63.

y

0



61.

  2

x1  y3 dy dx 

Double Integrals and Volume

4

6

8

x = 4 2y

 2

4x2

exy dy dx 20.5648

71.

0

1cos 

0

6r 2 cos  dr d 

0

15 2

73. An iterated integral is a double integral of a function of two variables. First integrate with respect to one variable while holding the other variable constant. Then integrate with respect to the second variable. 75. The region is a rectangle.

Section 13.2

77. True

Double Integrals and Volume

For Exercise 1–3,  xi  yi  1 and the midpoints of the squares are

12, 21 , 32, 12 , 52, 12 , 72, 12 , 12, 32 , 32, 32 , 52, 32 , 72, 32 .

y 4 3 2

1 x 1

2

1. f x, y  x  y 8

f x , y   x y  1  2  3  4  2  3  4  5  24 i

i

i

i

i1

 4

0

2

0

 4

x  y dy dx 

0

xy 

y2 2



2 0



4

dx 

0





2x  2 dx  x 2  2x

4 0

 24

http://librosysolucionarios.net

3

4

137

138

Chapter 13

Multiple Integration

3. f x, y  x 2  y 2 8

2

f x , y  x y  4  i

i

i

i

i1

 4

0

 4

5.

0

10 26 50 10 18 34 58        52 4 4 4 4 4 4 4

2

 4

x 2  y 2 dy dx 

0

y3 3

x2y 

0



2 0

 4

dx 

2x 2 

0





8 2x3 8x dx   3 3 3



4 0



160 3

4

f x, ydy dx 32  31  28  23  31  30  27  22  28  27  24  19  23  22  19  14

0

 400 Using the corner of the ith square furthest from the origin, you obtain 272.

 2

7.

0

 

1

y

2

1  2x  2y dy dx 

0

y  2xy  y



1

2

dx

0

0

3

2

2

2  2x dx



0

1





 2x  x 2

2 x

1

0

2

3

8

 6

9.

0

 

3

6

x  y dx dy 

y2

0

6



0







1 2 x  xy 2

3

dy

y

y2

(3, 6) 6



9 5  3y  y 2 dy 2 8

5 9 3 y  y 2  y3 2 2 24

4



2

6 0

x 2

 36



a2 x2

a

11.

x  y dy dx 

a a2 x2

 

a

a





1 xy  y 2 2

a2 x2

a2 x2

4

6

y

dx

a

a



a



2xa2  x 2 dx



2   a2  x232 3

 5

13.

0

3

   3

xy dx dy 

0

0

25 2

x y dy dx

y 5



1 2 xy 2

5

dx

0

4 3 2

3

x dx

1

0

x 1



−a

0

0

0



a

a

5

3



a

−a

 254 x 

3

2

0



2

3

4

5

225 4

http://librosysolucionarios.net

x

Section 13.2

 2

15.

0



y

4

y 2 2 dx dy  y2 x  y

2

y 2 2 dx dy  y2 x  y

2



    2

0



 3

  

4y

4

17.

4y



dx

2

x

1

2

ln

5x 2

1



0

x 1

0

dx

 12 ln 2x

2

5

0

 ln

5 2 y

2y ln x dy dx

4



ln x  y2

(1, 3)

3

4x2

dx

2

4x

1

ln x4  x22  4  x2 dx

x

4

0



3x4

5

x dy dx 

0

4

1

25x 2

   0

0



4

0

2

0

y dy dx  2

  4

0

y2 4





25y2

3

dy

4y3

25 18

x= 4y 3

9y  y   25 18 3 1

3

3

0

x 2

1

 25

y

dx

4

0

3

dx  4

2

0

1 x 1

 2

23.

0

y

  2

4  x  ydx dy 

0

4x 

0

2



4y 

0





2y2



x2  xy 2



y3 y3   6 3



8 8 8  4 6 3

2

2

3

4

y

dy

y

0

y2  y2 dy 2

(4, 3)

1

9  y 2 dy

0

2

25 − y 2

x=

2

3

4



5 4

1 2 x 2

0



x dx dy

4y3

3



4

y

25y 2

3

x dy dx  

21.

3

26 25





3

0

0

19.

2

2

1 5 ln 2 2

1



y=x

 dx

 ln

2x 2

4x

0

x=2

3

2x

lnx 2  y 2

0

y = 2x

4

4x2

1

2y ln x dx dy 

x

y

y dy dx x2  y 2

2

1 2

1  2 

2x

Double Integrals and Volume

2

1

y=x

0

x 1

2

http://librosysolucionarios.net

3

4

5

4

139

140

Chapter 13



23x4

6

25.

0

0

Multiple Integration

  6

12  2x  3y dy dx  4



0

6



0

3 1 12y  2xy  y 2 4 2



dx

5

0

3

y = − 23 x + 4

4



1 2 x  2x  6 dx 6

 181 x



y

23x4

3 2 1



6

 x 2  6x

x

0

1

−1

2

3

4

 12

 1

27.

y

0

  1

1  xy dx dy 

0

0

1



0

y

x 2y x 2



y

dy

0 1



y3 y dy 2

y=x x



y2 y4   2 8 





29.

0

0

1

0

3 8

1 dy dx  x  12 y  12







0



 x  11 y  1 2

0

dx 





0



1 1 dx   x  12 x  1





0

4x2

2

31. 4



1

0

4  x 2  y 2 dy dx  8

0

  1

33. V 

0

1



0



x

  2

35. V 

xy dy dx

0

0



x

1 2 xy 2

 18 x 

1

0

0

1 2



1

x 2 dy dx

0

2



x3 dx

0



dx 



32 3

4 0

 4x3 

3 2 0

y



2



x 2y

0

1 8



4

dx 

4

0

y

4

1

y=x 3 2 1

x 1

x

−1

37. Divide the solid into two equal parts.

   1

0

y=x

1  x 2 dy dx

0

1

2

y

x

V2

1



x

y1  x 2

0

1

dx

0

x 1

1

2

x1  x 2 dx

0





2   1  x 232 3

1 0



2 3

http://librosysolucionarios.net

2

3

4x 2 dx

1

5

6

Section 13.2

   0

0

0

xy 

0

2



4x 2

0

0







1 1   4  x 232  2x  x3 3 6

2 0

2

4

x 2  y 2 dy dx



1 x 24  x 2  4  x 232 dx, 3

4

dx

16 cos2  

0





x  2 sin 



32 cos4  d 3

32 3

 4   3 16 

 4 16

16 3

 8

y

y 2

x 2 + y2 = 4

4 − x2

y=

1

1 x

−1

1 −1

x 1

2



4x2

2

43. V  4

0



0.5x1

2

4  x 2  y 2 dy dx  8

45. V 

0

0

0

2 dy dx 1.2315 1  x2  y 2

47. f is a continuous function such that 0 ≤ f x, y ≤ 1 over a region R of area 1. Let f m, n  the minimum value of f over R and f M, N  the maximum value of f over R. Then



f m, n

dA ≤

R

Since







f x, y dA ≤ f M, N

R

dA.

R

dA  1 and 0 ≤ f m, n ≤ f M, N ≤ 1, we have 0 ≤ f m, n1 ≤

R

Therefore, 0 ≤



f x, y dA ≤ f M, N1 ≤ 1.

R



f x, y dA ≤ 1.

R

 1

49.

12

0

  12

ex 2 dx dy 

y2

0

2x

 1

ex 2 dy dx

0

51.

arccos y

0

sin x1  sin2 x dx dy

0

12





2xex 2 dx

0





12



0

2

e14

cos x

sin x1  sin2 x dy dx

0

2

1  sin2 x12 sin x cos x dx

0

 e14  1 1

   0

 ex 2



0.221

 12  23 1  sin

2

y

y

y = 2x 1

2

1 2

1

y = cos x

x 1 2

1

141

0

2



1 2 y 2

1 x4  x 2  2  x 2 dx 2

0

4x 2

2

41. V  4

x  y dy dx

2



  

4x 2

2

39. V 

Double Integrals and Volume

π 2

http://librosysolucionarios.net

π

x

x32

2



0



1 22  1 3

142

Chapter 13 1 8

53. Average 

Multiple Integration

 4

0

2

x dy dx 

0

1 8



4

2x dx 

0

8 x2

4 0

1 4

55. Average 

2

 

57. See the definition on page 946.

1 4

  2

0

2

x 2  y 2 dx dy

0

2

0

x3  xy 2 3



2 0

 14 83 y  3 y  2

2

3

0



59. The value of

dy  

1 4

 2

0

8 3

f x, y dA would be kB.

R

1 1250

61. Average  

1 1250

   325

300

250

100x 0.6y 0.4 dx dy

200

325

100y 0.4

300

x1.6 1.6

63. f x, y ≥ 0 for all x, y and





 



250 200

  5

f x, y dA 

0

0

2

P0 ≤ x ≤ 2, 1 ≤ y ≤ 2 

2

0

2

1

dy 



325

128,844.1 1250

1 dy dx  10 1 dy dx  10

 

5

0 2

0

y 0.4 dy  103.0753

300

 y1.4 

1.4 325 300

25,645.24

1 dx  1 5 1 1 dx  . 10 5

65. f x, y ≥ 0 for all x, y and





 

    3

f x, y dA 

0

3



0

1

P0 ≤ x ≤ 1, 4 ≤ y ≤ 6 

0

6

3

1 9  x  y dy dx 27

1 y2 9y  xy  27 2 6

4



6 3

  3

dx 

1 9  x  y dy dx  27

0

1

0





1 1 x x2  x dx   2 9 2 18



3 0

1

2 7 4  x dx  . 27 27

67. Divide the base into six squares, and assume the height at the center of each square is the height of the entire square. Thus,

z

V 4  3  6  7  3  2100  2500m3.

7

(15, 15, 7) (5, 5, 3)

(15, 5, 6)

(5, 15, 2)

(25, 5, 4)

20 y

30

(25, 15, 3)

x

 1

69.

0

2

 6

sin x  y dy dx

0

m  4, n  8

71.

4

2

y cos x dx dy

0

(a) 1.78435

(a) 11.0571

(b) 1.7879

(b) 11.0414

http://librosysolucionarios.net

m  4, n  8



8  2y 2 dy 3

Section 13.3

73. V  125

75. False

z

(4, 0, 16) 16

Matches d.

Change of Variables: Polar Coordinates

 1

(4, 4, 16)

V8

0

5

(4, 4, 0)

1

0



 1

f x dx 

x

0

 1

0



 1

e t dt dx   2

1

0

t



t

1 2

et dt dx

x 1

1

e t dx dt   2

0

2

te t dt

0



1 2   et 2

Section 13.3

1  x 2  y 2 dx dy

0

y

5

x



1y 2

(0, 4, 0)

(4, 0, 0)

77. Average 

143

1 0

x

1 1   e  1  1  e 2 2

1

Change of Variables: Polar Coordinates

1. Rectangular coordinates

3. Polar coordinates

5. R  r, : 0 ≤ r ≤ 8, 0 ≤  ≤ 

7. R  r, : 0 ≤ r ≤ 3  3 sin , 0 ≤  ≤ 2 Cardioid

 2

9.

0

6

3r 2 sin  dr d 

0

 

2



0



2

r 3 sin 



6 0

π 2

d

216 sin  d

0

0

4



 216 cos 

   2

11.

0

3

9  r 2 r dr d 

2



 2

0

0

 31 9  r  

3

2 3 2

2

0



2



π 2

d

 2

 5 3 5  

0

55  6

0 1

   2

13.

0

1sin 

r dr d 

 

 2



2 1sin  0

0

0

 2r 

 2

0

 8



3 2 9   32 8

2

3

d

π 2

1 1  sin 2 d 2



1

2



1 1  sin    cos     cos  2 2

 2

 sin   2   8 sin2 0 1

1

0 1

http://librosysolucionarios.net

2

144

Chapter 13



y dx dy 



x 2  y 23 2 dy dx 

a2 y 2

a

15.

0

0

a

r 2 sin  dr d 

0



2xx 2

xy dy dx 

2

0

 2

 2

x 2  y 2 dy dx 

0



 2

r 4 dr d 

243 5



 2

r3 cos  sin  dr d  4

d 

 2

 

8x 2



cos5  sin d  

    4

x 2  y 2 dy dx 

4x 2

0

x  y dy dx 

 2

2

0

0



 

4y 2

1 2

25.

  

1y 2

0

8 3

r cos   r sin r dr d 

0

 2

0

y arctan dx dy  x 

     2

1 2

 4

0



     2

29. V 

1

r3 sin 2 dr d 

0

 2

5

r 2 dr d 

0

0

    2

0



 2

2

cos   sin r2 dr d

0

 2

 83 sin   cos 

0



16 3

π 2

y arctan dx dy x

(

1 , 2

1 2

2

( ( 2, 2)

r dr d

3 3 2  d  2 4

 4

 

0



3 2 64

0 1

2

r cos r sin r dr d

0

31. V  2

 

0

 2

1 2

0 3

1

0



y

2

1

 4

0

27. V 

4y 2

1

2 3

162 d 3

0

cos   sin  d 



0

π 2

r 2 dr d

42 3



 2



0

 4

0

2

a3 3

4 cos6  6

22

0

0



243 10

0

0

2



0

0



23.

3

0

3

 2

 a3 cos 

sin  d 



2 cos 

22

x

a3 3

0

  0

0



  0

0

0

21.

 2

9x 2

2

19.

  0

0

3

17.

Multiple Integration

128 3

4 cos 

0

 2

0

1 8



 2



sin 2 d  

0

1 cos 2 16

 2



0



1 8

250 3



16  r2 r dr d  2

 2

0

1  sin 1  cos2  d 

4 cos 

 3  16  r   1

2 3

0

128 cos3    cos   3 3



d  

 2



0



2 3



 2

64 sin3   64 d

0

64 3  4 9

http://librosysolucionarios.net

Section 13.3

33. V 

 2

4

16  r 2 r dr d 

a

0



2

 3  16  r   1

2 3

4 a

0

d 

Change of Variables: Polar Coordinates

1  16  a2 32 3

One-half the volume of the hemisphere is 64 3. 2 64 16  a23 2  3 3

16  a23 2  32 16  a2  322 3 3 a2  16  322 3  16  8 2

a 35. Total Volume  V 

3 3 4 4  2 2   24  2 2  2.4332

 2

4



 

50e  r2 4

4 0

0



2

0

0

2

25er 4 r dr d

2

d

50e4  1 d

0

 1  e4 100  308.40524 Let c be the radius of the hole that is removed. 1 V 10 

  2

c

25er

r dr d 

4

2

0

0

2



2

0

c

50e

r 2 4



0

d

50ec 4  1 d ⇒ 30.84052  1001  ec 2

4

2



0

⇒ ec

4

2



 0.90183

c2  0.10333 4

c2  0.41331 c  0.6429 ⇒ diameter  2c  1.2858

37. A 

 

6 cos 

0

0

 2

39.

0

r dr d 

1cos 

r dr d 

0

   3

0

2 sin 3

0



1 2 1 2

r dr d 



18 cos  d  9 2

0



41. 3







1  cos 2 d  9  

0

 

2

1 sin 2 2





0

 9

1  2 cos   cos2  d

0 2

2

2 1  2 cos   1  cos

d  21   2 sin   21   21 sin 2  2

0

0

3 2



 3

0



4 sin2 3 d  3

 3



1  cos 6 d  3  

0

43. Let R be a region bounded by the graphs of r  g1 and r  g2, and the lines   a and   b.

1 sin 6 6

 3



0



3 2



45. r-simple regions have fixed bounds for .

-simple regions have fixed bounds for r.

When using polar coordinates to evaluate a double integral over R, R can be partitioned into small polar sectors.

http://librosysolucionarios.net

145

146

Chapter 13

Multiple Integration

47. You would need to insert a factor of r because of the r dr d nature of polar coordinate integrals. The plane regions would be sectors of circles.

  2

49.

5

4

r1  r 3 sin dr d 56.051

0

Note: This integral equals 

2



5

sin  d

4

r1  r3 dr

0

51. Volume  base  height

 53. False

z 16

8  12 300

Let f r,   r  1 where R is the circular sector 0 ≤ r ≤ 6 and 0 ≤  ≤ . Then,

Answer (c)



r  1 dA > 0

but

R

6

4

4 6

x



55. (a) I 2 



e x

2 dA

2 y2

 

 



2

4

0

y

er

22



r dr d  4

2

0

0



e  r 22

0



2

d  4

d  2

0

(b) Therefore, I  2.



49x 2

7

57.

4000e0.01 x



2 y2

7 49x 2

 2

dy dx 

7

4000e0.01r r dr d  2

0

0



2

0

200,000e



7

0.01r 2

0

d

 2 200,000 e0.49  1  400,000 1  e0.49 486,788

     4

59. (a)

3x

2

23

4

61. A 

  43

4 csc 

2 csc 

3x

 

x

f dy dx



(2, 2) 2 ,2 3

(

1

1

2

0

0

  2

0

 4

xy dy dx 

0



Center of Mass and Moments of Inertia

3

xy2 2



3 0



4

dx 

0

2

r cos  r sin  r dr d 

0

 

9 9x2 x dx  2 4

   2

0



4

 36

0

2

cos  sin 

0

r 3 dr d

2

4 cos  sin  d

0



 4

sin2  2

2



(4, 4) 4 ,4 3

(

3

43 x

f r dr d



y=x

3x

4

4

f dy dx 

y=

r  r2

 r22  r12    1

r2  r1  r r  2 2 2

4

3. m 

f dy dx 

2

Section 13.4 1. m 

5

2

3

(c)

f dx dy

y3

2

(b)

y

y

2

0

http://librosysolucionarios.net

3

(

( x

4

5

r  1  0 for all r.

Section 13.4

   a

5. (a)

m

b

0

ky dy dx 

0

a

My 

k dy dx  kab

m

(b)

0

0

a

b

0

   a

b

0

Mx 

Center of Mass and Moments of Inertia

kx dy dx 

0

Mx 

0

My 

0

b

ky 2 dy dx 

kab3 3

kxy dy dx 

ka2b2 4

b

0

x

My b2 a   m kab 2

My ka2b24 a   x m kab22 2

y

Mx kab22 b   m kab 2

y

ka2

a2, b2

x, y 

   a

(c) m 

x, y 



b

0

a

kx dy dx  k

0

a

0

b

Mx 

0

ka2b2 4

kx 2 dy dx 

ka3b 3

b

My 

0

0

Mx kab33 2   b m kab22 3

a2, 23b

1 xb dx  ka2b 2

kxy dy dx 

0

a

My ka3b3 2  2  a x m ka b2 3 y

Mx ka2b24 b  2  m ka b2 2

x, y 

7. (a)

kab2 2

0

a

ka2b 2

ky dy dx 

0

a

kab2 2

b

23 a, b2

k m  bh 2

y

y=

b x  by symmetry 2

 b2

Mx 

0

2hxb

h

 b

ky dy dx 

0

2hx b y=−

2h xb b

ky dy dx

b2 0

x b

kbh2 kbh2 kbh2    12 12 6 y

x, y 

2h (x − b) b

Mx kbh26 h   m kbh2 3

b2, h3

—CONTINUED—

http://librosysolucionarios.net

147

148

Chapter 13

Multiple Integration

7. —CONTINUED—

   b2

(b) m 

0

2hxb

0

b2

Mx 

0

0

0 2hxb

0

 0

2hxb



kxy dy dx 

kb2h2 12

2h xb b

b

kx dy dx 

0

kx dy dx

b2 0

1 2 1 1 kb h  kb2h  kb2h 12 6 4

 b2

0

2hxb



2h xb b

b

kxy dy dx 

0

kxy dy dx

b2 0

1 2 2 5 1 kh b  kh2b2  kh2b2 32 96 12

 b2

0



kbh3 12

kb2 2

b2

My 

ky 2 dy dx 

b2 0

Mx kbh312 h   m kbh26 2



2h xb b

b

kxy dy dx 

y

Mx 

2hxb

 b

2

kx dy dx 

0

2h xb b

kx2 dy dx

b2 0

11 7 1 3 kb h  kb3h  kb3h 32 96 48

x

My 7kb3h48 7   b m kb2h4 12

y

Mx kh2b212 h   m kb2h4 3

9. (a) The x-coordinate changes by 5: x, y 

a2  5, 2b 

a 2b  5, (b) The x-coordinate changes by 5: x, y  2 3

      a5

(c) m 

5

a5

Mx 

5

a5

My 

5

x

kbh2 6

b2 0

My h 12 b   m kbh26 2



ky dy dx 

2h xb b

b

ky 2 dy dx 

x

(c) m 

2h xb b

b2 0

2hxb

b2

My 

   b

ky dy dx 

b

0

1 25 2 kx dy dx  k a  5 b  kb 2 2

b

0

1 25 2 2 2 kxy dy dx  k a  5 b  kb 4 4

b

kx 2 dy dx 

0

1 125 3 k a  5 b  kb 3 3

My 2 a  15a  75  m 3 a  10

M b y x m 2

11. (a)



x  0 by symmetry m

a2k 2



yk dy dx 

Mx 2a3k  m 3

a2k  3

a

Mx  y

a 0

   a

(b) m  Mx 

a2 x 2

a 0 a

My 

a2 x 2

a 0 a

2

a2 x 2

a2 x 2

a 0

2

a4k

16  3 24

k a  y y 2 dy dx 

a5k

15  32 120

kx a  y y dy dx  0

My 0 m

y

Mx a 15  32  m 5 16  3

http://librosysolucionarios.net

4a

k a  y y dy dx 

x



2a3k 3



Section 13.4

  

x

4

13. m 

0

32k 3

kxy dy dx 

0

Mx 

0

0

1 1x 2

kx

Mx 

dy dx  32k

2y

0

x

My 32k  m 1

y

Mx 256k  m 21

k dy dx 

1 0 1 1x 2

1

x

My 

 

m

256k kxy 2 dy dx  21

0

4

x  0 by symmetry 1

x

4

15.

Center of Mass and Moments of Inertia

1 0

k 2

k ky dy dx  2   8

M 2 k 2 y  x  2    m 8 k 4

3

32k  3

y

3 8  32k 7



2

1 1 + x2

y=

y 3

y=

x

2

x

−1

1

1 x 1

2

3

4

−1

17. y  0 by symmetry

 

16y 2

4

m

4 0

x

kx dx dy 

8192k 15

4 0

L by symmetry 2

 

sin xL

L

m

0

16y 2

4

My 

19. x 

kx 2 dx dy 

My 524,288k  m 105

524,288k 105

15

8192k 

sin xL

L

Mx 

0

64 7

y

y

ky dy dx 

0

ky 2 dy dx 

0

Mx 4kL  m 9

4

16

kL  9

y

x = 16 − y 2

8

2

4 x 4

y = sin π x L

1

8

−4

x

−8

21. m  Mx 

a2k 8

 

ky dA 

π 2

    4

0

R

My 

L

L 2

kx dA 

R

a

kr 2 sin  dr d 

0

4

0

ka3 2  2 6

a

kr 2 cos  dr d 

0

x

My ka32  m 6

y

Mx ka3 2  2  m 6

8

a2k 

y=x

ka32 6

4a2 3 8

a2k 

4a 2  2 3

http://librosysolucionarios.net

kL 4

r=a

a

0

4kL 9

149

150

Chapter 13

  

ex

2

23. m 

0

0

2

k

1  e4 4

y  0 by symmetry

k ky 2 dy dx  1  e6 9

m

k 1  5e4 8

My 

x

e

0

25.

x

e

0

My 

ky dy dx 

0

2

Mx 

Multiple Integration

kxy dy dx 

0

2 cos 3

6 0

kr dr d 

k 3

kx dA

R

My k e4  5  m 8e4

k e4  1  2 e4  1 0.46

y

Mx k e6  1  m 9e6

k e4  1  9  e6  e2 0.45

e4  5

4 e6  1

4e4

6

k dA 

R

x

4e4

     



6

2 cos 3

6 0

kr 2 cos  dr d 1.17k

 

My 3 1.17k 1.12 m k

x π 2

y

π θ= 6

2

r = 2 cos 3θ y = e −x

1

0 1

π θ =−6

x 1

2

29. m  a2

27. m  bh

  b

Ix 

0

h

0

b

Iy 

0

h

 3 I bh y  m 3 Iy  m

b3h 3

x

Ix 

a2 4

 

y2

dA 

y 2 dA 

R

Iy 

3  1 h bh   3  1

2

3

  2

x 2 dA 

b b  3 3

I0  Ix  Iy 

3 h h  3 3

xy

4

a4 4

r3 cos2  dr d 

a4 4

0

2

a

0

0

a4

r3 sin2  dr d 

a

0

R

b2

bh 

    2

0

x2

dA 

2

0

R

I0  Ix  Iy  xy

 



a 4 a 4  4 2

mI  a4 1a 4

x

2



a 2

33.  ky

R

Iy 

Ix 

b3h 3

x 2dy dx 

0

x

31. m 

bh3 3

y 2 dy dx 

r3

sin2

0

a4  dr d  16

a

r3

cos2

0

a4  dr d  16

mI  16a 4a 4

2

b

mk

0

a

0



a 2

kab2 2

b

kab4 4

y3 dy dx 

0 b

Iy  k

0

y dy dx 

0

Ix  k

a

a4 a4 a4   16 16 8 x

   a

a

x 2y ydy dx 

0

I0  Ix  Iy 

ka3b2 6

3kab4  2kb2a3 12

m  kakabb 26  a3  a3  33 a I b kab 4 b 2 y     b m kab 2  2 2 2 x

Iy

3 2

x

4 2

http://librosysolucionarios.net



2

2





2



Section 13.4 35.  kx

37.  kxy

   2

4x

2

mk

0

0

4x 2

Ix  k

0

xy 2 dy dx 

0 4x 2

2

Iy  k

0

x3 dy dx 

0

32k 3

Ix 

0

Iy 

0

2 23  3 3

8   mI  32k3 4k 3

6

Iy

x

kxy3 dy dx  16k

x

kx3 y dy dx 

0

I0  Ix  Iy 

4   m  16k3 4k 3

4

x



26 3

32k 3

kxy dy dx 

0

4

16k 3

x

0

4

I0  Ix  Iy  16k

y

   4

m

x dy dx  4k

0

2

x

Center of Mass and Moments of Inertia

512k 5

592k 5

x

3 48 4 15 32k   5  5 m  512k 5

y

mI  16k1 32k3  32 



Iy

x

39.  kx

  

x

1

m

0

x

0

kxy 2 dy dx 

2

x

x

1

Iy 

3k 20

x

1

Ix 

kx dy dx 

2

0

x

kx3 dy dx  2

I0  Ix  Iy 

3k 56

k 18

55k 504

x

m  18k 203k 

30

y

mI  563k 203k 

70

Iy

x

  b



b

x  a 2 dy dx  2k

0



b

 2k



 2k

b

0

b

x  a 2b2  x2 dx

b

x 2b2  x 2 dx  2a

b



b

xb2  x2 dx  a2

b



b2  x 2 dx

b4 a2b2 kb2 2 0 

b  4a2 8 2 4



 4

43. I 

14

b2 x 2

b

41. I  2k

9

x

0



4

kx x  6 2 dy dx 

0

9 x

kxx x 2  12x  36 dx  k

2

92



24 72 72 52 x  x 7 5

http://librosysolucionarios.net



4 0



42,752k 315

6

2

151

152

Chapter 13

   

a 2x 2

a

45. I 

0

 



Multiple Integration

 0

0

a

k 4

a

a

0

3

0

a2 x2



k 4  a  y 4

a2 x 2

dx

0

dx

0

a4  4a3a2  x2  6a2 a2  x2  4a a2  x2 a2  x2  a4  2a2x2  x4  a4 dx

0

k 4

 a

k a  y dy dx 

0



a4  4a3y  6a2 y2  4ay3  y4

0

k 4

a2 x 2

a

k a  y y  a 2 dy dx 

7a4  8a 2x 2  x 4  8a3a2  x 2  4ax 2a 2  x 2 dx











k 8a2 3 x5 x a x x   4a3 xa2  x 2  a2 arcsin 7a4x   x 2x 2  a2 a2  x 2  a4 arcsin 4 3 5 a 2 a



k 8 1 1 7 17  7a5  a5  a5  2a5  a5  a5k 4 3 5 4 16 15









a 0

 49. x, y  kxy.

47. x, y  ky. y will increase

Both x and y will increase 51. Let x, y be a continuous density function on the planar lamina R. The movements of mass with respect to the x- and y-axes are



y x, y dA and My 

Mx 

R



x x, y dA.

R

If m is the mass of the lamina, then the center of mass is

x, y 

 m , m . My Mx

53. See the definition on page 968

L L 55. y  , A  bL, h  2 2

   b

Iy 

0

b



0

ya  y 

L

0

y

L 2



57. y 

2L bL L .A ,h 3 2 3

      b2

2

y  L2 3 3

L

Iy  2

dy dx

0



L 0

dx 

L3b 12

Iy L L3b12 L    hA 2

L2 bL 3

   ya 

2 3

2Lxb

y  2L3 

b2

y

0

b2

2 3

0

2L 3



dx

2L xb



L 2Lx 2L   27 b 3

b 2Lx 2L 2 L3x   3 27 8L b 3 L3b36

2L L  2  3 L b6 2

http://librosysolucionarios.net

dy dx

3 L





2

  dx 3



4 b2 0



L3b 36

Section 13.5

Section 13.5

Surface Area

1. f x, y  2x  2y

3. f x, y  8  2x  2y

R  triangle with vertices 0, 0, 2, 0, 0, 2

R  x, y: x 2  y 2 ≤ 4

fx  2, fy  2

fx  2, fy  2

1   fx    fy   3 2

 2

S

0

1   fx 2   fy 2  3

2

2x





2

3 dy dx  3

0



x2 2



2 0

4x 2

2

2  x dx

S

2  4x 2

0

 3 2x 

6

 2

2

3r dr d  12

0

0

y = 4 − x2

R

1

x

−1

y = −x + 2

1 −1

R

1

3 dy dx 

y

y

2

Surface Area

y = − 4 − x2 x 1

2

5. f x, y  9  x 2

y

R  square with vertices, 0, 0, 3, 0, 0, 3, 3, 3

3

fx  2x, fy  0

2

R

1   fx 2   fy 2  1  4x 2

 3

S

0



3



1

3

1  4x 2 dy dx 

0

3 1  4x 2 dx

x

1

 34 2x 1  4x

3

3

y

R  rectangle with vertices 0, 0, 0, 4, 3, 4, 3, 0

4

3 fx  x1 2, fy  0 2

3

3

0



4

4  9x

2

0

4  9x

3

 dx

dy dx 

 27 4  9x 

3

3 2

0



1  94 x 



0

4

R

2

1   fx 2   fy  2 





4



4  9x

2

1

2

x 1

2

3

4

4 31 31  8 27



9. f x, y  ln sec x



R  x, y: 0 ≤ x ≤

y



 , 0 ≤ y ≤ tan x 4

2

y = tan x

fx  tan x, fy  0

1

R

1   fx 2   fy 2  1  tan2 x  sec x

S

   4

0

3

0  4  6 37  ln 6  37 



 ln 2x  1  4x 2 

2

7. f x, y  2  x3 2

S

2

0

tan x

0

sec x dy dx 



 4

0



 4



sec x tan x dx  sec x

0

 2  1

http://librosysolucionarios.net

π 4

π 2

x

153

154

Chapter 13

Multiple Integration

11. f x, y  x 2  y 2

y

R  x, y: 0 ≤ f x, y ≤ 1

x 2 + y2 = 1

1

0 ≤ x 2  y 2 ≤ 1, x 2  y 2 ≤ 1 x

1

x y fx  , fy  x 2  y 2 x 2  y 2

1  x

1   fx 2   fy 2 



1x 2

1

S

1  1x 2

2 dy dx 

2

x2 y2  2 2  2 y x  y2

 2

0

1

2 r dr d  2

0

13. f x, y  a2  x 2  y 2

y

R  x, y: x 2  y 2 ≤ b2, b < a

a

x y fx  , fy  a2  x 2  y 2 a2  x 2  y 2





b x

b

S

2

2

2

b  b2 x 2

a2

a dy dx   x2  y 2

 2

0

b

0

a a2  r 2

15. z  24  3x  2y 16

3 2x12

12

 8

0

b

x

a

−b

r dr d  2a a  a2  b2 

y

1   fx 2   fy 2  14

S

−b

x2 y2 a 1 2   a  x 2  y 2 a2  x 2  y 2 a2  x 2  y 2

1   fx    fy   2

x 2 + y 2 ≤ b2

b

14 dy dx  48 14

8

0 4 x 4

8

12

16

17. z  25  x 2  y 2 1   fx 2   fy 2 

 

9x

3

S2

1  25  x

x2 2

 y2



y2 25  x 2  y 2



5

2

2

3

0

0

5 25  r 2

y

R  triangle with vertices 0, 0, 1, 0, 1, 1

 1

S

0

x

0

5  4x 2 dy dx 

y=x

1

1  27  5 5 12

x

−1 −2

19. f x, y  2y  x 2 1   fx 2   fy 2  5  4x 2

1

−2 −1

r dr d  20

R

x 1

http://librosysolucionarios.net

x 2 + y2 = 9

2

25  x 2  y 2

5 dy dx 2  y 2 2 25  x  9x

3

2

y

1

2

Section 13.5 21. f x, y  4  x 2  y 2

Surface Area

23. f x, y  4  x 2  y 2

R  x, y: 0 ≤ f x, y

R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 ≤ 4  x 2  y 2, x 2  y 2 ≤ 4

fx  2x, fy  2y

fx  2x, fy  2y

1   fx 2   fy 2  1  4x 2  4y 2

1   fx 2   fy 2  1  4x 2  4y 2

 

4x 2

2

S 

2  4x 2 2

1  4x 2  4y 2 dy dx

2

1  4r 2 r dr d 

1

0

1  4x2  4y2 dy dx  1.8616

0

 17 17  1

0

0

 1

S

6

y

x 2 + y2 = 4

1

x

−1

1 −1

25. Surface area > 4  6  24.

27. f x, y  ex R  x, y: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Matches (e)

fx  ex, fy  0

z

1   fx 2   fy 2  1  e2x

10

  1

S

1

0

1  e2x dy dx

0

1

5

5



y

1  e2x  2.0035

0

x

29. f x, y  x3  3xy  y3

31. f x, y  ex sin y

R  square with vertices 1, 1, 1, 1, 1, 1, 1, 1

fx  ex sin y, fy  ex cos y

fx  3x 2  3y  3x 2  y, fy  3x  3y 2  3 y 2  x

1  fx2  fy2  1  e2x sin2 y  e2x cos2 y

S

 1

1

1

1

1  9x 2  y2  9 y 2  x2 dy dx

S



4x2

2

 4x2

33. f x, y  exy R  x, y: 0 ≤ x ≤ 4, 0 ≤ y ≤ 10 fx  yexy, fy  xexy 1   fx 2   fy 2  1  y 2e2xy  x 2e2xy  1  e2xy x 2  y 2

 4

S

0

 1  e2x

2

10

1  e2xyx 2  y 2 dy dx

0

http://librosysolucionarios.net

1  e2x dy dx

155

156

Chapter 13

Multiple Integration 37. f x, y  1  x 2; fx 

35. See the definition on page 972.

S

  

x 12  x 2

, fy  0

1  fx2  fy2 dA

R

1

x

 16

0

0

1 1  x 2

1

 16

0



502 x 2

50

39. (a) V 

0



20 50

2

0



dx  161  x 21 2



1 0

xy xy  dy dx 20  100 5 

0

50



x

1  x 2

dy dx

 x2 

x x 502  x 2 502  x 2  502  x 2  dy 200 5 10



 

 10 x 50  x 2  502 arcsin



1 x 25 x4 x3  502  x 23 2  250x   x2  50 4 800 15 30



50 0

 30,415.74 ft3 xy 100

(b) z  20 

1   fx 2   fy 2 

S 

41. (a) V 

1 100 1 100

  

502 x 2

50

0

1  100y 2

2



1002  x 2  y 2 x2  2 100 100

1002  x 2  y 2 dy dx

0

 2

0

50

1002  r 2 r dr d  2081.53 ft2

0

     

y

f x, y

24

R

8

20

625 

x2



y2

dA

where R is the region in the first quadrant

R

8

 2

4

625  r 2 r dr d

x

4

 2

0



R 8

25

0

 4

4



25

2 625  r 23 2 3

4

d

8 0  609 609   2 3

 812 609 cm3 (b) A 

16 12

 

  

1   fx 2   fy 2 dA  8

R

8

R

R

25 dA  8 625  x 2  y 2





 lim 200 625  r 2 b→25

1

b 4



 2

0

25

4

x2 y2  dA 625  x 2  y 2 625  x 2  y 2 25

625  r 2

r dr d

  100 609 cm2 2

http://librosysolucionarios.net

8

12

16

20

24

 16

Section 13.6

Section 13.6

 3

1.

2

0

Triple Integrals and Applications

   

1

0

3

x  y  z dx dy dx 

0

2

0

2

0

 1

x

0

xy

0

   1

x dz dy dx 

0

 4

1

1

0

0

1

1

2

0



1

zex



2

0

1

   2

4

0

0

1x



2zex y

4

7.

 1

4

0

x cos y dz dy dx 

0

 

 2

4

0



   4x

0

0

4x 2

0

0

4

1

0

13.

  0

0

dz 

2 0

0



  a

a2 x 2

a2 x 2y 2

19. 8

0

0

 

 

4x 2

2

0

0

z2 2

dy dx 

 2





 2

4

0

0

4



1



15 1 1 2 e



x1  xcos y dy dx

0

4

dx 



x1  xdx 

 x2  x3 

3 4

2

8

0

0

64 40  3 3

128 15

x sin y ln z

4

2

dy dx

1

0



x 2 ln4cos y

4x2

0



2

dx 

0

x 2 ln 4 1  cos 4  x 2 dx 2.44167

 3

9x2

3

 9x2



2

2

9x y

dz dy dx

0

4y 2

x dx dy

2

2

 18

1 10





x3 dy dx  2

1

z1  e1 dz  1  e1

1x

2 0

1 2

0

0

15.

2

dz dx dy 

0

3

2

1

dz dy dx

x



dz  3z  z2

2zxex dx dz

0

4y 2



2

1

4xy

  2

17.

1



 

x4 x5 dx  2 10

4

0

4x

 4

2

4



0



 4x



0

x cos yz

4x 2

x 2 sin y dz dy dx  z



dx 

dx dz 

x1  xsin y

 2

x dz dy dx 

0

2

  2

11.

x2

4x 2

2

0

1

x

0

0

4

x

x 2y 2 2

0

9.



1 1 y  y 2  yz 2 2

dy dx

  

2

3

0

0

2zex dy dx dz 





x 2y dy dx 

x

dy dx

0

1  y  z dy dz  2

x

0

5.



xz

0

1



0

1

xy

x

0



1 2 x  xy  xz 2

0

3



3.

Triple Integrals and Applications



2

4  y 22 dy 

0

    a

dz dy dx  8

0

0

a2 x 2





 a y x 

256 15

a2 x2

y a2  x 2  y 2  a2  x 2 arcsin

 2



a2  x 2  y 2 dy dx

2

0

4

0

0

a

4

2

8 1 16  8y 2  y 4 dy  16y  y3  y5 3 5

a

0

 

1 a2  x 2 dx  2 a2x  x3 3



a 0

4  a3 3

http://librosysolucionarios.net

2

0

dx

157

158

Chapter 13

  4x 2

2

21.

0

0

Multiple Integration



4x 2



2

dz dy dx 

2

4  x 22 dx 

0

0

0





8 1 16  8x 2  x 4 dx  16x  x3  x5 3 5

23. Plane: 3x  6y  4z  12

2



0

256 15

25. Top cylinder: y 2  z2  1 Side plane: x  y

z 3

z

1 2

y

3

4 x

1

x

 3

0

(124z) 3

0



1

y

(124z3x) 6

dy dx dz

 1

0

0

x

0

1y 2

dz dy dx

0

27. Q  x, y, z: 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 3



 3

xyz dV 

0

Q

1

0

1

     3

xyz dx dy dz 

y

0

0

1



0

1



0

1



0

1



1

0

y

x

xyz dy dx dz

3

0

3

0

1

y

x

0

1

R

xyz dx dz dy

x

y

1

x

xyz dy dz dx

0 3

xyz dz dx dy

0 3

0



xyz dz dy dx 

9 16



29. Q  x, y, z: x2  y2 ≤ 9, 0 ≤ z ≤ 4



            4

xyz dV 

0

Q

4



0

3



3

xyz dy dx dz

9y2

xyz dx dy dz

3  9y2 4

4

9y2

3

3

x

xyz dx dz dy

 9y2

9y2

4

3 0 3



5

9x2

4

xyz dz dx dy

3  9y2 0 3



z

3  9x2

3 0 3



3

y=x

1

0

9x2

xyz dy dz dx

 9x2

9x2

4

3  9x2 0

xyz dz dy dx   0

http://librosysolucionarios.net

4

y

Section 13.6



dz dy dx

0







x dz dy dx

6

31.

4(2x 3)

mk

0

4(2x 3)

Myz  k

0

2(y 2)(x 3)

0

 8k

6

Triple Integrals and Applications

0

2(y 2)(x 3)

0

 12k x

Myz 12k 3   m 8k 2

    4

33.

4

4x

0

0

4

 4k

0

4

0

0

Mxy  k

0

4

 2k

0

b

x4  x dy dx

b

0

0

b

xz dz dy dx  k

0

0

4

0

4  x2 x dy dx 2

128k 16x  8x 2  x3 dx  3

b

0

b

b

0

b

0

   

  z

3kh2 r2 4kh2 3r 2

r 2x 2

0

kb6 8

b

0

Mxy kb6 8 b  5  m kb 4 2

h

z dz dy dx

h x 2y 2 r

0

r

xyz dz dy dx 

0

z

x  y  0 by symmetry



kb6 6

Mxz kb6 6 2b  5  m kb 4 3

1 m  kr 2h 3

0

xy 2 dz dy dx 

b

y

39. y will be greater than 0, whereas x and z will be unchanged.

r

kb6 6

Myz kb6 6 2b  5  x m kb 4 3

37. x will be greater than 2, whereas y and z will be unchanged.

Mxy  4k

x 2y dz dy dx 

0

Mxy  k

0

r 2x 2

r 2  x 2  y 2 dy dx

0

r

r 2  x 23 2 dx

0

kr 2h2 4 Mxy kr 2h2 4 3h   m kr 2h 3 4

http://librosysolucionarios.net

kb5 4

b

Mxz  k

0

xy dz dy dx 

0

Myz  k

Mxy 1 z m

41.

b

mk

b

4

0

35.

0



4x

   

4

128k 4x  x 2 dx  3 4

0

 4

x dz dy dx  k

mk

159

160

43.

Chapter 13

m

Multiple Integration

128k 3

x  y  0 by symmetry z  42  x 2  y 2

   

42 x 2

4

Mxy  4k

0

0

 2k

0



 2

1024k 3

4

0



42 x2

0

dx 

4k 3



4

4  x 23 2 dx 2

0

let x  4 sin 

cos4  d

by Wallis’s Formula

    0

0

Myz  k

0

   

0

Mxz  k

0

0

0

x dz dy dx  1000k

4 x 8

4

(5 12)y

12

20

16

y dz dy dx  1200k

(5 12)y

z dz dy dx  250k

0

x

Myz 1000k  5 m 200k

y

Mxz 1200k  6 m 200k

z

Mxy 250k 5   m 200k 4

  a

a

0

a

a

0

0



Ix  Iy  Iz 

  a

a

a 0

 a

dz  ka

0

0



2ka5 by symmetry 3

 y 2  z2xyz dx dy dz 

0

0

0

ka2 2

a

y 4z y2z3  4 2

Ix  Iy  Iz 



a 0

dz 

ka4 8

 y 2  z2 dy dz

0

 

1 1 3 1 2 a  az dz  ka a3z  az3 3 3 3

a

(b) Ix  k

0

a

 y 2  z2 dx dy dz  ka

1 3 y  z2y 3

 ka



a

47. (a) Ix  k

0

y = − 35 x + 12

8

0

(3 5)x12

20

16 12

0

0

Mxy  k

dz dy dx  200k

(5 12)y

(3 5)x12

20

20

(5 12)y

0

(3 5)x12

20

3

y

(3 5)x12

mk

3

 128k  2

5 y 12 20



1 16y  x 2y  y3 3

0

Mxy 64k  m 1

45. f x, y 



42  x 2  y 2 dy dx  2k

0

 64k z

z dz dy dx

0

42 x 2

4

42 x 2y 2



ka2 2

 a

0





0

2ka 3

a

 y3z  yz3 dy dz

0

a

0

5

a

a2z  2z3 dz 

 ka8 a2z 4

2 2



2z4 4



a 0



ka8 by symmetry 8

http://librosysolucionarios.net

ka8 8

Section 13.6

  4

4

0

0

4

4

0



k 

0

0

4

0

4

4

0

4

0

4

0





y3 4  x 3

4 0

4

4

0







     

4

0

4

0

0

4



0

 

 

4x

4

0

0





4 0

a

a2 x 2

2k 3

L 2

k

L 2

L 2

2

L 2



4 0



1024k 3

x 2y  y34  x dx

0

4

8x 2  644  x dx

dx  k

0

 

L 2 a  a2 x 2





4

yx 2  y 2 dz dy dx  k

     

2 3

0

1 x 2y4  x  y4  x3 dy dx 3

4 1 32  8x  4x 2  x3 dx  8k 32x  4x 2  x3  x4 3 4 0

L 2



8 644  x  4  x3 dx 3



4



4

0





2048k 3 4

x 2y 2 y 4  4  x 2 4

0

51. Ixy  k

0

0

4

k

 8k

4

yx 2  z2 dz dy dx  k

Iz  k

0

4



64 4  x dx  256k 3

1 4 1 1 4x 2  x3  4  x3 dx  8k x3  x4  4  x4 3 3 4 12

 8k

4

0

512k 3

1 y34  x  y4  x3 dy dx 3

0

dx  k

4x

Iy  k

0

4

y y 2  z2 dz dy dx  k

2  k 324  x2  4  x4 3 4

4x 2 

0

0



0

0

dx  k

y4 y2 4  x  4  x3 4 6

4

4

x 2  y 24  x dy dx

0

4x

(b) Ix  k

0



4

x 2  y 2 dz dy dx  k

x 2y 

4



1 x 24  x  4  x3 dy dx 3

    

4x

4

k

0



0

k

0

4

0



Iz  k

4

  4

x 2  z2 dz dy dx  k

1 4 1 1 4x2  x3  4  x3 dx  4k x3  x 4  4  x4 3 3 4 12

0

4



64 4 4  x  4  x3 dx 3 3

 256k

0

0

 4k

0

4

4x

Iy  k

0

0



       4

dx  k

0



1 3 y 24  x  4  x dy dx 3

0

4



32 1 4  x2  4  x4 3 3

4

4

 y 2  z2 dz dy dx  k

y3 y 4  x  4  x3 3 3

k

  

4x

49. (a) Ix  k

Triple Integrals and Applications

  L 2

z2 dz dx dy  k

a

L 2 a





4 0



2048k 3

2 2 a  x2 a2  x 2 dx dy 3



x 1 x a2 x a2  x 2  a2 arcsin  x2x 2  a2 x 2  a2  a4 arcsin 2 a 8 a a4 a4 a4Lk  dy  4 16 4



Since m  a2Lk, Ixy  ma2 4. —CONTINUED—

http://librosysolucionarios.net



a a

dy

161

162

Chapter 13

Multiple Integration

51. —CONTINUED—

        L2

Ixz  k

a2 x 2

a

L2 a a2 x 2 L2

 2k

L2

a

a2 x 2

L2 a a2 x 2

a

L2 a

y2 x xa2  x 2  a2 arcsin 2 a

L2

L2

Iyz  k

 

y 2 dz dx dy  2k

a a

L2

L2 a

2

Iy  Ixy  Iyz 

ma2 ma2 ma2   4 4 2

Iz  Ixz  Iyz 

mL2 ma2 m   3a2  L2 12 4 12

1

L2





a a

dy 

ka4 4



L2

dy 

L2

ka4L ma2  4 4

2

ma mL m   3a2  L2 4 12 12



2ka2 L3 1  mL2 3 8 12

y 2 dy 

x 2a2  x 2 dx dy

1 x x2x 2  a2a2  x 2  a4 arcsin a L2 8

Ix  Ixy  Ixz 

1

dy  ka2

a

L2

 2k

53.



L2



 

x 2 dz dx dy  2k

y 2a2  x 2 dx dy

1x

x 2  y 2x 2  y 2  z2 dz dy dx

1 1 0

55. See the definition, page 978. See Theorem 13.4, page 979.

57. (a) The annular solid on the right has the greater density. (b) The annular solid on the right has the greater movement of inertia. (c) The solid on the left will reach the bottom first. The solid on the right has a greater resistance to rotational motion.

Section 13.7

  4

1.

0

2

0

Triple Integrals in Cylindrical and Spherical Coordinates

2

  4

r cos  dr d dz 

0

0

4



0

   2

3.

2 cos2 

0

0

2

0

 2 cos  r2

2

d dz

0

2

 4

2 cos  d dz 

0

0

4r2

r sin  dz dr d 

   2

0

0



2 cos2 

2 sin 

2



r4  r 2sin  dr d 

  2

4

0

0

0

z

0

2 sin  d d d 

0

 4

7.

cos 

1 3



2

0

0

2



8 cos4   4 cos8  sin  d  

 2

0

4

0

cos3  sin  d d  

2dz  8

0

0

0

5.



4

dz 

1 12

 2r

2



2 cos2 



r4 sin  4

8 cos5  4 cos9   5 9

 2

cos4 

0

2

rer d dr dz  e4  3

0

http://librosysolucionarios.net

4



0

d 

d

0

2



0

 8



52 45

Section 13.7

  2

9.

0

3

r

2

e

0

r dz dr d 

     2

3

0

0



2

  2

11.

2

2

2 sin  d d d 

0

 

    2

2

4 sec 

0

0

2

0

2

2

6

0

2

sin  d d

cos 

0

2

323 3

z 4

2



6

d

d

4

4

x

y

0

643 3

2

a cos 

2



2

cot  csc 

arctan12 0

3 sin2  cos  d d d  0

3 sin2  cos  d d d  0

2

0

0



0



a cos 

ra2  r 2 dr d

0

a2 r2

r dz dr d

2



0

4  2 2a 3  a3   3  4 3 2 3 9



ra2  r 2 dr d





a cos 



0

2a3 3  4  9



2

kr 29  r cos   2r sin dr d

0

2

k 3r 3 

0

2

krr dz dr d

0

r4 r4 cos   sin  4 2





0



k 24  4 cos   8 sin  d

0

0

2a3 cos3    cos   3 3

d



1  sin3  d



2

9r cos  2r sin 

2

0

0

1  a2  r 232 3

0

      0

0





2

21. m 

0

a cos 

0

2

4 1 1  sin3  d  a3   cos sin2   2 3 3

a cos 

0

r dz dr d  4

0

     

 

a2 r2

0

4  a3 3

2a3 3



r 2 cos  dz dr d  0

a sec 

0



  

3 sin2  cos  d d d 

   



x

0

2a cos 

0

2

64 3

y

3

a

4

2

64 3

3

1 2

a a2 r2

a

0

19. V  2

1

0

    2

17. V  4

2

r2

arctan12

0

(b)

0

r 2 cos  dz dr d  0

2

15. (a)



d

4

0

0

(b)

3

3

 1  e9 4



13. (a)

z

1 1  e9d 2

4

6

0

2

1 2  er 2

0



rer dr d

0

0



Triple Integrals in Cylindrical and Spherical Coordinates



 k 24  4 sin   8 cos   k 48  8  8  48k

http://librosysolucionarios.net

2



0

2 0

d

163

164

Chapter 13

23. z  h 

h h x2  y2  r0  r r0 r0

     2

V4

0

 

Multiple Integration

4h r0

0

2

r0

r0r  r 2 dr d

1    r02h 2 3

2

0

0

r3 dz dr d

r0

0

    

r0r3  r 4 dr d

2

0

 2

b

r3 dz dr d

0

2

b

r3 dr d

0

a

2

 kh

h

a

 4kh

1 k r04h 10

b4  a4 d

0

Since the mass of the core is m  kV  k3  r02h from Exercise 23, we have k  3m r02h. Thus,



kb4  a4h 2

1 Iz  k r04h 10



kb2  a2b2  a2h 2

1



1 3m  r04h 10  r02h



3 mr 2 10 0

  2

0

1  ma2  b2 2





31. V 



0

r 2 z dz dr d

0

Mxy k r03h230 h   m k r03h6 5

Iz  4k





0

29. m  kb2h  a2h  khb2  a2

0

4kh r05  r0 20

h(r0 r)r0

r0

1 k r03 h2 30



0

2

4kh  r0

h(r0 r)r0

r0

2

0

z

   

r 2 dz dr d

0

 

Mxy  4k



27. Iz  4k

0

1  k r03h 6

r0 d 6

4h r03  r0 6

h(r0 r)r0

r0

0

3

0

2

m  4k

0

2

4h r0

 

r dz dr d

0

 kx 2  y 2  kr x  y  0 by symmetry

hr0 rr0

r0

0

25.

4 sin 

2 sin d d d  16 2

     

33. m  8k

0

2

0

 2ka4

2

0

0

2

2

0

 ka4

a

3 sin  d d d sin  d d

0

2

sin  d

0



 ka4

http://librosysolucionarios.net

2



 ka4cos 

0

Section 13.7

35.

Triple Integrals in Cylindrical and Spherical Coordinates

     

2 m  kr 3 3

37. Iz  4k

x  y  0 by symmetry

      2

Mxy  4k

2

0

1  kr 4 2 

kr 4 4

0

2

2

0

3 cos  sin  d d d sin 2 d d



1   k r 4 cos 2 8 z

2



2

cos5  sin3  d d

0

2

4

cos5 1  cos2  sin  d



k 192

2

1

6



1 cos8  8

41.

1

g2

g1

h2r cos , r sin 

h1r cos , r sin 

zz (b)  0: sphere of radius 0

43. (a) r  r0: right circular cylinder about z-axis

  0: plane parallel to z-axis

  0: plane parallel to z-axis

z  z0: plane parallel to xy-plane

  0: cone

  0

4

f r cos , r sin , zr dz dr d

y x

tan  

zz

  2

x2  y 2  r 2

y  r sin 

a

2



Mxy kr 44 3r   m 2kr33 8

39. x  r cos 

45. 16

4

4 sin3  d d d

0

 5 k  6 cos

1  k r 4 4

0

0

cos 



sin 2 d

0

2

2

2  k 5

0

2

4

4  k 5

r

0

2

a2 x 2

0



a2 x 2y 2

0

a2 x2 y 2z2

0

dw dz dy dx

            a2 x 2

a

 16

0

0

a

0

0

2

 16

0

2

0

 4

a

0

2

0

 a4

2

0

a2 r 2

a2  r 2  z2 dzr dr d

0

a

0

8

a2  x 2  y 2  z2 dz dy dx

0

2

 16

a2 x 2y 2

1 z za2  r 2  z2  a2  r 2 arcsin 2 a2  r 2

 2 a  r 2r dr d 2 a2r 2 r 4  2 4

d 



a 0

d

a4 2 2

http://librosysolucionarios.net



a2 r2

0

r dr d

165

166

Chapter 13

Multiple Integration

Section 13.8

Change of Variables: Jacobians

1 1. x   u  v 2

3. x  u  v 2 yuv

1 y  u  v 2

x y y x   11  12v  1  2v u v u v

y x 1 x y    u v u v 2

 12  1212



1 2

5. x  u cos   v sin  y  u sin   v cos  x y y x   cos2   sin2   1 u v u v 7. x  eu sin v y  eu cos v x y y x   eu sin veu sin v  eu cos veu cos v  e2u u v u v 9. x  3u  2v y  3v v

y 3

u

x  2v x  2 y3  3 3

x, y

u, v

0, 0

0, 0

3, 0

1, 0

2, 3

0, 1

v

(0, 1)

1

(1, 0) u

1

2y x  3 9



1 11. x  u  v 2 1 y  u  v 2 y x 1 x y   u v u v 2



  21  1212   21

  1

4x 2  y 2 dA 

1

1 1

R

1



12 dv du

 14 u  v

1  u  v2 4

2

4

1

1 1



1

u2  v 2 dv du 

1



2 u2 





u3 u 1  du  2 3 3 3

13. x  u  v

R

1



8 3

4

y x x y   10  11  1 u v u v

 3

yx  y dA 

1

v

yu





0

4

0

3



2

3

uv1 dv du 

0

8u du  36

1 u 1

2

http://librosysolucionarios.net

3

4

Section 13.8

15.



xy2

e

Change of Variables: Jacobians

dA

y = x1

y

R

4

1 4 x R: y  , y  2x, y  , y  4 x x

y = 2x 3

y = 4x



x u x, y  y u, v u

1 v12 x  v 2 u32  y 1 v12 v 2 u12



R 1 x

1 1 2 u12v12 1 1 1 1    4 u u 2u 1 u12 2 v12

Transformed Region: y

y = 41 x

2

y x  vu, y  uv ⇒ u  , v  xy x



1

2

3

4

3

4



v

1 ⇒ yx  1 ⇒ v  1 x

3

S 2

4 y  ⇒ yx  4 ⇒ v  4 x y  2x ⇒ y



u

y 2 ⇒ u2 x

1

y 1 1 x ⇒  ⇒ u 4 x 4 4

 2

exy2 dA 

4

14 1

R

2u1  dv du     e u 2

ev2



17. u  x  y  4,

vxy0

u  x  y  8,

vxy4

1 x  u  v 2

1 y  u  v 2



2

du  

1

14

  e2  e12ln u

1 e2  e12 du u 14





2

  e2  e12 ln 2  ln

14



1  e12  e2ln 8 0.9798 4

y

6

x−y=0

x+y=8

4

2

1 x, y  u, v 2



v2 4

x−y=4

x+y=4

x

  8

x  yexy dA 

4

R



1 2

2

4

uev

0

4

6

12 dv du

8

ue4  1 du 

4

19. u  x  4y  0,

vxy0

u  x  4y  5,

vxy5

1 x  u  4v, 5

1 y  u  v 5

 14 u e 2

4



 1

8 4

 12e4  1

y

x−y=0 2

x + 4y = 5

y x 1 x y   u v u v 5



1

  51  1545   15

    5

x  yx  4y dA 

5



5

uv

0

R

0

0

x

−1

3 −1

x + 4y = 0 −2

1 du dv 5



1 2 32 u v 5 3

5 0

dv 

 2 3 5 23v

5

32

0



100 9

http://librosysolucionarios.net

4

x−y=5

167

168

Chapter 13

Multiple Integration

1 1 21. u  x  y, v  x  y, x  u  v, y  u  v 2 2 x y y x 1   u v u v 2



 a

x  y dA 

u

u

0

R

12 dv du  

a

u

u u du 

0

y

5 u 2

a

52

0

2  a52 5

y

v=u a a

x+y=a x 2a

a

23.

x −a

v = −u

x2 y 2  2  1, x  au, y  bv a2 b

(a)

x2 y 2  21 a2 b

u2  v 2  1 v

au2 bv2  2 1 a2 b

y

1

u2  v 2  1

b

S R

u x

a

(b)

x, y x y y x   u, v u v u v  ab  00  ab

(c) A 



ab dS

S

 ab12  ab 25. Jacobian 

x y y x x, y   u, v u v u v

27. x  u1  v, y  uv1  w, z  uvw



1v x, y, z  v1  w u, v, w vw

u 0 u1  w uv uw uv



 1  v u2v1  w  u2vw  u uv21  w  uv2w  1  vu2v  uuv 2  u2v

29. x  sin cos , y  sin sin , z  cos



sin cos  x, y, z  sin sin   , ,  cos

 sin sin  sin cos  0

cos cos  cos sin   sin



 cos

 sin cos sin   sin cos cos   sin

sin2 cos2  sin2 sin2  2

2

2

2

 cos

 2 sin cos sin2   cos2   sin

sin2 cos2   sin2    2 sin cos2  2 sin3

  2 sin cos2  sin2    2 sin

http://librosysolucionarios.net

1

Review Exercises for Chapter 13

169

Review Exercises for Chapter 13



x2

1.



1

 1

3.

0

4x dy dx 



dy dx 

3x3

 1



A2

5 0

 



25y 2

4

5



1

2

5

1 0

3 2

3

 5

4 25y 2

dx dy 

1 0



29 6

25y 2

dx dy

25y 2

4



25  x2 dx  x25  x2  25 arcsin





1 0



x 5



3 5



25 3  12  25 arcsin 67.36 2 5

4 3

dx dy



x1

2



0



5  x2  x 2

2

 5

 36

3

4 x1  x2 dx   1  x232 3

0

1 14y 2

1 14y 2

0



3

dy dx  4



A4



dy dx  2

0

12



4

dx dy 

25y 2

x1x 2

11. A  4

0



3 3  3y dy  3y  y 2 2 0

25x 2

3

13. A 



1

dy dx 



3

dx dy

0

5 25x 2

0

 43x

0

dx dy 

25x 2

4x 2  5x  1 dx 



33y

0

1

0



1

dx 

33y

0



1x

4 4x9  x 2 dx   9  x 232 3

 1

0

3



3xy  y 2

3

0

A

9.



9x2

0

0

 x31  ln x 2  x  x  x3  x3 ln x 2

0

 3

1

1

3x  2y dy dx 

0

0

7.

x2



1x

3

5.



x ln y dy  xy1  ln y

x1

2

dy dx  2

1

x3

dy dx 

0

 2

y3

1

y 2 1

dx dy 

9 2 y

15. Both integrations are over the common region R shown in the figure. Analytically,

 

22y 2

1

0

2y

2

0

0

4

0

4



0

 

(2, 1)

x 24

x2  y  4 dy dx

2

x  y dy dx 







x2 4

dx

2

4 4 5 4 1   2  2  3 3 3 3 3

19. Volume baseheight 27 9 3  2 2 Matches (c)

z 6 4 2 y



4

(3, 3)

2

(3, 0)

4 x





1 5 4 3 x  x  8x  10 3

3

2

0

1 4 x  4x2  8 dx 2 4 0

3296  15

http://librosysolucionarios.net

8 − x2 x

1 −1

0

1 x2y  y 2  4y 2

y=1

1

8x 2

0

2

  

4



x  y dy dx 

y = 12 x

2

4 4  2 3 3

22

x2

0

17. V 

x  y dx dy 

170

Chapter 13



 

21.

0

Multiple Integration

 

kxyexy dy dx 

0





kxexy y  1

0

0

dx 







0





kxex dx  kx  1ex

0

k

Therefore, k  1.

 1

P

1

0

xyexy dy dx 0.070

0

23. True

 h

27.

25. True

0

x

x 2  y 2 dy dx 

0

   4

h sec 

0



    2

h

29. V  4

0

h3 3

4

sec3  d 

0

1z 2

0

r dr d dz

1

1  z2  1 d dz

2

0

0





4

0



h3

2  ln 2  1 6

31. (a) x2  y22  9x2  y2 r 2  9cos2   sin2   9 cos 2 r  3cos 2

h

z2



h3 sec  tan   ln sec   tan  6

r 22  9r 2 cos2   r 2 sin2 

2

h

r2 dr d

0

dz

4

0

 13 z 

h

 

3

0



h3 3

−6

6

−4

    4

(b) A  4

0

(c) V  4

   1

2x

0

2x

1

3

2x

1

3

xy2 dy dx 

2x

My  k

0

k 4

2x

Mx  k

0

xy dy dx 

4

2x

3

x2y dy dx 

   1

1

16k 55

Mx  k

8k 45

My  k

0

1

0

3cos 2

2x

3

x2  y2dy dx 

17k 30

2x

2x

3

yx2  y2dy dx 

2x

2x

3

xx2  y2dy dx 

x

My 32  m 45

x

My 936  m 1309

y

Mx 64  m 55

y

Mx 784  m 663

y

y = 2x 2

1

y = 2x 3 x 1

9  r 2 r dr d 20.392

0

2x

(b) m  k

0

r dr d  9

0

0

33. (a) m  k

3cos 2

2

http://librosysolucionarios.net

392k 585 156k 385

Review Exercises for Chapter 13

 

  a

y2 x, ydA 

35. Ix 

0

R

0

a

x2 x, ydA 

Iy 

b

37. S 

0



 a

x, ydA 

16x2

4

0

4

1  4x2  4y2 dy dx

0

2

4

0

1  4r 2 r dr d

0

b

0

R

1   fx2   fy2 dA

4

1 kx3 dy dx  kba4 4

1 1 ka2b 2 I0  Ix  Iy  kb3a2  kba 4  2b  3a2 6 4 12 m

    R

b

0

R

1 kxy2 dy dx  kb3a2 6

0

1 kx dy dx  kba2 2



x

kba a a 2   m  14 12kba 2 2

y

kb a b b 3   mI  16 12kba 3 3

Iy

4

 13 65

32

2

 1



d 

162 5

0



  6565  1 6



2

2

3 2

x



2

2

39. f x, y  9  y2 fx  0, fy  2y S

   

1  fx2  fy2 dA

R

3



y

y

0

1  4y2 dx dy

3





1  4y2 x

0

y

dy

y

3



21  4y2 dy 

0

  9x2

3

41.

9



3

12 1  4y232 43

x 2  y 2 dz dy dx 

3 9x2 x2 y2

0

   2

a

0

b

0

c





a

x 2  y 2  z2 dx dy dz 

0

0

a



0

  1

45.

1x 2

b

0

r

2

r2 dz dr d

3

9r 2  r 4 dr d 

0

 2

3r 3 

0

r5 5



3 0



2

0

d 

324 5



1 3 c  cy 2  cz2 dy dz 3



1 3 1 3 1 1 1 1 bc  b c  bcz 2 dz  abc 3  ab 3c  a 3bc  abca 2  b 2  c 2 3 3 3 3 3 3

  2

1x 2y 2

2 2 2 1 1x 1x y

9

0

2

0



3

0



43.

1  3732  1 6

x2  y 2 dz dy dx 

0

1

0

1r 2

1r 2

r 3 dz dr d 

8 15

http://librosysolucionarios.net

171

172

Chapter 13

        2

47. V  4

2 cos 

0

r4  r 2 dr d

0

2



2 cos 



4 4  r 232 3

0

49.

r dz dr d

0

2 cos 

0



4r 2

0

2

4



Multiple Integration

0

2

32 3

1  sin3  d

0



1 32   cos   cos3  3 3

          2

m  4k

2



0



32  2  3 2 3



2

2 cos3 sin d d  k 3

0

2

2

4

cos

0

2



2

4





2 1 cos3 sin d   k cos4 3 4

2



4



k 24

3 cos sin d d d

0

2

1 cos5 sin d d  k 2

0



2 sin d d d

0

4

4

cos

0

2

Mxy  4k k

2

4

4  k 3

z

d



2

4



cos5 sin d  

1 k cos6 12

2



4



k 96

Mxy k96 1   m k24 4

x  y  0 by symmetry

51.

     

mk

2

0

Mxy  k

2

a

0

2

0

2 sin d d d 

0

2

53. Iz  4k

2

0

a

0

   

ka3 6

  cos 2 sin d d d 

0

ka4 16

 4k

4

3

2

0

16r2

r3 dz dr d

0

4

16r 3  r 5 dr d 

3

833k 3

Mxy ka4 3a 6 xyz   m 16 ka3 8





55. z  f x, y  a2  x2  y2

z

a−h

 a2  r 2

a

h

0 ≤ r ≤ 2ah  h2 a

x

a

y

(a) Disc Method



a

V

a2  y2dy

y

ah



y3 3

  a2y 



  a3 



a



ah

 a

3



a3 a  h3  a2a  h  3 3







2a



a



a3 a3 h3 h3 1  a3  a2h   a2h  ah2    ah2    h 2 3a  h 3 3 3 3 3

a−h −a

Equivalently, use spherical coordinates V

 2

0

1

cos

0



aha

a

ahsec

2 sin d d d

—CONTINUED—

http://librosysolucionarios.net

y = a2 − x2

x a

Review Exercises for Chapter 13 55. —CONTINUED—

 0



cos1aha

2

(b) Mxy 

a

ahsec

0

 cos 2 sin d d d

1  h2 2a  h2 4 1 2 h 2a  h2 3 2a  h2 4 z   1 2 4 3a  h V h 3a  h 3 Mxy

0, 0, 342a3a  hh 2

centroid:

3a2 3  a 42a 8

(c) If h  a, z 

centroid of hemisphere: (d) lim z  lim h →0

h →0

32a  h2 34a2 a  43a  h 12a

(e) x2  y2  2 sin2

 2

Iz 

0

  

0

0

a

ah sec

0

(f ) If h  a, Iz 

2



cos1aha

2 sin2 2 sin d d d

h3 20a2  15ah  3h2 30



57.

0, 0, 38 a

6 sin

a3 4 20a2  15a2  3a2  a5 30 15

2 sin d d d

x, y

x y

y x  

u, v u v u v

59.

0

 13  23  9

Since   6 sin represents (in the yz-plane) a circle of radius 3 centered at 0, 3, 0, the integral represents the volume of the torus formed by revolving 0 <  < 2 this circle about the z-axis.

61.

x, y

x y x y 1 1 1 1 1      

u, v u v v u 2 2 2 2 2





y

Boundaries in xy-plane

Boundaries in uv-plane

xy3

u3

xy5

u5

x  y  1

v  1

xy1



ln x  ydA 

R

 5

3

1

2

1

ln



y=x−1

y = −x + 3

x 1

v1

1

y = −x + 5

y=x+1

3

1 1 x  u  v, y  u  v ⇒ u  x  y, v  x  y 2 2



1 1 1 u  v  u  v 2 2 2

 5

dv du 

3

1

1 ln u dv du  1 2

 5 ln 5  5  3 ln u  3  5 ln 5  3 ln 3  2 2.751

http://librosysolucionarios.net



5

3

2

3





ln u du  u ln u  u

5 3

173

174

Chapter 13

Multiple Integration

Problem Solving for Chapter 13



1. (a) V  16

z

1  x2 dA

R

4

 16

1

1

0

0

16  3

4

0

1  r 2 cos2  r dr d

1

1  cos2 32  1 d cos2 



16 sec   cos   tan  3



1

1

4



R y=x

x

0

 82  2   4.6863 (b) Programs will vary.

3. (a)



1 u du  arctan  c. Let a2  2  u2, u  v. a2  u2 a a

Then



1 1 v dv  arctan  C. 2  u2 2  u2 2  u2  v2

22

(b) I1 

0

u

2 v arctan 2 2  u 2  u2

22



2

2  u2

0

22



4

2  u2

0

arctan arctan



u

 arctan

2  u2

u

du

u

u 2  u2

du

du

2  u2

Let u  2 sin , du  2 cos  d, 2  u2  2  2 sin2   2 cos2 .



I1  4

6

0

4

1

2 cos 



arctan

6

arctantan d 

0

2

(c) I2 

22

2

2 22 2  u 2



4 2 2

6



 arctan

2 cos  d

2

6

0

v 2 arctan 2  u2 2  u2

2





2 sin  2 cos 



2



2 18

u 2

du

u 2



u  2 u  2  arctan 2  u2 2  u2



 du

2  u 4 arctan du 2  u2 2  u2

22 

Let u  2 sin .



I2  4

4

2

6



2  2 sin  1 arctan 2 cos  2 cos 

2

arctan

6



2 cos  d

1 cossin  d

—CONTINUED—

http://librosysolucionarios.net

y

Problem Solving for Chapter 13 3. —CONTINUED— (d) tan

cos2   1  sin   12 2  

 11  cos 2   1  sin 

1  sin1 sin1  sin   1 cossin 2





2

(e) I2  4

arctan

6

4

2

6





2 (f )



1  sin  d  4 cos 



2

1    d  2 2 2





2

2

2   2 

2

6

6

2

 4

2

1

0

1

0

2

12 2  

d

arctan tan

6



2 2 2   8 12 72





1 dx dy  1  xy



  1

0

1



xy < 1

1

1  xy  xy2  . . . dx dy

0



1

xyK dx dy 

0

0 K0



1

K0

0





K0



1

0

 y K1 yK dy  2 K1 K0 K  1





uv uv

2x 2

2y 2



R

1, 0 ↔ 0, 1 ↔ 1, 1 ↔

0

0



⇒ y

y

uv 2

R

uv 2

x



12 1 12

S

v 2

0, 0 ↔ 0, 0

1



1

 1 1 2  2  K  1  K0 n1 n



⇒ x

x, y 12  u, v 12

1

0

(

1 , 2

1 2

)

1

(

S



12, 12 1 1 , 2 2 



xK1y K 1 dy K1 0

xy yx ,v 2 2



1  sin  cos 

18  9  6  1 2 4 2 2     72 36 9



(g) u 



2   d

1  1  xy  xy2  . . . 1  xy



2

2

1

2, 0) u

2

3

4

−1 −2

(

1 − 1 , 2 2

)



2, 0

1 dx dy  1  xy

22

0

u

1 dv du  2 v2 u u 1  2 2

 I1  I2 

2

u 2

22 u 2

1 dv du u2 v 2 1  2 2

2 2 2   18 9 6

http://librosysolucionarios.net

175

176

Chapter 13

Multiple Integration

5. Boundary in xy-plane

Boundary in uv-plane

y  x

u1

y  2x

u2

1 y  x2 3

v3

z

7. 6

(3, 3, 6)

5 4

(0, 0, 0) 3

2

x

1 y  x2 4

v4



1 x, y  3 u, v 2 3 A



uv uv

23

13

1 dA 

R

2 3 1 3

uv uv

23





13

(0, 6, 0)

(3, 3, 0)



6

3

1 3

V

2x

0

0

y

6x

dy dz dx  18

x

x, y 1 1 dA  u, v 3

S

9. From Exercise 55, Section 13.3,





ex 2 dx  2 2







Thus,

ex 2 dx  2





0







 







2





0

1 2



ex dx  2

0

2 1    2 2 4

x ≥ 0, y ≥ 0 elsewhere

kexya 0

f x, y dA 

ex dx 

0

1 2 2 x2ex dx   xex 2

11. f x, y 

and

2

0





2



 

0

∆x cos θ

kexya dx dy

cos x y  sec  x y P

0



k

13. A  l  w 

xa

e

0





dx 

eya dy

0

∆y ∆y

θ ∆x

These two integrals are equal to





exa dx  lim

0

ae  xa

b→ 

b 0

 a.

Area in xy-plane: x y

Hence, assuming a, k > 0, you obtain 1  ka2

or

a

1 k

.

http://librosysolucionarios.net

C H A P T E R 14 Vector Analysis Section 14.1 Vector Fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . 407

Section 14.2 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 Section 14.3 Conservative Vector Fields and Independence of Path . . . . . . 419 Section 14.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 423 Section 14.5 Parametric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 427 Section 14.6 Surface Integrals

. . . . . . . . . . . . . . . . . . . . . . . . . 431

Section 14.7 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . 436 Section 14.8 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 439 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

http://librosysolucionarios.net

C H A P T E R Vector Analysis Section 14.1

14

Vector Fields

Solutions to Even-Numbered Exercises 2. All vectors are parallel to x-axis. Matches (d)

4. Vectors are in rotational pattern.

6. Vectors along x-axis have no x-component.

Matches (e)

Matches (f) 10. Fx, y  x i  yj

8. Fx, y  2i

F  x2  y2

F  2

y

y

5 4 3 2 1

1

−2

x

−1

1

2

−5 −4

x

−2 −1

1 2

4 5

−2 −3 −4 −5

−2

12. Fx, y  x i

14. Fx, y  x2  y2 i  j



F  1  x2  y22

F  x  c

y y

10

3

8

2

6

1 −3

−2

4

x

−1

1

2

3

x

−2

16. Fx, y, z  x i  y j  z k

2

18. Fx, y  2y  3x i  2y  3x j

F  x  y  z  c 2

2

2

y 6

x2  y2  z2  c2

4

z

2 −6

2

−4

x

−2

2

4

6

−2

−2

−6 2 2

x

y −2

407

http://librosysolucionarios.net

408

Chapter 14

Vector Analysis

20. Fx, y, z  xi  yj  z k

22. f x, y  sin 3x cos 4y fxx, y  3 cos 3x cos 4y

z

2

fyx, y  4 sin 3x sin 4y

1

Fx, y  3 cos 3x cos 4yi  4 sin 3x sin 4yj 1

1

2

y

2 x

y z xz   z x y z z fxx, y, z   2  x y 1 xz fyx, y, z   2 z y y 1 x fzx, y, z   2   z x y z z 1 xz y 1 x Fx, y, z   2  i   2 j   2   k x y z y z x y

24. f x, y, z 



28. Fx, y 

 

 

26. gx, y, z  x arcsin yz gxx, y, z  arcsin yz gyx, y, z  gzx, y, z 



1 y 1  yi  xj  2 i  j 2 x x x

xz 1  y2z2

xy 1  y2z2

Gx, y, z  arcsin yz i 

30. Fx, y 

xz 1  y2z2

j

xy 1  y2z2

1 1 1  y i  x j  i  j xy x y

M  y x2 and N   1 x have continuous first partial derivatives for all x  0.

M  1 x and N  1 y have continuous first partial derivatives for all x, y  0.

M 1 N  2 ⇒ F is conservative. x x y

N M 0 ⇒ F is conservative. x y

32. M 

x x2  y2

,N

y

34. M 

x2  y2

N M xy   2  ⇒ Conservative x x  y23 2 y

y 1  x2y2

,N

x 1  x2y2

N M 1 1     x 1  x2y23 2 y 1  x2y23 2 ⇒ Not conservative

36. Fx, y  

1  y i  2 x j y2 1 2x i 2j y y

 1 1  2 y y y



 2x 2  2  2 x y y





Not conservative

38. Fx, y  3x2 y2 i  2x3yj  3x2 y2  6x2 y y  2x3y  6x2y x Conservative fxx, y  3x2 y2 fyx, y  2x 3 y f x, y  x3y2  K

http://librosysolucionarios.net

40. Fx, y 

2y x2 i  2j x y

 2y 2  y x x



 x2 2x  2  2 x y y



Not conservative

k

Section 14.1

42. Fx, y 

2x 2y i 2 j x2  y22 x  y22

 

44. Fx, y, z  x2z i  2xz j  yz k, 2, 1, 3 k i j    curl F  x y z x2z 2xz yz

8xy  2x  2 y x2  y22 x  y23





8xy  2y  2 x x 2  y 2 2 x  y 23





 z  2x i  0  x2 j  2z  0 k

Conservative

 z  2x i  x2 j  2zk

2x fxx, y  2 x  y22 fyx, y 

curl F 2, 1, 3  7i  4j  6k

2y x2  y22

f x, y  



Vector Fields

1 K x2  y2



46. Fx, y, z  exyz i  j  k, 3, 2, 0

curl F 

i  x

j  y

k  z

exyz exyz exyz

curl F 3, 2, 0  6i  6j

 

yz xz xy i j k yz xz xy

48. Fx, y, z 

j k   y z xz xy xz xy

i  x curl F  yz yz 

 xz  xyexyz i  yz  xyexyzj  yz  xzexyz k

x x y 2

2



x 1 y

 x2

2

x2 y2 z 2 y 2 z 2 i  j  k 2 2 2 2 x  z x  y  y  z x  z  y  z2



  

















1 1 1 1 1 i  y2  j  z2  k x  z2 x  y2  y  z2  y  z2 x  z2

50. Fx, y, z  x2  y2  z2i  j  k i j k    curl F  x y z x2  y2  z2 x2  y2  z2 x2  y2  z2 52. Fx, y, z  e z  y i  x j  k





 y  z i  z  x j  x  y k x2  y2  z2

 

54. Fx, y, z  y 2z 3 i  2xyz 3 j  3xy2z 2 k

i j k    curl F  x y z  xe z i  yezj  0 yez xez ez

i j k    curl F  x 0 y z 2z 3 3 2z2 y 2xyz 3xy

Not conservative

Conservative

f x, y, z  xy 2z3  K

http://librosysolucionarios.net

409

410

Chapter 14

Vector Analysis

 

56. Fx, y, z 

x y i 2 jk x2  y2 x  y2

i j   x y curl F  y x x2  y2 x2  y2

58.

Fx, y  xe x i  ye y j div Fx, y 

k  z  0

  xe x  ye y x y

 xe x  e x  ye y  e y  e xx  1  e y y  1

1

Conservative

fx x, y, z 

x x2  y2

fy x, y, z 

y x2  y2

fz x, y, z  1 f x, y, z   f x, y, z  

60.

x dx x2  y2

1 lnx 2  y 2  g y, z  K1 2



y dy x2  y2

1 lnx 2  y 2  hx, z  K2 2

f x, y, z 



f x, y, z 

1 lnx 2  y 2  z  K 2

dz  z  px, y  K3

Fx, y, z  lnx 2  y 2 i  xy j  ln y 2  z 2k div Fx, y, z 

62.



   2x 2z lnx 2  y 2  x y  ln y 2  z2  2 x 2 x y z x  y2 y  z2

Fx, y, z  x 2z i  2xz j  yz k

64.

div Fx, y, z  2 xz  y div F2, 1, 3  11

66. See the definition of Conservative Vector Field on page 1011. To test for a conservative vector field, see Theorem 14.1 and 14.2.

Fx, y, z  lnxyzi  j  k 1 1 1 div Fx, y, z    x y z 1 1 11 div F3, 2, 1    1  3 2 6

68. See the definition on page 1016.

70. Fx, y, z  x i  z k Gx, y, z  x 2 i  yj  z 2 k

 

i j k F  G  x 0 z  yz i  xz 2  x 2 z j  xyk x2 y z2



i j   curlF  G  x y yz xz 2  x 2z

k  z xy



 x  2xz  x  i   y  y j  z 2  2xz  z k 2

 xx  2z  1i  zz  2x  1k

http://librosysolucionarios.net

Section 14.1

     

72. Fx, y, z  x2z i  2xz j  yz k i j   curl F  x y x2z 2xz

74. Fx, y, z  x i  z k Gx, y, z  x 2 i  y j  z 2 k

 

k   z  2x i  x 2 j  2zk z yz

i  curlcurl F  x z  2x

Vector Fields

i FG x x2

j k    j  2xk y z x2 2z

j 0 y

k z  yzi  xz 2  x 2zj  xyk z2

divF  G  0

76. Fx, y, z  x 2 z i  2xz j  yz k

i j k    2 curl F  x y z  z  2x i  x j  2z k x2z 2xz yz divcurl F  2  2  0

78. Let f x, y, z be a scalar function whose second partial derivatives are continuous. f 

f f f i j k x y z

  j

i

k

 curlf   x

 y

 z 

f x

f y

f z

f f f f f f i j k0    yz zy  xz zx  xy yx  2

2

2

2

2

2

80. Let F  M i  N j  P k and G  R i  Sj  T k.

 

i j k F  G  M N P  NT  PS i  MT  PR j  MS  NRk R S T divF  G 

   NT  PS  PR  MT   MS  NR x y z

N 

M T N S P R P T S M R N T P S P R M T M S N R x x x x y y y y z z z z P

N

M

P

N

M

T

S

R

T

S

R

 y  z R   z  x S   x  y T  M y  z   N  z  x   P x  y 

 curl F G  F curl G

 

82. Let F  M i  Nj  Pk.

i j      f F  x y fM fN 

k  z fP

f N f P f M f N f M  Nf i Pf  Mf j Nf  Mf k yf P  f P y z z  x x z z  x x y y 

f



 

i j k f f f P N P M N M  i  j  k  x y z  f   F  f   F y z x z x y M N P

 

 



http://librosysolucionarios.net

411

412

Chapter 14

Vector Analysis

84. Let F  M i  Nj  Pk. curl F 

P M N M N   i  j k P y z  x z  x y 

divcurl F 

 P N  P M  N M      x y z y x z z x y



2P 2N 2P 2M 2N 2M      0 xy xz yx yz zx zy











 (since the mixed partials are equal)

In Exercises 86 and 88, Fx, y, z  x i  yj  zk and f x, y, z  Fx, y, z  x 2  y 2  z 2. 1 1  f x 2  y 2  z 2

86. 

 1f   x w

88.

2

x y z  x i  y j  zk F i 2 j 2 k  3 3 2 2 2  y 2  z 23 2 x  y 2  z 23 2 x  y 2  z 23 2 f  x  y  z  2w 2x 2  y 2  z 2  2 x2 x  y 2  z 25 2

1 1  f x 2  y 2  z 2

w x  2 x x  y 2  z 23 2

2w 2y 2  x 2  z 2  2 y2 x  y 2  z 25 2

w y  2 y x  y 2  z 23 2

2z 2  x 2  y 2 2w  2 z 2 x  y 2  z 2 5 2

w z  2 z x  y 2  z 23 2

2w 

2w 2w 2w  2  2 0 x 2 y z

Therefore w 

Section 14.2

Line Integrals

t i  45 t j, 0 ≤ t ≤ 5 4. rt  5 i  9  t j, 5 ≤ t ≤ 9 14  t i, 9 ≤ t ≤ 14

x2 y2  1 16 9

2.

1 is harmonic. f

cos2 t  sin2 t  1 cos2 t 

x2 16

sin2 t 

y2 9

x  4 cos t y  3 sin t rt  4 cos t i  3 sin t j 0 ≤ t ≤ 2

t i  t 2 j, 0 ≤ t ≤ 2 6. rt   4  t i  4 j, 2 ≤ t ≤ 4 8  t j, 4 ≤ t ≤ 8 8. rt  t i  2  t j, 0 ≤ t ≤ 2; rt  i  j



C



2

4xy ds 

0



2

4t 2  t 1  1 dt  4 2

0



2t  t 2 dt  4 2 t 2 

t3 3



2 0



 4 2 4 

http://librosysolucionarios.net



8 16 2  3 3

Section 14.2

Line Integrals

10. rt  12t i  5t j  3 k, 0 ≤ t ≤ 2; rt  12i  5j





2

8xyz ds 

0

C



2

812t5t3 122  52  02 dt 

18,720t 2 dt  18,720

0

12. rt  t j, 1 ≤ t ≤ 10



x 2  y 2 ds 

C

 

10

8 6

10

t2

dt

4 2

 

10

1 3 t  3

1

 333

14. rt  2 cos t i  2 sin t j, 0 ≤ t ≤

x 2  y 2 ds 

C

 

−4

x

−2

2

4

 2

y

2

 2

4 cos2 t  4 sin2 t 2 sin t2  2 cos t2 d t 1

0



 49,920

0

10

0  t 2 0  1 dt

1



3 2

y

1



 t3 

 2

8 dt  4

x

0

1

16. rt  t i  3t j, 0 ≤ t ≤ 3



C

x  4 y  ds 

 3

0

y

t  4 3t  1  9 dt





10

6

0 2 4 6

t i, 2i  t  2 j, 18. rt  6  t i  2 j, 8  t j,

     C1

C2

C3

C4

x  4 y  ds  x  4 y  ds 

x  4 y  ds  x  4 y  ds 

C

    2

(3, 9)

9

6

t 2 8 3 3 2  t  10 2 3 

27  144 

≤ ≤ ≤ ≤

t t t t

≤ ≤ ≤ ≤



3 3

0

57 10 2

−3

x 3

6

y

2 4 6 8

2

6

4

C3

2

(2, 2)

C4 1

C2

t dt  2

0

4

2

C1

2  4 t  2  ds  4 

16 2 3

6  t  4 2 ds  2  8 2

8

4 8  t ds 

6

x  4 y ds  2  4 

16 2 3

16 2 16 2 56  2  8 2   8  2 3 3 3

http://librosysolucionarios.net

x 1

2

413

414

Chapter 14

Vector Analysis 22. Fx, y  xyi  yj

20. x, y, z  z rt  3 cos t i  3 sin t j  2 t k, 0 ≤ t ≤ 4

C: rt  4 cos t i  4 sin t j, 0 ≤ t ≤

rt  3 sin t i  3 cos t j  2 k

Ft  16 sin t cos t i  4 sin t j rt  4 sin t i  4 cos t j

rt  3 sin t  3 cos t  2  13 2

Mass 



2

x, y, z ds 

C



4

2



2t 13 dt  16 2 13

0

C

F dr 



 2



24. Fx, y  3x i  4y j

64 sin2 t cos t  16 sin t cos t dt

0

 

 2



64 3 sin t  8 sin2 t 3

0

rt  2 cos t i  2 sin t j  t k



2

 

t2 F dr  3t  4t dt   2 2 C

2 2



0

C

F dr  

 

0



1 8 sin2 t cos t  8 cos2 t sin t  t 5 dt 4

 83 sin

3

t

8 t6 cos3 t  3 24





0

8  6 8  6 16      3 24 3 24 3 xi  yj  zk x 2  y 2  z 2

rt  t i  t j  e t k, 0 ≤ t ≤ 2 Ft 

t i  t j  et k 2t 2  e 2t

d r  i  j  e t k dt



C

F dr 



2

1 2t  e 2t dt  6.91  e 2t

2t 2

0

30. Fx, y  x 2 i  x y j C: x  cos3 t, y  sin3 t from 1, 0 to 0, 1 rt  cos3 t i  sin3 t j, 0 ≤ t ≤

 2

rt  3 cos 2 t sin t i  3 sin2 t cos t j Ft  cos 6 t i  cos3 t sin3 t j F r  3 cos8 t sin t  3 cos4 t sin5 t  3 cos4 t sin t cos4 t  sin4 t  3 cos4 t sin t cos4 t  1  cos2 t2  3 cos4 t sin t 2 cos4 t  2 cos2 t  1  6 cos8 t sin t  6 cos6 t sin t  3 cos4 t sin t Work 



C

F dr  

40 3

1 C: rt  2 sin t i  2 cos t j  t 2 k, 0 ≤ t ≤  2 1 Ft  4 sin2 t i  4 cos2 tj  t 4 k 4

Ft  3t i  4 4  t 2 j t j rt  i  4  t 2

28. Fx, y, z 



26. Fx, y, z  x 2 i  y 2 j  z 2 k

C: rt  t i  4  t 2 j, 2 ≤ t ≤ 2



 2



 2

6 cos8 t sin t  6 cos6 t sin t  3 cos4 t sin t dt

0

 2 cos3

9

t



6 cos7 t 3 cos5 t  7 5

 2



0



43 105

http://librosysolucionarios.net

Section 14.2 32. Fx, y  y i  x j

C: line from 0, 0, 0 to 5, 3, 2 rt  5i  3j  2k

rt  2 sin t i  2 cos t j

Ft  6t 2 i  10t 2 j  15t 2 k

Ft  2 sin t i  2 cos tj

F



C



F d r  4







cos 2t dt  2 sin 2t

0

0

F dr 

0, 0

 14 , 161 

 12 , 14 

 34 , 169 

1, 1

F dr 

Fx, y

5i

3.5i  j

2i  2j

1.5i  3j

i  5j

C

rt

i

i  0.5j

ij

i  1.5j

i  2j



5

4

4

6

11

C

x, y

rt  i  2 t j



Work 

0

36. rt  t i  t 2 j, 0 ≤ t ≤ 1 10 5  44  24  46  11 34 16 3

r  90t 2



r  4 sin2 t  4 cos2 t  4 cos 2t 

0 ≤ t ≤ 1

rt  5t i  3t j  2t k,

0 ≤ t ≤ 

rt  2 cos t i  2 sin t j,

Work 

F

r



1

90t 2 dt  30

0

38. Fx, y  x2 y i  xy3 2 j r1t  t  1 i  t 2 j, 0 ≤ t ≤ 2

(a)

r1t  i  2 t j Ft  t  12 t 2 i  t  1t 3 j



C1

F dr 



2

t  12 t 2  2t 4t  1 dt 

0

256 3

r2t  1  2 cos t i  4 cos2 t j, 0 ≤ t ≤

(b)

 2

r2t  2 sin t i  8 cos t sin t j



Ft  1  2 cos t24 cos2 t i  1  2 cos t8 cos3 t j

C2

F dr 



 2

1  2 cos t 4 cos 2

0

2

t2 sin t  8 cos t sin t1  2 cos t8 cos3 t dt  

256 5

Both paths join 1, 0 and 3, 4. The integrals are negatives of each other because the orientations are different. 40. Fx, y  3y i  x j C: rt  t i 

42. Fx, y  x i  yj

t3j

C: rt  3 sin t i  3 cos t j

rt  i  3t 2 j

rt  3 cos t i  3 sin t j

Ft  3t 3 i  t j

Ft  3 sin t i  3 cos t j

F r  Thus,



C

3t 3



F r  9 sin t cos t  9 sin t cos t  0

0

3t 3

F d r  0.

Thus,



C

F dr  0.

44. x  2t, y  10t, 0 ≤ t ≤ 1 ⇒ y  5x, 0 ≤ x ≤ 2



C

x  3y 2 dx 



0

415

34. Fx, y, z  yz i  xz j  xyk

C: counterclockwise along the semicircle y  4  x 2 from 2, 0 to 2, 0

F

Line Integrals

2

x  75x 2 dx 

 2  25x  x2

2

3

0

 202

http://librosysolucionarios.net

416

Chapter 14

Vector Analysis

46. x  2t, y  10t, 0 ≤ t ≤ 1 ⇒ y  5x, dy  5 dx, 0 ≤ x ≤ 2



3y  x dx  y 2 dy 

C



2

35x  x dx  5x25 dx 

0



2

14x  125x2 dx

0





125 3 x 3

 7x2 

2

 28 

0

125 1084 8  3 3 y

48. rt  t j, 0 ≤ t ≤ 2 xt  0, yt  t

2

dx  0, dy  dt





1

2

2x  y dx  x  3y dy 

0

C

50. rt 

 

2

3 3t dt  t 2 2

0

6



1

0 ≤ t ≤ 3 t j, t  3 i  3j, 3 ≤ t ≤ 5

y

x 1

xt  0, yt  t

C1:

x

−1

2

3

−1

dx  0, dy  dt

C1



−2

3

2x  y dx  x  3y dy 

3t dt 

0

C1

27 2

−3

C2

(2, − 3)

xt  t  3, yt  3

C2:

 

dx  dt, dy  0



5

2x  y dx  x  3y dy 



3

C2



2t  3  3 dt  t  32  3t

5 3

 10

27 47  10  2 2

2x  y dx  x  3y dy 

C

3 52. xt  t, yt  t 3 2, 0 ≤ t ≤ 4, dx  dt, dy  t 1 2 dt 2



2x  y dx  x  3y dy 

C

  4



4

54. xt  4 sin t, yt  3 cos t, 0 ≤ t ≤ dx  4 cos t dt, dy  3 sin t dt

2x  y dx  x  3y dy 



32 t  dt 1 2



9 2 1 3 2 3 1 t  t  2t dt  t 3  t 5 2  t 2 2 2 2 5

0



2t  t 3 2  t  3t 3 2

0



 

 2

0

1 592  96  32  16  5 5

8 sin t  3 cos t4 cos t dt  4 sin t  9 cos t3 sin t dt

 2

5 sin t cos t  12 cos 2 t  12 sin2 t dt

0



4

 2

0

C



 2

 52 sin t  12t 2

0



5  6 2

http://librosysolucionarios.net

Section 14.2 56. f x, y  y

58. f x, y  x  y

C: line from 0, 0 to 4, 4

C: x 2  y 2  1 from 1, 0 to 0, 1

rt  t i  t j, 0 ≤ t ≤ 4

rt  cos t i  sin t j, 0 ≤ t ≤

rt  i  j

rt  1

Lateral surface area:



4

f x, y ds 

0

C

 2

rt  sin t i  cos t j

rt  2



Line Integrals

Lateral surface area:

t  2  dt  8 2



f x, y  ds 



cos t  sin t dt





 2

0

C

 sin t  cos t

 2

0

2

60. f x, y  y  1 C: y  1  x 2 from 1, 0 to 0, 1 rt  1  t i  1  1  t2 j, 0 ≤ t ≤ 1 rt  i  21  t j

rt  1  41  t2 Lateral surface area:



  1

f x, y ds 

2  1  t 2 1  41  t2 dt

0

C

1

0





1

1  41  t 2 dt 

2

1  t2 1  41  t2 dt

0



0

1 21  t 1  41  t2  ln 21  t  1  41  t2 2 





1

0

1 21  t241  t2  1 1  4 1  t2  ln 21  t  1  4 1  t2 64





1 1 2 5  ln 2  5   64 18 5  ln 2  5  2



33 1 23 5  ln 2  5   46 5  33 ln 2  5   2.3515 32 64 64

62. f x, y  x 2  y 2  4 C: x 2  y 2  4 rt  2 cos t i  2 sin t j, 0 ≤ t ≤ 2 rt  2 sin t i  2 cos t j

rt  2 Lateral surface area:



C

f x, y ds 



2

0





4 cos2 t  4 sin2 t  42 dt  8

0



1  cos 2t dt  8 t 

http://librosysolucionarios.net

1 sin 2t 2

2



0

 16

1

417

418

Chapter 14

Vector Analysis

1 64. f x, y  20  x 4 C: y  x 3 2, 0 ≤ x ≤ 40 rt  t i  t 3 2 j, 0 ≤ t ≤ 40 3 rt  i  t 1 2 j 2

1  94 t

rt 

Lateral surface area:



0

C

Let u  1   t, then t  9 4

 40

0

1 20  t 4

 40

f x, y ds 



1

4 2 9 u

1 20  t 4

 1  94t dt

 1 and dt  89 u du.



9 t dt  4 



91

1



  

1 8 8 20  u2  1 u u du  9 9 81



8 u5 179u3  81 5 3

66. f x, y  y

91



1





91

u4  179u 2 du

1

850,304 91  7184  6670.12 1215

z 4

C: y  x 2 from 0, 0 to 2, 4

3

S8

2 1

Matches c. 4

3

2 4

x

68. W 



C

F dr 



y

(2, 4, 0)

M dx  N dy

y

C c

M  154  x y  60  15x c  cx  2

2

2

y = c ) 1 − x 2)

N  15xy  15xc  cx 2 dx  dx, dy  2cx dx



1

W

1

60  15x 2c  cx 2  15xc  cx 22 cx dx

−1

x 1

 120  4c  8c 2 (parabola) w  16c  4  0 ⇒ c  14 yields the minimum work, 119.5. Along the straight line path, y  0, the work is 120. 72. (a) Work  0

70. See the definition, page 1024.

(b) Work is negative, since against force field. (c) Work is positive, since with force field. 74. False, the orientation of C does not affect the form



76. False. For example, see Exercise 32.

f x, y ds.

C

http://librosysolucionarios.net

Section 14.3

Section 14.3

Conservative Vector Fields and Independence of Path

Conservative Vector Fields and Independence of Path

2. F x, y  x 2  y 2 i  x j (b) r2 w  w 2 i  w j, 0 ≤ w ≤ 2

(a) r1 t  t i  t j, 0 ≤ t ≤ 4 r1 t  i  F t 

t2



C

1 2t

r2 w  2w i  j

j

F w  w 4  w 2 i  w 2 j



 t i  t j

F  dr 

 4

0



1 t 2  t  t dt 2





32 4

t3 t2 t    3 2 3

0

F  dr 

C



80  3



2

2w w 4  w 2  w 2 dw

0

 w3

6



w4 w3  2 3



2 0



80 3

4. F x, y  yi  x 2 j (a) r1 t  2  t i  3  t j, 0 ≤ t ≤ 3 r1 t  i  j F t  3  t i  2  t 2 j



C

F  dr 



3



3  t 2 2  t 3  2 3



3



69 2

w1   2  ln w w1  dw  3  2ln w



3  t  2  t 2 dt  

0

0

(b) r2 w  2  ln w i  3  ln w j, 1 ≤ w ≤ e3 r2 w 

1 1 i j w w

F w  3  ln w i  2  ln w 2 j



 3

C

F  dr 

e

2

3  ln w

2

1

Since



e3 1



8. F x, y, z  y ln z i  x ln z j 

6. F x, y  15x 2 y 2 i  10x 3 y j N  30x 2 y x

2  ln w 3 3

M  30x 2 y y

69 2

xy k z

curl F  0 so F is not conservative. x x N    P y z z z 

N M  , F is conservative. x y

10. F x, y, z  sin yz i  xz cos yz j  xy sin yz k curl F  0, so F is not conservative. 12. F x, y  ye xy i  xe xy j (a) r1 t  t i  t  3 j, 0 ≤ t ≤ 3

(b) F x, y is conservative since

r1 t  i  j F t   t  3 e

3tt 2



C

F  dr 

 

3

i  te

3tt 2

3tt 2

 t  3 e

M N   xye xy  e xy. y x

j

dt

3tt 2

 te

The potential function is f x, y  e xy  k.

0 3



0



e 3tt 3  2t dt

 e 3tt

2



3

2

 e0  e0  0

0

http://librosysolucionarios.net

419

420

Chapter 14

Vector Analysis

14. F x, y  xy 2 i  2x 2 y j (a) r1 t  t i 

1 j, t

r1 t  i 

1 j t2

F t 



C

1 (b) r2 t  t  1 i  t  3 j, 3

1 ≤ t ≤ 3

r2 t  i 

1 i  2tj t

F  dr 



3

1

1 j 3

1 2 F t  t  1 t  3 2 i  t  1 2 t  3 j 9 3



1  dt t

 

3

 ln t

1

C

  2

F  dr 

 ln 3

0





1 2 t  1 t  3 2  t  1 2 t  3 dt 9 9

2

1 9



3t 3  7t 2  7t  3 dt

0



1 3t 4 7t 3 7t 2    3t 9 4 3 2



16.

0 ≤ t ≤ 2



2 0



44 27

2x  3y  1 dx  3x  y  5 dy

C

Since My  Nx  3, F x, y  2x  3y  1 i  3x  y  5 j is conservative. The potential function is f x, y  x 2  3xy  y 22  x  5y  k. (a) and (d) Since C is a closed curve, (b)

 



2x  3y  1 dx  3x  y  5 dy  0.

C

C

(c)

18.



y2  x  5y 2





y2  x  5y 2

0, 1

1  3  2e2  e4

2

Since curl F  0, F x, y, z is conservative. The potential function is f x, y, z  x  yz  k.

Since My  Nx  2y, F x, y  x 2  y 2 i  2xy j

(a) r1 t  cos t i  sin t j  t 2 k, 0 ≤ t ≤



is conservative. The potential function is f x, y  x 33  xy 2  k.

 

2, e2

 10

20. F x, y, z  i  z j  yk

x 2  y 2 dx  2xy dy

C

(a)

0, 1



2x  3y  1 dx  3x  y  5 dy  x 2  3xy 

C

0, 1



2x  3y  1 dx  3x  y  5 dy  x 2  3xy 

C

x 2  y 2 dx  2xy dy 

C



8, 4



x3  xy 2 3



0, 0



1, 0, 2



1, 0, 0



0, 2

C

8  3 2, 0



1, 0, 2



F  dr  x  yz

1, 0, 0

22. F x, y, z  y i  x j  3xz 2 k F x, y, z is not conservative. (a) r1 t  cos t i  sin t j  t k, 0 ≤ t ≤ r1 t  sin t i  cos t j  k F t  sin t i  cos t j  3t 2 cos t k



C

F  dr 





0





 t

sin2 t  cos 2 t  3t 2 cos t dt 

0







 3 t 2 sin t

0

6





0

 2

(b) r2 t  1  2t i  2 t k, 0 ≤ t ≤ 1

896 3



x3  xy 2 (b) x 2  y 2 dx  2xy dy  3 C



F  dr  x  yz





1  3t 2 cos t dt

0



—CONTINUED—

http://librosysolucionarios.net





t sin t dt  t  3t 2 sin t  6 sin t  t cos t

0

 5

 2

Section 14.3

Conservative Vector Fields and Independence of Path

22. —CONTINUED— (b) r2 t  1  2t i  t k, 0 ≤ t ≤ 1 r2 t  2 i  k F t  1  2t j  3 2t 2 1  2t k



C



1

F  dr 



1

3 3 t 2 1  2t dt  3 3

0

t 2  2t 3 dt  3 3

0

24. F x, y, z  y sin z i  x sin z j  xy cos x k

26.



C

(a) r1 t  t 2 i  t 2 j, 0 ≤ t ≤ 2

 t3  t2  3

4 1 0



3 2



2 x  y i  2 x  y j  dr  x  y 2

4, 3



3, 2

 49

r1 t  2 t i  2 t j F t  t 4 cos t 2 k



C

F  dr 



2

0 dt  0

0

(b) r2 t  4t i  4t j, 0 ≤ t ≤ 1 r2 t  4 i  4 j F t  16t 2 cos 4t k



C

28.



30.



32.



F  dr 



1

0 dt  0

0

y dx  x dy x  arctan x2  y2 y C

C

x2

23, 2

 



1, 1



  3 4 12



2x 2y 1 dx  2 dy   2  y 2 2 x  y 2 2 x  y2

1, 5



7, 5



1 1 12   26 74 481

zy dx  xz dy  xy dz

C

Note: Since F x, y, z  yz i  xz j  xyk is conservative and the potential function is f x, y, z  xyz  k, the integral is independent of path as illustrated below. 1, 1, 1

(a)

xyz

(b)

xyz

(c)

xyz

0, 0, 0

0, 0, 1

0, 0, 0

1, 0, 0

34.



0, 0, 0

1 1, 1, 1

 

 xyz

0, 0, 1

1, 1, 0

 

 xyz

1, 0, 0

011 1, 1, 1

 

 xyz



1, 1, 0

0011

6x dx  4z dy  4y  20z dz  3x 2  4yz  10z 2

C

36. F x, y  Work 

4, 3, 1



0, 0, 0

 46

2x x2 i  2 j is conservative. y y 2 1, 4

 xy 

3, 2



1 9 17   4 2 4

http://librosysolucionarios.net

421

422

Chapter 14

Vector Analysis

38. F x, y, z  a 1 i  a 2 j  a 3 k Since F x, y, z is conservative, the work done in moving a particle along any path from P to Q is



f x, y, z  a1x  a 2 y  a 3 z

Q q1, q2, q3



P p1, p2, p3

 a1 q1  p1  a 2 q2  p2  a 3 q3  p3  F  PQ . \

40. F  150j 1 (b) r t  t i  50 50  t 2 j

(a) r t  t i  50  t j, 0 ≤ t ≤ 50 dr  i  j dt



F  dr 

C



50

150 dt  7500 ft

0

 lbs



C



50

F  dr  6

50  t dt  7500 ft  lbs

0

y x i 2 j x2  y2 x  y2

42. F x, y  (a) M 

1 d r  i  25 50  t j dt

y x2  y2

(b) r t  cos t i  sin t j, 0 ≤ t ≤

x2  y 2 M x 2  y 2 1  y 2y

  2 y x 2  y 2 2 x  y 2 2 N

x2

x  y2

F  sin t i  cos t j dr  sin t i  cos t j dt



C

F  dr 







 

sin2 t  cos2 t dt  t

0

0

 

x2  y2 N x 2  y 2 1  x 2x

  2 2 2 2 x x  y

x  y 2 2 Thus,

N M  . x y

(c) r t  cos t i  sin t j, 0 ≤ t ≤

(d) r t  cos t i  sin t j, 0 ≤ t ≤ 2

F  sin t i  cos t j

F  sin t i  cos t j

dr  sin t i  cos t j dt

dr  sin t i  cos t j dt



C

F  dr 





sin2 t  cos2 t dt

0

C





 t



0

F  dr 



2

sin2 t  cos2 t dt

0 2

 

 t



0

 2

This does not contradict Theorem 14.7 since F is not continuous at 0, 0 in R enclosed by curve C.



(e) arctan

x 1y xy 2  i j y 1  xy 2 1  xy 2





x y i 2 jF x2  y2 x  y2

44. A line integral is independent of path if



C

F  dr does not depend on the curve joining P and Q. See Theorem 14.6

46. No, the amount of fuel required depends on the flight path. Fuel consumption is dependent on wind speed and direction. The vector field is not conservative. 48. True

50. False, the requirement is My  Nx.

http://librosysolucionarios.net

Section 14.4

Section 14.4

Green’s Theorem y



0 ≤ t ≤ 4 4 ≤ t ≤ 8 8 ≤ t ≤ 12

t i, 2. rt  4 i  t  4 j, 12  t i  12  t j,





4

y 2 dx  x 2 dy 



(4, 4) 4

2

0 dt  t 2 0 

t  420  16 dt

1

4

  

x 1

12

12  t2dt  12  t2dt  0  64 



8

By Green’s Theorem,

y=x

3

8

0

C

R

N M  dA  x y



 4

0

x



4

2x  2y dy dx 

0

y 2 dx  x 2 dy 

C

  

2

2

3

128 64  3 3

x 2 dx 

0

64 . 3

4. rt  cos t i  sin t j, 0 ≤ t ≤ 2



Green’s Theorem

y

sin2 t sin t dt  cos2 tcos t dt

1

x 2 + y 2 =1

0



2

cos3 t  sin3 t dt

x

−1

1

0



2

−1

cos t1  sin2 t  sin t1  cos2 t dt

0



sin3 t cos3 t  cos t  3 3

 sin t  By Green’s Theorem,

  R

N M  dA  x y





  1

0

0

1x 2

1  1x2 2

0

2



1

2x  2y dy dx

2r cos   2r sin r dr d 

0

2 3



2

0

2 cos   sin  d  0  0. 3

6. C: boundary of the region lying between the graphs of y  x and y  x 3

  

xe y dx  e x dy 

C

R

  1

xe x  3x 2e x dx  3

0

N M  dA  x y

In Exercises 8 and 10,



1

0

  0

xe x  e x dx 2.936  2.718 0.22

1

x

e x  xe y dy dx 

x3

1

xe x  x3 e x dx 0.22 3

0

N M   1. x y

8. Since C is an ellipse with a  2 and b  1, then R is an ellipse of area ab  2. Thus, Green’s Theorem yields



 y  x dx  2x  y dy 

C



1 dA  Area of ellipse  2.

R

y

10. R is the shaded region of the accompanying figure.



C

 y  x dx  2x  y dy 



1 dA

R

 Area of shaded region 1   25  9  8 2

4 2 1 −5 −4 −3 −2 −1

x 1 2 3 4 5

−2 −3 −4 −5

http://librosysolucionarios.net

4

423

424

Chapter 14

Vector Analysis

12. The given curves intersect at 0, 0 and 9, 3. Thus, Green’s Theorem yields



y 2 dx  xy dy 

C

 

 y  2y dA

R

9



0

x

 9

y dy dx 

0

0

y 2 2

x



0



9

dx 

0

x x 2 dx  2 4



9 0



81 4

14. In this case, let y  r sin , x  r cos . Then d A  r dr d and Green’s Theorem yields



  

x 2  y 2 dx  2xy dy 

C

2

0



0

1cos

1cos

r sin r dr d

0

r 2 sin dr d

0

2

4 3

0



1  cos 4 3

 

sin 1  cos 3 d 2



0

 0.

N M we have  2ex sin 2y  y x

  R

N M  dA  0. x y



18. By Green’s Theorem,





ex 2  y dx  ey 2  x dy  2

2

C

2 dA  2Area of R  2 62   23  60.

R

20. By Green’s Theorem,



2

R

4

16. Since



4y dA  4

y

3x 2 e y dx  e y dy 

C

 

(−1 , 1 )

3x 2e y dA

R

2



1

2



 1

2

3x 2e y dy dx 

 1

2

(2, 2)

2

1 1

2

3x 2e y dy dx 

x

3x 2e y dy dx

 1

2

(1, 1)

(−2 , 2 )

1

1 2

(− 2, − 2) (−1 , −1 )

3x 2e y dy dx

(2, − 2) (1, − 1)

 7e 2  e2  2e 2  e  7e 2  e2  2e1  e2  16e 2  16e2  2e  2e1. 22. Fx, y  e x  3y i  ey  6x j C: r  2 cos  Work 



ex  3y dx  ey  6x dy 

C



9 dA  9 since r  2 cos  is a circle with a radius of one.

R

24. Fx, y  3x 2  y i  4xy 2 j C: boundary of the region bounded by the graphs of y  x, y  0, x  4 Work 



C

 4

3x 2  y dx  4xy 2 dy 

0

x

0

 4

4y 2  1 dy dx 

4 32 3x

 x12 dx 

0

http://librosysolucionarios.net

176 15

Section 14.4 26. From the figure we see that

y

C2

4

3 3 C1: y  x, dy  dx, 0 ≤ x ≤ 2 2 2 1 x C2: y    4, dy   dx 2 2

x + 2y = 8 (2, 3)

3

C3 2

C1 3x − 2y = 0

1

C3: x  0, dx  0. 1 2

A 

1 2

  2

0 0



3 3 1 x  x dx  2 2 2



 0

2

x 1



4

2

4 dx  2

2

we have

dx  4

0

 



1 2

t

0

9 2



0

3

,

32t  t 4 3t 3t 2 31  2t 3  3 dt 3 2  1 t  1 t  1 t 3  12



t5  t 2 9 dt  t 3  13 2

30. See Theorem 14.9: A 







 t 2t 3

0

3  1 dt  t 3  13 2

Mx 



C



x2 1 dy  2 C 2

2t 3 1



3t 2 t 3  12 dt 

3

0







Mx 1  2A 2A

y 2 dx and y 

C





3  . 2

My 1  2A 2A

x 2 dy and x 

y 2 dx.

C

x dA. Let N  x 22 and M  0. By Green’s Theorem,

R

C





x 2 dy.

C

(b) By Theorem 14.9 and the fact that x  r cos , y  r sin , we have 1 2

0

y dA. Let N  0 and M  y 22. By Green’s Theorem,

R

For the moment about the y-axis, My  My 





y2 1 dx   2 2







1 x dy  y dx. 2 C

32. (a) For the moment about the x-axis, Mx 

A

3

31  2t3 32t  t 4 dt and dy  3 dt, 3 2 t  1 t  12

dx 



2

x 1 1  x   4 dx  0 2 2 2

28. Since the loop of the folium is formed on the interval 0 ≤ t ≤

A

Green’s Theorem

x dy  y dx 

1 2



r cos r cos  d  r sin r sin  d 

1 2



r 2 d.

C

1 a2 1 . Note that y  0 and dy  0 along the boundary y  0. , we have  2 2A a 2 Let x  a cos t, y  a sin t, 0 ≤ t ≤ , then

34. Since A  area of semicircle 

x y

1 a2 1 a2

 



a 2 cos 2 t a cos t dt 

0



a 2 sin2 t a sin t dt 

0



x, y   0,

a 

4a 3

 

a 



cos 3 t dt 

0



0

sin3 t dt 

a 





1  sin2 t cos t dt 

0



a cos 3 t cos t   3





0





http://librosysolucionarios.net



a sin3 t sin t   3

4a . 3





0

0

425

426

Chapter 14

Vector Analysis y

1 1 1 36. Since A  2ac  ac, we have  , 2 2A 2ac

(b, c) 2a

C1: y  0, dy  0

C3

C2

c c x  a, d y  C2: y  dx ba ba c c x  a, dy  dx. ba ba

C3: y  Thus,

 

1 2ac

x

1 2ac

y

x 2 dy 

C

y 2 dx 

C



x, y  

38. A 

1 2





1 2ac



a



b

a

1 0 2ac



0

 b

a

x2

a

−a

c dx  ba



a

x2

b



c 2 x  a2 d x  ba



x

C1

a







1 2abc b c 0  dx  ba 2ac 3 3

a

b c a x  a dx 2

2

b

1 c 2b  a c 2b  a c  .  2ac 3 3 3





b3, 3c 

a 2 cos 2 3 d 

0

a2 2





1  cos 6 a2 sin 6 d   2 4 6



0





0



a 2 4

Note: In this case R is enclosed by r  a cos 3 where 0 ≤  ≤ . 40. In this case, 0 ≤  ≤ 2 and we let u

sin  1  u2 2 du , cos   , d  . 1  cos  1  u2 1  u2

Now u ⇒  as  ⇒  and we have

 



1 A2 2

 18

0





0



9 d  9 2  cos 2





13 du  18 1  3u 2

0



6

3

2   63 1 u3u 2

0





0

2du 1  u2  18 1  u2 1  u 22 44  1  u2 1  u 22











3 arctan 3 u 6





23 6 du  arctan 3 u 1  3u 22

3 0



3

3

0

0







0

1  u2 du 1  3u 22

  1 u3u

12 1

3 2

3

3

2





3

1

 2 3.

42. (a) Let C be the line segment joining x1, y1 and x2, y2. y dy 



y2  y1 x  x1  y`1 x2  x1 y2  y1 dx x2  x1

y dx  x dy 

C

 x2



x1





y2  y1  y1 x 2  x1

x x 1

y  y1 y2  y1 x  x1  y1  x 2 x2  x1 x2  x1





x2 x1

x2

1

x1

y2  y1  y1 x 2  x1 2  x1

x

 x1

 dx   x  x





 x1 y2  y1  y1x2  x1  x1 y2  x2 y1 —CONTINUED—

http://librosysolucionarios.net

y2  y1  y1 d x 2  x1





3u 2





du

0

Section 14.5 42. —CONTINUED— (b) Let C be the boundary of the region A  Therefore,



dA 

R

1 2



y dx  x dy 

C

1 2



 y dx  x dy   y dx  x dy  . . .  

1 2

C1

C2

1  1 dA 

R

Parametric Surfaces



427

d A.

R



y dx  x dy

Cn

where C1 is the line segment joining x1, y1 and x2, y2, C2 is the line segment joining x2, y2 and x3, y3, . . . , and Cn is the line segment joining xn, yn  and x1, y1. Thus,

 R

1 dA  x1y2  x2 y1  x2 y3  x3 y2  . . .  xn1 yn  xn yn1  xn y1  x1yn . 2

44. Hexagon: 0, 0, 2, 0, 3, 2, 2, 4, 0, 3, 1, 1 A  12 0  0  4  0  12  4  6  0  0  3  0  0  21 2 46. Since





C

F  N ds 

f D N g ds 

C



div F dA, then

R

 

f g

C



 N ds

div f g dA 

R

48.



f x dx  g y dy 

C

R

  R

Section 14.5



 f div g  f  g dA 

  g  y  f x dA  x y





 R

 f  2g  f  g dA.

0  0 dA  0

R

Parametric Surfaces

2. ru, v  u cos v i  u sin v j  uk

4. ru, v  4 cos ui  4 sin uj  vk

x2  y2  z2

x 2  y 2  16

Matches d.

Matches a.

1 6. ru, v  2u cos v i  2u sin v j  u 2 k 2 1 1 z  u2, x 2  y 2  4u2 ⇒ z  x2  y2 2 8 Paraboloid

8. ru, v  3 cos v cos ui  3 cos v sin u j  5 sin vk x 2  y 2  9 cos2 v cos2 u  9 cos2 v sin2 u  9 cos2 v x2  y2 z2   cos2 v  sin2 v  1 9 25 x2 y2 z2   1 9 9 25

z 4

Ellipsoid z 4

4

y

5

x

x

4

3

3 4

http://librosysolucionarios.net

y

428

Chapter 14

Vector Analysis

For Exercises 10 and 12,

z

r u, v  u cos vi  u sin vj  u 2 k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2.

5

Eliminating the parameter yields z  x 2  y 2, 0 ≤ z ≤ 4. y

2

2 x

10. su, v  u cos v i  u 2 j  u sin vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 y  x2  z2 The paraboloid opens along the y-axis instead of the z-axis. 12. su, v  4u cos v i  4u sin v j  u 2 k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 z

x2  y2 16

The paraboloid is “wider.” The top is now the circle x 2  y 2  64. It was x 2  y 2  4. 14. ru, v  2 cos v cos ui  4 cos v sin u j  sin vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2

16. ru, v  2u cos v i  2u sin v j  v k, 0 ≤ u ≤ 1, 0 ≤ v ≤ 3 y z  arctan x

z

x2 y2 z2   1 4 16 1

5 4 3

−5

−4

z



−5

8

4 5

3

4

−4 5

−3 −4 −5

x

0 ≤ u ≤

 , 0 ≤ v ≤ 2 2

2 x

18. ru, v  cos3 u cos v i  sin3 u sin v j  uk,

−4

−2

y 4

2 4

20. z  6  x  y ru, v  u i  v j  6  u  vk

z

2

−1

x

−1 1

1 y

22. 4x 2  y 2  16

24.

ru, v  2 cos ui  4 sin uj  vk

x2 y2 z2   1 9 4 1 ru, v  3 cos v cos ui  2 cos v sin uj  sin vk

28. Function: y  x3 2, 0 ≤ x ≤ 4

26. z  x 2  y 2 inside x 2  y 2  9. ru, v  v cos u i  v sin uj  v 2 k, 0 ≤ v ≤ 3

Axis of revolution: x-axis x  u, y  u3 2 cos v, z  u3 2 sin v 0 ≤ u ≤ 4, 0 ≤ v ≤ 2

30. Function: z  4  y 2, 0 ≤ y ≤ 2 Axis of revolution: y-axis x  4  u 2 cos v, y  u, z  4  u 2 sin v 0 ≤ u ≤ 2, 0 ≤ v ≤ 2

http://librosysolucionarios.net

y

Section 14.5

1 34. ru, v  2u cosh v i  2u sinh v j  u2 k, 2 ruu, v  2 cosh v i  2 sinh v j  u k

32. ru, v  u i  v j  uv k, 1, 1, 1 ruu, v  i 

Parametric Surfaces

v u k, rvu, v  j  k 2uv 2uv

rvu, v  2u sinh v i  2u cosh v j

At 1, 1, 1, u  1 and v  1.

At 4, 0, 2, u  2 and v  0.

1 1 ru1, 1  i  k, rv1, 1  j  k 2 2

ru2, 0  2i  2k, rv2, 0  4j

 

N  ru rv  8i  8k

i j k N  ru1, 1 rv1, 1  1 0 12   12 i  12 j  k 1 0 1 2

Direction numbers: 1, 0, 1 Tangent plane: x  4  z  2  0 x  z  2

Direction numbers: 1, 1, 2

Tangent plane: x  1   y  1  2z  1  0 x  y  2z  0 36. ru, v  4u cos v i  4u sin v j  u2 k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 ruu, v  4 cos v i  4 sin v j  2u k rvu, v  4u sin v i  4u cos v j ru rv 



ru rv  A

 2

64u 4



256u2

 8uu 2  4

2

8uu2  4 du dv 

0

0



i j k 4 cos v 4 sin v 2u  8u 2 cos v i  8u 2 sin v j  16u k 4u sin v 4u cos v 0

 2

0



128 1282 64  dv  22  1 3 3 3

38. ru, v  a sin u cos v i  a sin u sin v j  a cos uk, 0 ≤ u ≤ π, 0 ≤ v ≤ 2 ruu, v  a cos u cos v i  a cos u sin v j  a sin uk rvu, v  a sin u sin v i  a sin u cos v j





i j k ru rv  a cos u cos v a cos u sin v a sin u  a 2 sin2 u cos vi  a 2 sin2 u sin v j  a 2 sin u cos uk a sin u sin v a sin u cos v 0 ru rv  A

 2

0



a2

sin u

a2 sin u du dv  4a 2

0

40. ru, v  a  b cos v cos u i  a  b cos v sin u j  b sin v k, a > b, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 ruu, v   a  b cos v sin u i  a  b cos v cos u j rvu, v  b sin v cos u i  b sin v sin u j  b cos v k



i ru rv   a  b cos v sin u b sin v cos u

j a  b cos v cos u b sin v sin u

k 0 b cos v



 b cos u cos v a  b cos v i  b sin u cos v a  b cos v j  b sin v a  b cos v k ru rv  ba  b cos v A

 2

0

2

ba  b cos v du dv  4 2ab

0

http://librosysolucionarios.net

429

430

Chapter 14

Vector Analysis

42. ru, v  sin u cos v i  u j  sin u sin vk, 0 ≤ u ≤ , 0 ≤ v ≤ 2 ruu, v  cos u cos v i  j  cos u sin vk rvu, v  sin u sin v i  sin u cos vk ru rv  sin u cos v i  cos u sin u j  sin u sin vk ru rv  sin u 1  cos2 u A

 2

0



 



2  1

sin u 1  cos2 u du dv   22  ln

0

2  1

44. See the definition, page 1055. 46. Graph of ru, v  u cos v i  u sin v j  vk 0 ≤ u ≤ , 0 ≤ v ≤  from (a) 10, 0, 0

(b) 0, 0, 10

(c) 10, 10, 10

z

z

3

−3

3

y

y

−3

3 3

−3

3

x

3 x

48. ru, v  2u cos v i  2u sin v j  vk, 0 ≤ u ≤ 1, 0 ≤ v ≤ 3 (b) If v 

(a) If u  1: r1, v  2 cos v i  2 sin v j  vk



r u,

x2  y2  4

z

0 ≤ z ≤ 3

2 2  u i  3 u j  k 3 3



y   3 x

10 8

z

Helix 4

z

2 3

2

2

−2

−1

−1 1

−2 2

1

−2

Line

2 −2 x

2 : 3

2

1 2

x

y

(c) If one parameter is held constant, the result is a curve in 3-space. 50. x 2  y 2  z 2  1 Let x  u cos v, y  u sin v, and z  u 2  1 . Then, ruu, v  cos v i  sin v j 

u u 2  1

k

rvu, v  u sin v i  u cos v j. At 1, 0, 0, u  1 and v  0. ru1, 0 is undefined and rv1, 0  j. The tangent plane at 1, 0, 0 is x  1.

http://librosysolucionarios.net

y

y

Section 14.6

Surface Integrals

52. ru, v  ui  f u cos v j  f u sin vk, a ≤ u ≤ b, 0 ≤ v ≤ 2 ruu, v  i  fu cos v j  fu sin vk rvu, v  f u sin v j  f u cos vk





k i j ru  rv  1 fu cos v fu sin v 0 f u sin v f u cos v ru  rv  f u1   fu2 A

  2

0

 f u fu i  f u cos v j  f u sin vk

b

f u1   fu2 du dv

a b

 2

f x1   f x2 dx

since u  x

a

Section 14.6

Surface Integrals z z  2,  3, dS  1  4  9 dy dx  14 dy dx x y

2. S: z  15  2x  3y, 0 ≤ x ≤ 2, 0 ≤ y ≤ 4,



 2

x  2y  z dS 

4

0

S

x  2y  15  2x  3y14 dy dx

0

 2

4

 14

0

15  x  y dy dx  12814

0

2 z z  x 1 2, 0 4. S: z  x 3 2, 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 3 x y



   1

x  2y  z dS 

x

0

S

0

1



x

0

       



2 x  2y  x 3 2 1  x 1 22  02 dy dx 3

0



2 x  2y  x 3 2 1  x dy dx 3

1

2 3

x 5 2x  1 dx

0





1

2 1 5 2 x 1  x 3 2 3 4

6x 1

2

3 2

18 2

18 2

18 2

18

 

0



1  x 3 2

5 2

1 0

52 5  18 24 5 24

 









1

x3 21  x dx

0

 x

5 1 12 3

3 2

1  x3 2



1 0



5 24



1

x1 21  x dx

0

1

x  x2 dx

0

1

0

5 12

x

1 2



2



 x  21x

1 dx 4







1

5 1 24 2



5 3 1 3 1 1 2  ln  2  ln 48 2 4 2 4 2



152 5 1 612 5  ln   ln 3  22  0.2536 96 192 3  22 288 192



2

x

1 1 ln x   x2  x 4 2









http://librosysolucionarios.net

0



431

432

Chapter 14

Vector Analysis z z  0 x y

6. S: z  h, 0 ≤ x ≤ 2, 0 ≤ y ≤ 4  x 2,





4x 2

2

dx dS 

0

S

xy dy dx 

0

1 2



2

x4  x 2 dx 

0



1 x4 2x 2  2 4



2 0

2

1 z 1 z 1 8. S: z  xy, 0 ≤ x ≤ 4, 0 ≤ y ≤ 4,  y,  x 2 x 2 y 2



 4

xy dS 

0

S

160  1  y4  x4 dy dx  3904 15 3

4

2

5

2

xy

0

 x , 0 ≤ y ≤ 2 2

10. S: z  cos x, 0 ≤ x ≤



   2

x 2  2xy dS 

0

S

x 2

x 2  2xy1  sin2 x dy dx 

0



 2

0

x3 1  sin2 x dx  0.52 4

12. S: z  a 2  x 2  y 2

x, y, z  kz m



kz dS 

S

z

  

a

1 

ka2  x 2  y 2

R



ka 2  x 2  y 2

R





ka dA  ka

R

x

  a

y  x2  y2

2

a 2  x 2  y 2

2



2

dA a



a dA a 2  x 2  y 2

x

dA  ka2a2  2ka3

R

14. S: ru, v  2 cos u i  2 sin u j  vk, 0 ≤ u ≤ 0 ≤ v ≤ 2

 , 2

ru  rv  2 cos ui  2 sin u j  2





 2

2

x  y dS 

0

S

2 cos u  2 sin u2 du dv  16

0

16. S: ru, v  4u cos v i  4u sin v j  3uk, 0 ≤ u ≤ 4, 0 ≤ v ≤  ru  rv  12u cos v i  12u sin v j  16uk  20u



x  y dS 

S

18. f x, y, z 

 

4

4u cos v  4u sin v20u du dv 

0

0

10,240 3

xy z

S: z  x 2  y 2, 4 ≤ x 2  y 2 ≤ 16



f x, y, z dS 

S

 

xy 1  4x 2  4y 2 dy dx  x2  y2

S



2

r1  4r 2 sin cos dr d 

2

0



4

2

0

2

0

65  1717 sin2

65

 

12

2

2



0

4

2

r 2 sin cos

1  4r 2 r dr d

r2

1 1  4r 23 2 12



0

http://librosysolucionarios.net

4 2

sin cos d

a

y

Section 14.6

Surface Integrals

20. f x, y, z  x 2  y 2  z 2 S: z  x 2  y 2, x  12  y 2 ≤ 1



f x, y, z dS 

S

    

x 2  y 2   x 2  y 2 

S



2

S

2





cos3 d 

0

3 sin  16

  x y y  2

2

2

2

dy dx

2

 

x 2  y 2 dy dx  2

16 3

x  y2

2

2

S



x 2

2xx yy  dy dx

2x 2  y 2

2

1 

16 3

sin3

3

0





2 cos

r 2 dr d

0

1  sin2  cos d

0





0

0

22. f x, y, z  x 2  y 2  z 2 S: x 2  y 2  9, 0 ≤ x ≤ 3, 0 ≤ z ≤ x Project the solid onto the xz-plane; y  9  x 2.



 3

f x, y, z dS 

0

S

x

0

  3



0

3



0

1 

x 2  9  x 2  z 2

x

9  z 2

0

3 dz dx  9  x 2



3 x3 9x  dx  2 3 9  x





3

0

x 9  x 2



2

 02 dz dx

z3 3 9z  3 9  x 2

3



x

dx

0



3

27x9  x 21 2 dx 

0

x 39  x 21 2 dx

0

Let u  x 2, dv  x9  x 21 2 dx, then du  2x dx, v   9  x 2.





x 9  x

 279  x 2

3

3

2

2

0

0





3

2  81  9  x 23 2 3

0



3





2x9  x 2 dx

0

 81  18  99

24. Fx, y, z  x i  y j

y

S: 2x  3y  z  6 (first octant)

3

Gx, y, z  2x  3y  z  6

2

Gx, y, z  2 i  3 j  k

 S

F N dS 

 R

F G dA 

 

3

0

3



0



2x 3 2

y = − 23 x + 2

1

R

2x  3y dy dx

x

1

0

4 3 2  x 2  4x   x  2 3 2 3

4 3 2   x 3  2x 2   x  2 9 4 3

 dx 2



3 3 0

 12

http://librosysolucionarios.net

2

3

433

434

Chapter 14

Vector Analysis

26. Fx, y, z  x i  y j  z k

y

S: x 2  y 2  z 2  36 (first octant)

5

z  36  x 2  y 2

4 3

Gx, y, z  z  36  x 2  y 2 Gx, y, z  F G 

 S

x2 + y2 = 62

6

R

2 1

x y i jk 2 2 36  x  y 36  x 2  y 2

x 2

1

3

4

5

6

x2 y2 36  z 2 2 36  x  y 36  x 2  y 2 36  x 2  y 2

F N dS 

 R

F G dA  

  

36

36  x 2  y 2

R

 2

6

0

36 36  r 2

0

dA

r dr d

(improper)

 108 28. Fx, y, z  x i  y j  2z k

y

S: z  a 2  x 2  y 2

x 2 + y2 ≤ a 2

a

Gx, y, z  z  a 2  x 2  y 2 −a

x y Gx, y, z  i jk a 2  x 2  y 2 a 2  x 2  y 2

a

−a

x2 y2 3x 2  3y 2  2a 2 F G    2a 2  x 2  y 2  2 2 2 2 2 2 a  x  y a  x  y a 2  x 2  y 2

 S

F N dS 

 R

F G dA  

  





3x 2  3y 2  2a 2 dA a 2  x 2  y 2

R

2

a

3r 2  2a 2 r dr d

a 2  r 2

0

0

2

3

a

0

0

2

3

2

0

2

0

a

0

2 r 2a 2  r 2  a 2  r 23 2 3

0

3



r3 dr d  2a 2 a 2  r 2



2 3 a d  2a 2 3

2

r a 2  r 2 a



0



dr d

d  2a 2



2

0

a d  0

0

30. Fx, y, z  x  y i  y j  z k S: z  1  x 2  y 2, z  0 Gx, y, z  z  x 2  y 2  1 Gx, y, z  2x i  2y j  k F G  2xx  y  2y y  1  x 2  y 2  xx 2  2xy  y 2  1

 S

F N dS 

 R

F G dA  

  

x 2  2xy  y 2  1 dA

R

2

0



2

0

1

r 2  2r 2 cos sin  1r dr d

0

3 1 3 sin2

 sin cos d   4 2 4 4





2



The flux across the bottom z  0 is zero.

http://librosysolucionarios.net

0



3 2

a

a

2



 r2

0

d

x

Section 14.6 34. Orientable

32. A surface is orientable if a unit normal vector N can be defined at every nonboundary point of S in such a way that the normal vectors vary continuously over the surface S. 36. E  yz i  xz j  x y k S: z  1  x 2  y 2



N dS 

E

S



    E

1  xx

 yz i  xz j  x yk

R



gxx, y i  gyx, y j  k dA

R



2xyz  xy dA  1  x 2  y 2

R

 y2

2

y

i

1  x 2  y 2





1x 2

1

3xy dA 

R



j  k dA

1 1x 2

3xy dy dx  0

38. x 2  y 2  z 2  a 2 z  ± a 2  x 2  y 2



m2

  

k dS  2k

S

1

R

a

2

x  x2  y2

  a 2



a dA  2ka a 2  x 2  y 2

 2k

R

2

a

0

0

2

y  x2  y2

r a 2  r 2



2

dA

dr d

a





 2ka  a 2  r 2 2  4ka 2

 

0

kx 2  y 2 dS

Iz  2

S

x 2  y 2

 2k

R



a dA  2ka  x2  y2

a 2

2

0

a

0

r3 dr d (use integration by parts)  r2

a 2

a





2  2ka r 2a 2  r 2  a 2  r 23 2 2 3 0  2ka

23a 2  32 a 4ka   32 a m 3

2

2

2

Let u  r 2, dv  ra 2  r 21 2 dr, du  2r dr, v   a 2  r 2. 40. z  x 2  y 2, 0 ≤ z ≤ h

z

Project the solid onto the xy-plane. Iz 

   

h

x 2  y 21 dS

S

h

 

2

 2

y

x  y 1  4x 2  4y 2 dy dx 2

h hx 2

0



hx 2

2

x

h

r 21  4r 2 r dr d

0

12h 1  4h

3 2



1 2 1  4h5 2  120 120



1  4h3 2    1  4h3 26h  1  1 10h  1  4h  60 60 60

http://librosysolucionarios.net

Surface Integrals

435

436

Chapter 14

Vector Analysis

42. S: z  16  x 2  y 2 Fx, y, z  0.5zk



F  N dS 

S

  

F  gxx, yi  gyx, yj k dA

R

0.5z k



R



x 16  x 2  y 2

0.5 z dA 

R

 0.5

 2

0

Section 14.7



i



y 16  x 2  y 2



j k dA

0.516  x 2  y 2 d

R

4

16  r 2r dr d  0.5



2

0

0

64 64 d  3 3

Divergence Theorem

2. Surface Integral: There are three surfaces to the cylinder. Bottom: z  0, N  k, F  N  z 2



0 dS  0

S1

Top: z  h, N  k, F  N  z 2



h 2 dS  h 2 Area of circle)  4h 2

S2

Side: ru, v  2 cos ui 2 sin u j v k, 0 ≤ u ≤ 2, 0 ≤ v ≤ h ru  2 sin ui 2 cos u j, rv  k ru rv  2 cos ui 2 sin uj F  ru rv  8 cos2 u  8 sin2 u





S3

Therefore,

2

h

F  N dS 

0



8 cos2 u  8 sin2 u du dv  0

0

F  N dS  0 4h2 0  4h2.

S

Divergence Theorem: div F  2  2 2z  2z



2z dV 

  2

0

Q

2

0

h

2zr dz dr d  4h 2.

0

z

h

x

2

2

y

http://librosysolucionarios.net

Section 14.7 4. Fx, y, z  xyi z j x y k S: surface bounded by the planes y  4, z  4  x and the coordinate planes Surface Integral: There are five surfaces to this solid.

 N   x y

z  0, N  k, F



 4

 x y dS 

4

0

S1

0

 4

z dS 

4x

0

S2

0

 4

z dS 

0

S3



4

z dz dx  

0

y  4, N  j, F  N  z



4x 8 dx  64

0

y  0, N  j, F  N  z





4

 x y dy dx  

4x



32 4  x2 dx  2 3

4

z dz dx 

0

32 4  x2 dx   2 3

0

x  0, N  i, F  N  xy



x z  4, N 

S5

4

0

S4



 4

xy dS 

0 dS  0

0

i k 1 , FN xy x y , dS  2 dA 2 2

1 xy x y 2 dA  2

Therefore,

  F  N dS  64  S

 4

0

32 3

4

xy x y dy dx  128

0

32 3 0 128  64.

Divergence Theorem: Since div F  y, we have



 4

div F dV 

4

0

Q

4x

0

y dz dy dx  64.

0

6. Since div F  2xz 2  2 3xy we have



 

a

div F dV 

0

Q

a



0

a

a

0



a

2xz2  2 3xy dz dy dx 

0

0

a

0



2 3 xa  2a 3xya dy dx 3



2 4 3 xa  2a2 xa3 dx 3 2

3 1  a6  2a3 a5. 3 4 8. Since div F  y z  y  z, we have



    a 2x 2

a

div F dV 

Q



a 2x 2y 2

a a 2x 2 0 2

a

0

0

z dz dy dx 



a 2r r 3  dr d  2 2

 2

0

  2

0

a

0

a 2r 2 r 4  4 8

a 2r 2

0

a



0

d 

zr dz dr d



2 4 a

0

8

d 

10. Since div F  xz, we have



xz dV 

Q

  4

0

3

9y 2

3 9y

 4

xz dx dy dz  2

0

3

z 0 dy dz  0. 2 3

http://librosysolucionarios.net

a 4 . 4

Divergence Theorem

437

438

Chapter 14

Vector Analysis

12. Since div F  y 2 x 2 ez, we have



   

16

x 2 y 2 ez dV 

2



16

2

0

8

r 2

0

Q

16. div F  2

 S

 6

3ez dV 

F  N dS 

4

4y

0

 6

3e z dz dy dx 

0





2

0

16

0



1 8r 3 re8  r 4  re r 2 dr d 2

131,052 262,104 100e8 d   200e8 5 5

14. Since div F  e z e z e z  3e z, we have



x 2 y 2 ez dz dy dx

1 2x 2 y 2

r 2 ezr dz dr d 

0

0



8

256x2

0

Q

256x2

4

0

div F dV 

Q



6

3e 4y  1 dy dx 

0

3e 4  5 dx  18e 4  5.

0



2 dV.

Q

The surface S is the upper half of a hemisphere of radius 2. Since the volume is 12  43 23  16 3, you have



32 . 3

F  N dS  2Volume 

S

18. Using the Divergence Theorem, we have

 S

curl F  N dS 



div curlF dV

Q

j y yz sin x

i curl Fx, y, z  x xy cos z

k z xyz

 xz  y sin x i   yz xy sin z j  yz cos x  x cos z k.

Now, div curl Fx, y, z  z  y cos x  z x sin z  y cos x x sin z  0. Therefore,

 S

curl F  N dS 



div curl F dV  0.

Q

 a

20. If div Fx, y, z > 0, then source.

22. v 

0

If div Fx, y, z < 0, then sink.

a

0

 a

Similarly,

If div Fx, y, z  0, then incompressible.

 a

x dy dz 

0

0

a

0

a

 a

y dz dx 

0



a

a dy dz 

0

a 2 dz  a 3

0

a

z dx dy  a 3.

0

24. If Fx, y, z  a1 i a 2 j a 3 k, then div F  0. Therefore,

 S

F  N dS 



div F dV 

Q



0 dV  0.

Q

26. If Fx, y, z  x i yj z k, then div F  3. 1  F

28.

 S

F  N dS 

1  F



div F dV 

1  F

Q



 

 f D N g  gD N f  dS 

S

S





3 dV 

Q

f D N g dS 





dV

Q

gD N f dS

S

 f 2g f  g dV 

Q

3  F



g 2f g  f  dV 

Q

http://librosysolucionarios.net



 f 2g  g 2f  dV

Q

Section 14.8

Section 14.8

Stokes’s Theorem

   

2. F x, y, z  x 2 i  y 2 j  x 2 k i  curl F  x

j  y

2

2

x

Stokes’s Theorem

k  z x2

y





4. F x, y, z  x sin y i  y cos x j  yz 2 k

 2x j

curl F 

i  x

j  y

k  z

x sin y

y cos x

yz 2

 z 2 i   y sin x  x cos yk

6. F x, y, z  arcsin y i  1  x 2 j  y 2 k

curl F 

i  x

j  y

k  z

arcsin y 1  x2

 2y i 

 1x x

 2y i 

 1 x x

y2

2



2



1

1  y 2

1 1  y 2

k k

8. In this case C is the circle x 2  y 2  4, z  0, dz  0.



Line Integral:

C



F  dr 

y dx  x dy

C

Let x  2 cos t, y  2 sin t, then dx  2 sin t dt, dy  2 cos t dt, and



y dx  x dy 

C

Double Integral: Fx, y, z  z  x 2  y 2  4, N  curl F  2k, therefore



curl F  NdS 

 

 2

2 dA 

R

4x 2

2

2

4

4x 2



2

2 dy dx  2

2

24  x 2 dx



x 2



2

2

1

C3

C2: z  y 2, x  0, dx  0, dz  2y dy C3: y  a, z  a2, dy  dz  0

F  dr  

1

C4

x

        

y

z 2 dx  x 2 dy  y 2 dz

C

0

C1

2y3 dy 

C2

a



C2

C1 1

C4: z  y 2, x  a, dx  0, dz  2y dy.

C

 8.

z

C1: y  0, z  0, dy  dz  0



4 dt  8.

0

10. Line Integral: From the accompanying figure we see that for

Hence,

2

F 2xi  2yj  k  , dS  1  4x 2  4y 2 dA F 1  4x 2  4y 2

4  x 2 dx  2 x4  x 2  4 arcsin

2



a

2y3 dy 

0

C4

0

a4 dx 

0

a2 dy  y22y dy

a4 dx 

C3

0

a 2 dy 

a

a

   a y

2y3 dy  a4 x

a

0

2

0

—CONTINUED—

http://librosysolucionarios.net

a

 a5  a 3  a 3a2  1.

439

440

Chapter 14

Vector Analysis

10. —CONTINUED— Double Integral: Since Fx, y, z  y 2  z, we have N

2yj  k 1  4y 2

and dS  1  4y 2 dA.

Furthermore, curl F  2y i  2z j  2 x k. Therefore,

 S

curl F  N dS 



4yz  2x dA 

 a

0

R

a



a

4y2  2x dy dx 

0





a 4  2ax dx  a4 x  ax 2

0

\

a 0

 a 3 a2  1.

\

12. Let A  0, 0, 0, B  1, 1, 1, and C  0, 0, 2. Then U  AB  i  j  k, and V  AC  2k, and N

2i  2 j i  j U V   . U V 2 22

Hence, Fx, y, z  x  y and dS  2 dA. Since curl F 

2x k, we have x2  y2

 S

curl F  N dS 



0 dS  0.

R

14. Fx, y, z  4xz i  y j  4xyk, S: 9  x 2  y 2, z ≤ 0 curl F  4x i  4x  4y j Gx, y, z  x 2  y 2  z  9 Gx, y, z  2x i  2y j  k

 S

curl F  N dS  

  

8x 2  2y 4x  4y dA

R

3

9x 2

3

9x 2

8x 2  8xy  8y 2 dy dx

3



 

16x29  x2 

3



16 9  x23 2 dx  0 3

16. Fx, y, z  x 2 i  z 2 j  xyz k, S: z  4  x 2  y 2 i  curl F  x

j  y

k  z

x2

z2

xyz

 xz  2z i  yzj

Gx, y, z  z  4  x 2  y 2 Gx, y, z 

 S

x 4  x 2  y 2

curl F  N dS  

y

i

4  x 2  y 2

     R

jk

zx  2x y 2z  dA 2 2 4  x  y 4  x 2  y 2

R

2



2 2



2 2



2

x 2 y  2xy 



y3 3



4x 2

2 4x 2

x 2  2x  y 2 dy dx

4x2

4x2

dx



2 2x 24  x 2  4x4  x 2  4  x 24  x 2 dx 3



8 8  x 24  x 2  4x4  x 2  4  x 2 dx 3 3

 3 8 x2x

 

 2

xx  2  y 2 dA 



8 1

4  x 2  16 arcsin

24



  3 8  3 2  3 8  3 2  0 1

4

1

x4  x

x 8 1 4  4  x 2 3 2  2 3 3 2

4

http://librosysolucionarios.net

2

 4 arcsin

x 2



2 2

Section 14.8





18. Fx, y, z  yz i  2  3y j  x 2  y 2 k j  y

i  curl F  x

k  z

2  3y x 2  y 2

yz

 2y i   y  2x j  z k

S: the first octant portion of x  z 2  16 over x 2  y 2  16 2

Gx, y, z  z  16  x 2 Gx, y, z 



x 16  x 2

ik

curl F  N dS 

S



     R

R

16  x 2

4



0

0

4

0



 z dA



 16  x 2 dA

 162xy x

2



16x 2

dx 0

x 16  x 2  16  x 2 dx







64 64 64    3 3 3

1 x3   16  x 2 3 2  16x  3 3  64 

 



 16  x 2 dy dx

x y 2  16  x 2 y 16  x 2

0



2xy

16x 2

4



2xy 16  x 2

4 0



20. Fx, y, z  xyz i  y j  z k

curl F 

i  x

j  y

k  z

xyz

y

z

 xyj  xzk

S: the first octant portion of z  x 2 over x 2  y 2  a 2. We have N

 S

2x i  k and dS  1  4x 2 dA. 1  4x 2

curl F  N dS 

  

xz dA 

R

a



0

a 2 x2



x 3 dA

R

x 3 dy dx

0

a



x 3a 2  x 2 dx

0





1 2   x 2a 2  x 2 3 2  a 2  x 2 5 2 3 15 

a 0

2 5 a 15

http://librosysolucionarios.net

Stokes’s Theorem

441

442

Chapter 14

Vector Analysis

22. Fx, y, z  z i  yk

 

S: x 2  y 2  1 i  curl F  x z

j  y 0

k  z y

ij

Letting N  k, curl F  N  0 and

 S

curl F  N dS  0.

24. curl F measures the rotational tendency. See page 1084. 26. f x, y, z  xyz, gx, y, z  z, S: z  4  x 2  y 2 (a) gx, y, z  k f x, y, z gx, y, z  xyzk rt  2 cos t i  2 sin t j  0k, 0 ≤ t ≤ 2



C

f x, y, z gx, y, z  dr  0

(b) f x, y, z  yz i  xz j  xyk gx, y, z  k



i f g  yz 0

j xz 0

x

N

4  x 2  y 2

dS 

1  

 S

i



k xy  xz i  yz j 1 y

4  x 2  y 2

x 4  x 2  y 2

jk

 4 yx  y 2

f x, y, z gx, y, z  N dS  

2 4  x 2  y 2

dA

S

x 2z y 2z 2  dA 2 2 4  x  y 4  x 2  y 2 4  x 2  y 2

     2

0

2



dA 

2

S



2

2

0



2x 2  y 2 dA 4  x 2  y 2 2

0

2r 2cos 2   sin 2  r d dr 4  r 2 2r 3

1 sin 2

4  r 2 2

2 0

dr  0

Review Exercises for Chapter 14 2. Fx, y  i  2yj

4. f x, y, z  x 2eyz Fx, y, z  2xeyz i  x 2ze yz j  x 2 ye y z k

y 5 4 3 2

 xeyz2i  xz j  x y k x

−1 −2 −3 −4 −5

2

4

http://librosysolucionarios.net

Review Exercises for Chapter 14

443

6. Since M y  1 x 2  N x, F is conservative. From M  U x  y x 2 and N  U y  1 x, partial integration yields U   y x  h y and U   y x  gx which suggests that Ux, y   y x  C. 8. Since M y  6y 2 sin 2x  N x, F is conservative. From M  U x  2y3 sin 2x and N  U y  3y 21  cos 2x, we obtain U  y3 cos 2x  h y and U  y31  cos 2x  gx which suggests that h y  y3, gx  C, and Ux, y  y31  cos 2x  C. 10. Since

12. Since

N M  4x  , y x

M N  sin z  , y x

P M  2z  , z x

M P  y cos z , z x

F is not conservative.

P N  6y z y F is not conservative. 16. Since F  3x  y i   y  2z j  z  3x k:

14. Since F  xy 2 j  z x 2 k; (a) div F  2xy 

(a) div F  3  1  1  5

x2

(b) curl F  2xz j  y

(b) curl F  2i  3j  k

2k

z z 20. Since F  i  j  z 2 k: x y

18. Since F  x 2  y i  x  sin2 y j: (a) div F  2x  2 sin y cos y

(a) div F  

(b) curl F  0



z 1 1 z   2z  z 2  2  2 x2 y 2 x y

1 1 (b) curl F   i  j y x 22. (a) Let x  5t, y  4t, 0 ≤ t ≤ 1, then ds  41 dt.





1

xy ds 

20t 2 41 dt 

0

C

y

2041 3

4 3

(b) C1: x  t, y  0, 0 ≤ t ≤ 4, ds  dt

2



4

xy ds 

0

C



0

C



2

 t2  t3

2

3 1 0



4

0 dt

85 . 3

dy dx  1  cos t,  sin t dt dt

t  sin t1  cos t2  sin t2 dt 

0

3

0

24. x  t  sin t, y  1  cos t, 0 ≤ t ≤ 2, x ds 

x

C1

2

8t  8t 2 25 dt 

 165





1

0 dt 

C2 (4, 0)

C3: x  0, y  2  t, 0 ≤ t ≤ 2, ds  dt



y = − 12 x + 2

C3

C2: x  4  4t, y  2t, 0 ≤ t ≤ 1, ds  25 dt

Therefore,

(0, 2)



2

t  sin t2  2 cos t dt

0

 

 2

2

0

 2

2

2

t1  cos t  sin t1  cos t dt  2   32 1  cos t3 2 0 t1  cos t dt

0

 8

http://librosysolucionarios.net



 2

2

0

t1  cos t dt



444

Chapter 14

Vector Analysis

26. x  cos t  t sin t, y  sin t  t sin t, 0 ≤ t ≤



2x  y dx  x  3y dy 



 2

 , dx  t cos t dt, dy  cos t  t cos t  sin t dt 2

sin t cos t5t 2  6t  2  cos2 tt  1  sin2 t2t  3 dt  1.01

0

C

28. r t  t i  t 2 j  t 3 2 k, 0 ≤ t ≤ 4 3 x t  1, y t  2t, z t  t1 2 2





1  4t

4

x 2  y 2  z2 ds 

t 2  t 4  t3

0

C

2

9  t dt  2080.59 4

30. f x, y  12  x  y C: y  x 2 from 0, 0 to 2, 4 rt  t i  t 2 j, 0 ≤ t ≤ 2 r t  i  2t j r t  1  4t 2 Lateral surface area:





2

f x, y ds 

12  t  t 21  4t 2 dt  41.532

0

C

32. dr  4 sin t i  3 cos t j dt F  4 cos t  3 sin t i  4 cos t  3 sin t j, 0 ≤ t ≤ 2



C

F  dr 



2



12  7 sin t cos t dt  12t 

0

7 sin2 t 2

2



0

 24

34. x  2  t, y  2  t, z  4t  t 2, 0 ≤ t ≤ 2 dr 

i  j  24tt t k dt 2

F  4  2t  4t  t 2  i  4t  t 2  2  t j  0k



C

F  dr 



2

t  2 dt 

0

 t2  2t

2

2 0

 2

36. Let x  2 sin t, y  2 cos t, z  4 sin2 t, 0 ≤ t ≤ . dr  2 cos t i  2 sin t j  8 sin t cos t k dt F  0 i  4 j  2 sin t k



F  dr 





F  dr 

 2x  y dx  2y  x dy

C

38.

C





8 sin t  16 sin2 t cos t dt  8 cos t 

0





16 3 sin t 3

0

 16

C

rt  2 cos t  2t sin t i  2 sin t  2t cos t j, 0 ≤ t ≤ 



C

F  dr  4 2  4

http://librosysolucionarios.net

Review Exercises for Chapter 14

40. rt  10 sin t i  10 cos t j   10 sin t i  10 cos t j 

445

2000 5280  t k, 0 ≤ t ≤  2 2 25 tk 33

F  20k



dr  10 cos t i  10 sin t j 



F  dr 



y dx  x dy 

C

42.



 2



500 250 dt  mi  ton 33 33

0

C

25 k 33



4, 4, 4)

  0, 0, 1  16  ln 4

1 dz  xy  ln z z

44. x  a  sin , y  a1  cos , 0 ≤  ≤ 2 1 (a) A  2



y

x dy  y dx.

C

Since these equations orient the curve backwards, we will use A

1 2



1 2

 

   

C1

 y dx  x dy

2

C2

a21  cos 1  cos   a2  sin sin  d 

0

a2 2 a2 2

2

1 2



2 a

2π a

0  0 d

0

1  2 cos   cos2    sin   sin2  d

0 2

2  2 cos    sin  d 

0

a2 6  3a2. 2

(b) By symmetry, x  a. From Section 14.4, y

46.



1 2A



y 2 dx 

C

1 2A



2

0

  2

xy dx  x 2  y 2 dy 

0

C

a31  cos 21  cos  d 

2

2x  x dy dx

48.

0

5 1 a35  a 23a2 6



C

2





  

y 2 dx  x 4 3 dy 

C

 

1

1x 2 33 2

1

(1x 2 3 3 2

1

4 1 3 x yy 2 3

1 1

1





43 x

1 3

a2 x 2

a a2 x 2 a

2x dx  4



0

50.

  a

x 2  y 2 dx  2xy dy 



 2y dy dx

1x2 33 2



1x 2 33 2

dx

8 1 3 x 1  x2 33 2 dx 3

8 16   x 2 3 1  x2 35 2  1  x2 35 2 7 35



1 1

0

http://librosysolucionarios.net

a

0 dx  0

4y dy dx

x

446

Chapter 14

Vector Analysis

u 52. r u, v  eu 4 cos v i  eu 4 sin v j  k 6 0 ≤ u ≤ 4, 0 ≤ v ≤ 2 z

2

2

2 x

y

54. S: ru, v  u  v i  u  v j  sin v k,

0 ≤ u ≤ 2, 0 ≤ v ≤ 

ru u, v  i  j ru u, v  i  j  cos v k

 

i j k ru rv  1 1 0 1 1 cos v

 cos v i  cos v j  2 k

 ru rv   2 cos2 v  4



z dS 

S

 

0



2

sin v2 cos2 v  4 du dv  2 6  2 ln

0

66  22





56. (a) z  aa  x2  y2, 0 ≤ z ≤ a2

z

z  0 ⇒ x2  y2  a2

a

2

(b) S: gx, y  z  a2  ax2  y2

x, y  kx2  y2 m

   

ex, y, z dS

x

S



a

a

y

kx2  y2 1  gx2  gy2 dA

R

k

1  x ax y 2 2

x2  y2

2

R

k

R



2



a2y2 dA x  y2 2



a2  1 x2  y2 dA

 

 ka2  1

2

0

 ka2  1

2

0

a

r2 dr d

0

a3 d 3

2  ka2  1 a3 3

http://librosysolucionarios.net

Review Exercises for Chapter 14 58. Fx, y, z  x i  y j  z k Q: solid region bounded by the coordinate planes and the plane 2x  3y  4z  12

z

(0, 0, 3)

Surface Integral: There are four surfaces for this solid. z0 y  0,

2x  3y  4z  12, N 

 S4

N  F dS 

1 4



1 4

 

(0, 4, 0)

0 dS  0

x

(6, 0, 0)

S2

F  N  x,

N  i,

0 dS  0

S1

F  N  y,

N  j,

x  0,

  

F  N  z,

N  k,

0 dS  0

S3

2i  3j  4k , dS  29

1  14  169 dA 

29

dA

4

2x  3y  4z dy dx

R

6



(122x) 3

0

6

12 dy dx  3

0

4

0





2x x2 dx  3 4x  3 3



6 0

 36

Triple Integral: Since div F  3, the Divergence Theorem yields.



div F dV 

Q



 13 Area of baseHeight  21 643  36.

3 dV  3Volume of solid  3

Q

60. Fx, y, z  x  z i   y  z j  x 2 k

z

(0, 0, 6)

S: first octant portion of the plane 3x  y  2z  12 Line Integral:



C

C1: y  0,

dy  0,

z

12  3x , 2

3 dz   dx 2

C2: x  0,

dx  0,

z

12  y , 2

1 dz   dy 2

C3: z  0,

dz  0,

y  12  3x,

F  dr  

  

(4, 0, 0) (0, 12, 0)

y

dy  3 dx

x  z dx   y  z dy  x 2 dz

C

x

C1 0



x

4

 dx   y  12 2 y dy  

12  3x 3  x2  2 2



3 5  x 2  x  6 dx  2 2

Double Integral: Gx, y, z 



12

0

C2

32 y  6 dy  

x  12  3x3 dx

C3

4

10x  36 dx  8

0

12  3x  y z 2

3 1 Gx, y, z   i  j  k 2 2 curl F  i  2x  1 j

 S

curl F  N dS 

 4

0

123x

0



4

x  1 dy dx 

3x 2  15x  12 dx  8

0

http://librosysolucionarios.net

y

447

442

Chapter 14

Vector Analysis

22. Fx, y, z  z i  yk

 

S: x 2  y 2  1 i  curl F  x z

j  y 0

k  z y

ij

Letting N  k, curl F  N  0 and

 S

curl F  N dS  0.

24. curl F measures the rotational tendency. See page 1084. 26. f x, y, z  xyz, gx, y, z  z, S: z  4  x 2  y 2 (a) gx, y, z  k f x, y, z gx, y, z  xyzk rt  2 cos t i  2 sin t j  0k, 0 ≤ t ≤ 2



C

f x, y, z gx, y, z  dr  0

(b) f x, y, z  yz i  xz j  xyk gx, y, z  k



i f g  yz 0

j xz 0

x

N

4  x 2  y 2

dS 

1  

 S

i



k xy  xz i  yz j 1 y

4  x 2  y 2

x 4  x 2  y 2

jk

 4 yx  y 2

f x, y, z gx, y, z  N dS  

2 4  x 2  y 2

dA

S

x 2z y 2z 2  dA 2 2 4  x  y 4  x 2  y 2 4  x 2  y 2

     2

0

2



dA 

2

S



2

2

0



2x 2  y 2 dA 4  x 2  y 2 2

0

2r 2cos 2   sin 2  r d dr 4  r 2 2r 3

1 sin 2

4  r 2 2

2 0

dr  0

Review Exercises for Chapter 14 2. Fx, y  i  2yj

4. f x, y, z  x 2eyz Fx, y, z  2xeyz i  x 2ze yz j  x 2 ye y z k

y 5 4 3 2

 xeyz2i  xz j  x y k x

−1 −2 −3 −4 −5

2

4

http://librosysolucionarios.net

Review Exercises for Chapter 14

443

6. Since M y  1 x 2  N x, F is conservative. From M  U x  y x 2 and N  U y  1 x, partial integration yields U   y x  h y and U   y x  gx which suggests that Ux, y   y x  C. 8. Since M y  6y 2 sin 2x  N x, F is conservative. From M  U x  2y3 sin 2x and N  U y  3y 21  cos 2x, we obtain U  y3 cos 2x  h y and U  y31  cos 2x  gx which suggests that h y  y3, gx  C, and Ux, y  y31  cos 2x  C. 10. Since

12. Since

N M  4x  , y x

M N  sin z  , y x

P M  2z  , z x

M P  y cos z , z x

F is not conservative.

P N  6y z y F is not conservative. 16. Since F  3x  y i   y  2z j  z  3x k:

14. Since F  xy 2 j  z x 2 k; (a) div F  2xy 

(a) div F  3  1  1  5

x2

(b) curl F  2xz j  y

(b) curl F  2i  3j  k

2k

z z 20. Since F  i  j  z 2 k: x y

18. Since F  x 2  y i  x  sin2 y j: (a) div F  2x  2 sin y cos y

(a) div F  

(b) curl F  0



z 1 1 z   2z  z 2  2  2 x2 y 2 x y

1 1 (b) curl F   i  j y x 22. (a) Let x  5t, y  4t, 0 ≤ t ≤ 1, then ds  41 dt.





1

xy ds 

20t 2 41 dt 

0

C

y

2041 3

4 3

(b) C1: x  t, y  0, 0 ≤ t ≤ 4, ds  dt

2



4

xy ds 

0

C



0

C



2

 t2  t3

2

3 1 0



4

0 dt

85 . 3

dy dx  1  cos t,  sin t dt dt

t  sin t1  cos t2  sin t2 dt 

0

3

0

24. x  t  sin t, y  1  cos t, 0 ≤ t ≤ 2, x ds 

x

C1

2

8t  8t 2 25 dt 

 165





1

0 dt 

C2 (4, 0)

C3: x  0, y  2  t, 0 ≤ t ≤ 2, ds  dt



y = − 12 x + 2

C3

C2: x  4  4t, y  2t, 0 ≤ t ≤ 1, ds  25 dt

Therefore,

(0, 2)



2

t  sin t2  2 cos t dt

0

 

 2

2

0

 2

2

2

t1  cos t  sin t1  cos t dt  2   32 1  cos t3 2 0 t1  cos t dt

0

 8

http://librosysolucionarios.net



 2

2

0

t1  cos t dt



444

Chapter 14

Vector Analysis

26. x  cos t  t sin t, y  sin t  t sin t, 0 ≤ t ≤



2x  y dx  x  3y dy 



 2

 , dx  t cos t dt, dy  cos t  t cos t  sin t dt 2

sin t cos t5t 2  6t  2  cos2 tt  1  sin2 t2t  3 dt  1.01

0

C

28. r t  t i  t 2 j  t 3 2 k, 0 ≤ t ≤ 4 3 x t  1, y t  2t, z t  t1 2 2





1  4t

4

x 2  y 2  z2 ds 

t 2  t 4  t3

0

C

2

9  t dt  2080.59 4

30. f x, y  12  x  y C: y  x 2 from 0, 0 to 2, 4 rt  t i  t 2 j, 0 ≤ t ≤ 2 r t  i  2t j r t  1  4t 2 Lateral surface area:





2

f x, y ds 

12  t  t 21  4t 2 dt  41.532

0

C

32. dr  4 sin t i  3 cos t j dt F  4 cos t  3 sin t i  4 cos t  3 sin t j, 0 ≤ t ≤ 2



C

F  dr 



2



12  7 sin t cos t dt  12t 

0

7 sin2 t 2

2



0

 24

34. x  2  t, y  2  t, z  4t  t 2, 0 ≤ t ≤ 2 dr 

i  j  24tt t k dt 2

F  4  2t  4t  t 2  i  4t  t 2  2  t j  0k



C

F  dr 



2

t  2 dt 

0

 t2  2t

2

2 0

 2

36. Let x  2 sin t, y  2 cos t, z  4 sin2 t, 0 ≤ t ≤ . dr  2 cos t i  2 sin t j  8 sin t cos t k dt F  0 i  4 j  2 sin t k



F  dr 





F  dr 

 2x  y dx  2y  x dy

C

38.

C





8 sin t  16 sin2 t cos t dt  8 cos t 

0





16 3 sin t 3

0

 16

C

rt  2 cos t  2t sin t i  2 sin t  2t cos t j, 0 ≤ t ≤ 



C

F  dr  4 2  4

http://librosysolucionarios.net

Review Exercises for Chapter 14

40. rt  10 sin t i  10 cos t j   10 sin t i  10 cos t j 

445

2000 5280  t k, 0 ≤ t ≤  2 2 25 tk 33

F  20k



dr  10 cos t i  10 sin t j 



F  dr 



y dx  x dy 

C

42.



 2



500 250 dt  mi  ton 33 33

0

C

25 k 33



4, 4, 4)

  0, 0, 1  16  ln 4

1 dz  xy  ln z z

44. x  a  sin , y  a1  cos , 0 ≤  ≤ 2 1 (a) A  2



y

x dy  y dx.

C

Since these equations orient the curve backwards, we will use A

1 2



1 2

 

   

C1

 y dx  x dy

2

C2

a21  cos 1  cos   a2  sin sin  d 

0

a2 2 a2 2

2

1 2



2 a

2π a

0  0 d

0

1  2 cos   cos2    sin   sin2  d

0 2

2  2 cos    sin  d 

0

a2 6  3a2. 2

(b) By symmetry, x  a. From Section 14.4, y

46.



1 2A



y 2 dx 

C

1 2A



2

0

  2

xy dx  x 2  y 2 dy 

0

C

a31  cos 21  cos  d 

2

2x  x dy dx

48.

0

5 1 a35  a 23a2 6



C

2





  

y 2 dx  x 4 3 dy 

C

 

1

1x 2 33 2

1

(1x 2 3 3 2

1

4 1 3 x yy 2 3

1 1

1





43 x

1 3

a2 x 2

a a2 x 2 a

2x dx  4



0

50.

  a

x 2  y 2 dx  2xy dy 



 2y dy dx

1x2 33 2



1x 2 33 2

dx

8 1 3 x 1  x2 33 2 dx 3

8 16   x 2 3 1  x2 35 2  1  x2 35 2 7 35



1 1

0

http://librosysolucionarios.net

a

0 dx  0

4y dy dx

x

446

Chapter 14

Vector Analysis

u 52. r u, v  eu 4 cos v i  eu 4 sin v j  k 6 0 ≤ u ≤ 4, 0 ≤ v ≤ 2 z

2

2

2 x

y

54. S: ru, v  u  v i  u  v j  sin v k,

0 ≤ u ≤ 2, 0 ≤ v ≤ 

ru u, v  i  j ru u, v  i  j  cos v k

 

i j k ru rv  1 1 0 1 1 cos v

 cos v i  cos v j  2 k

 ru rv   2 cos2 v  4



z dS 

S

 

0



2

sin v2 cos2 v  4 du dv  2 6  2 ln

0

66  22





56. (a) z  aa  x2  y2, 0 ≤ z ≤ a2

z

z  0 ⇒ x2  y2  a2

a

2

(b) S: gx, y  z  a2  ax2  y2

x, y  kx2  y2 m

   

ex, y, z dS

x

S



a

a

y

kx2  y2 1  gx2  gy2 dA

R

k

1  x ax y 2 2

x2  y2

2

R

k

R



2



a2y2 dA x  y2 2



a2  1 x2  y2 dA

 

 ka2  1

2

0

 ka2  1

2

0

a

r2 dr d

0

a3 d 3

2  ka2  1 a3 3

http://librosysolucionarios.net

Review Exercises for Chapter 14 58. Fx, y, z  x i  y j  z k Q: solid region bounded by the coordinate planes and the plane 2x  3y  4z  12

z

(0, 0, 3)

Surface Integral: There are four surfaces for this solid. z0 y  0,

2x  3y  4z  12, N 

 S4

N  F dS 

1 4



1 4

 

(0, 4, 0)

0 dS  0

x

(6, 0, 0)

S2

F  N  x,

N  i,

0 dS  0

S1

F  N  y,

N  j,

x  0,

  

F  N  z,

N  k,

0 dS  0

S3

2i  3j  4k , dS  29

1  14  169 dA 

29

dA

4

2x  3y  4z dy dx

R

6



(122x) 3

0

6

12 dy dx  3

0

4

0





2x x2 dx  3 4x  3 3



6 0

 36

Triple Integral: Since div F  3, the Divergence Theorem yields.



div F dV 

Q



 13 Area of baseHeight  21 643  36.

3 dV  3Volume of solid  3

Q

60. Fx, y, z  x  z i   y  z j  x 2 k

z

(0, 0, 6)

S: first octant portion of the plane 3x  y  2z  12 Line Integral:



C

C1: y  0,

dy  0,

z

12  3x , 2

3 dz   dx 2

C2: x  0,

dx  0,

z

12  y , 2

1 dz   dy 2

C3: z  0,

dz  0,

y  12  3x,

F  dr  

  

(4, 0, 0) (0, 12, 0)

y

dy  3 dx

x  z dx   y  z dy  x 2 dz

C

x

C1 0



x

4

 dx   y  12 2 y dy  

12  3x 3  x2  2 2



3 5  x 2  x  6 dx  2 2

Double Integral: Gx, y, z 



12

0

C2

32 y  6 dy  

x  12  3x3 dx

C3

4

10x  36 dx  8

0

12  3x  y z 2

3 1 Gx, y, z   i  j  k 2 2 curl F  i  2x  1 j

 S

curl F  N dS 

 4

0

123x

0



4

x  1 dy dx 

3x 2  15x  12 dx  8

0

http://librosysolucionarios.net

y

447

448

Chapter 14

Vector Analysis

Problem Solving for Chapter 14

z

z x y ,  

x 1  x2  y2 y 1  x2  y2

2. (a) z  1  x2  y2, dS 



x z 

y z

T 

25 x i  y i  z k  25x i  yj  z k x2  y2  z232

2

 N



 1 dA 

1 1  x2  y2

z

z i jk

x

y



x z 

y z 2



2

x

2

i

1  x2  y2

1 y 1  x2  y2



j  k 1  x2  y2

 x i  y j  1  x2  y2 k  x i  y j  z k Flux 

     k T

N dS

S

25x i  y j  z k  x i  y j  z k

k

R

25

k

1  x2  y2

R

 25k

2

0

1

0

1

1  r 2

1 1  x2  y2

dA

dA r dr d  50k

(b) ru, v  sin u cos v, sin u sin v, cos u ru  cos u cos v, cos u sin v, sin u rv  sin u sin v, sin u cos v, 0 ru  rv  sin2 u cos v, sin2 u sin v, sin u cos u sin2 v  sin u cos u cos2 v ru  rv  sin u



Flux  25k

2

0

2

sin u du dv  50k

0

t2 , t, 2 32t 2

4. rt 

32

r t   t, 1, 2t12, r t  t  1

ds  Iy 

  

1 t  1 dt  1 1t 1

C

Ix 

0

 y2  z2 ds 

0

1

x2  y2 ds

C

0



t4 8 3 49  t dt  4 9 180

1

C

Iz 







x2  z2 ds 



8 5 t 2  t 3 dt  9 9



t4 23  t 2 dt  4 60

http://librosysolucionarios.net

Problem Solving for Chapter 14

6.





1 x dy  y dx  2 2 C

2

0

 12 sin 2t cos t  sin t cos 2t dt  2 23

Hence, the area is 43. 8. F x, y  3x2 y 2 i  2x 3 y j is conservative. f x, y  x3y2 potential function. Work  f 2, 4  f 1, 1  816  1  127 10. Area  ab rt  a cos t i  b sin t j, 0 ≤ t ≤ 2 r t  a sin t i  b cos t j 1 1 F   b sin t i  a cos t j 2 2 F

 dr   2 ab sin2 t 

W

1



2

0



1 1 ab cos2 t dt  ab 2 2

1 F  dr  ab2  ab 2

Same as area.

http://librosysolucionarios.net

449

C H A P T E R 14 Vector Analysis Section 14.1 Vector Fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Section 14.2 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Section 14.3 Conservative Vector Fields and Independence of Path . . . . . . 190 Section 14.4 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 193 Section 14.5 Parametric Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 198 Section 14.6 Surface Integrals

. . . . . . . . . . . . . . . . . . . . . . . . . 202

Section 14.7 Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . 208 Section 14.8 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 211 Review Exercises

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

http://librosysolucionarios.net

C H A P T E R Vector Analysis Section 14.1

14

Vector Fields

Solutions to Odd-Numbered Exercises 1. All vectors are parallel to y-axis. Matches (c)

3. All vectors point outward. Matches (b)

5. Vectors are parallel to x-axis for y  n . Matches (a)

9. Fx, y  x i  yj

7. Fx, y  i  j

11. Fx, y, z  3yj



F  x2  y2  c

F  2

x2

y



y2



F  3 y  c

c2

z 4

y

5 1 x

−4

x

x

−5

3

2

y

4

5

−4 −5

13. Fx, y  4x i  yj F  x2 c 216

16x2





y2

15. Fx, y, z  i  j  k c

17.

F  3

2

y 1 c2

2 z

1 y

4

−2

y

1

1

2

−2 4

x

−1

x

−1 −1

4 −4

2

−2

y

x

−4

2

−2

21. f x, y  5x2  3xy  10y2

z

19.

1

23. f x, y, z  z  ye x

2

2

fxx, y  10x  3y

fxx, y, z  2x ye x

1

fyx, y  3x  20y

fyx, y, z  e x

1

2

y

Fx, y  10x  3y i  3x  20y j

2

2

fz  1 Fx, y, z  2 x ye x i  e x j  k 2

2 x

178

http://librosysolucionarios.net

2

Section 14.1

Vector Fields

179

25. gx, y, z  xy lnx  y xy xy xy gyx, y, z  x lnx  y  xy gxx, y, z  y lnx  y 

gzx, y, z  0 Gx, y, z 

 x xy y  y lnx  y i   x xy y  x lnx  y j

27. Fx, y  12xyi  6x2  y j

29. Fx, y  sin yi  x cos yj

M  12xy and N  6x2  y have continuous first partial derivatives.

M  sin y and N  x cos y have continuous first partial derivatives.

N M ⇒ F is conservative.  12x  x y

N M  cos y  ⇒ F is conservative. x y 2 2x 33. M  e2xy, N  2 e 2xy y y

31. M  15y3, N  5xy2 M N  5y2   45y2 ⇒ Not conservative x y

35. Fx, y  2xy i  x2 j

N 2 y  2x 2xy M  e  ⇒ Conservative x y3 y 39. Fx, y 

37. Fx, y  xe x y2yi  x j 2

x y i 2 j x2  y2 x  y2



2xy  2x y

 2 2 2

2 xye x y  2xe x y  2x 3 ye x y y

2xy  x  2 y x2  y2 x  y22

 2

x  2x x

 2 x2y 2 2

x e  2xe x y  2x 3 ye x y x

2xy  y  2 x x 2  y 2 x  y 22

Conservative

Conservative

Conservative

fxx, y  2xye x

fxx, y  2xy

fyx, y  x 2e x

fyx, y  x 2

 





2y

2y

f x, y  e x y  K

fxx, y 

x x2  y2

fyx, y 

y x2  y2

f x, y 

1 lnx2  y2  K 2

2

f x, y  x 2 y  K

 

41. Fx, y  e xcos y i  sin y j

43. Fx, y, z  x yz i  y j  z k, 1, 2, 1

 x

e cos y  e x sin y y

i

 x

e sin y  e x sin y x



45. Fx, y, z  e x sin y i  e x cos y j, 0, 0, 3 i j k    x curl F  x y z  2e cos yk e x sin y ex cos y 0 curl F 0, 0, 3  2k

k

curl F 1, 2, 1  2j  k

Not conservative



j

curl F      xyj  xzk x y z xyz y z

http://librosysolucionarios.net

180

Chapter 14



Vector Analysis

47. Fx, y, z  arctan

curl F 

xy i  lnx

i

j

 x

 y



2

k

 z 

1 lnx 2  y 2 1 2

x arctan y

 



 y2 j  k

x

2

2x x xy2  k 2 k 2 y 1  xy2 x  y2





49. Fx, y, z  sinx  y i  sin y  z j  sinz  xk i j k     cos y  z i  cosz  x j  cosx  y k curl F  x y z sinx  y sin y  z sinz  x



51. Fx, y, z  sin y i  x cos y j  k i j   curl F  x y sin y x cos y

 

53. Fx, y, z  e z  y i  xj  xyk i j k    curl F  x y z  0 yez xe z xye z

k  z  2 cos yk  0 1

Not conservative

Conservative

fx x, y, z  ye z fy x, y, z  xe z

fz x, y, z  xye z f x, y, z  xye z  K

 

55. Fx, y, z 

1 x i  2 j  2z  1k y y

i j   curl F  x y 1 x y y2

k  z

57.

Fx, y  6x 2 i  xy 2 j div Fx, y 

0

 

6x 2  x y 2 x y

 12x  2xy

2z  1

Conservative

fx x, y, z 

1 y

fy x, y, z  

x y2

fz x, y, z  2z  1 f x, y, z  f x, y, z  f x, y, z 

  

1 x dx   g y, z  K1 y y



x x dy   hx, z  K2 y2 y

2z  1 dz

 z 2  z  px, y  K3 f x, y, z 

x  z2  z  K y

http://librosysolucionarios.net

Section 14.1 59.

Fx, y, z  sin x i  cos y j  z 2 k div Fx, y, z 

61.

Vector Fields

  

sin x  cos y  z2  cos x  sin y  2z x y z

Fx, y, z  xyz i  y j  z k

63.

Fx, y, z  e x sin y i  e x cos y j

div Fx, y, z  yz  1  1  yz  2

div Fx, y, z  e x sin y  e x sin y

div F1, 2, 1  4

div F0, 0, 3  0

65. See the definition, page 1008. Examples include velocity fields, gravitational fields and magnetic fields.

67. See the definition on page 1014.

69. Fx, y, z  i  2x j  3y k Gx, y, z  x i  y j  zk

 

i j k F  G 1 2x 3y  2xz  3y 2 i  z  3x y j  y  2x 2k x y z



i j   curl F  G  x y 2xz  3y 2 3xy  z



k   1  1 i  4x  2x j  3y  6yk  6xj  3yk z 2 y  2x

     

71. Fx, y, z  xyz i  y j  z k i  curl F  x xyz

j  y y

Gx, y, z  xi  y j  zk

 

k   x y j  xz k z z

i  curlcurl F  x 0

73. Fx, y, z  i  2x j  3yk

i j k F  G  1 2x 3y x y z

j k    z j  yk y z xy xz

 2xz  3y 2 i  z  3x y j  y  2x 2k divF  G  2z  3x

75. Fx, y, z  xyz i  y j  zk i  curl F  x xyz

j  y y

k  z  xyj  xzk z

divcurl F  x  x  0

77. Let F  M i  N j  Pk and G  Q i  R j  S k where M, N, P, Q, R, and S have continuous partial derivatives.





F  G  M  Q i  N  R j  P  Sk i  curlF  G  x MQ

j  y NR

k  z PS

      P  S  N  R i  P  S  M  Q j  N  R  M  Q k  y z x z x y











N P M N M S R S Q R Q  i  j  k   i   j  k P y z x z x y y z x z x y

 curl F  curl G

http://librosysolucionarios.net

181

182

Chapter 14

Vector Analysis

79. Let F  M i  Nj  P k and G  R i  Sj  T k. divF  G 

   M R N S P T      M  R  N  S  P  T   x y z x x y y z z 

M

N

P

R

S

 div F  div G 81. F  M i  N j  Pk  f    F  curl f    F  curl f   curl  F

(Exercise 77)

 curl  F

(Exercise 78)

    F 83. Let F  M i  Nj  Pk, then f F  f M i  f Nj  f Pk. div f F 

   M f N f P f  f M    f N    fP  f M f N f P x y z x x y y z z f

N N f f f    M  N  P M x y z x y z

 f div F  f F In Exercises 85 and 87, Fx, y, z  xi  yj  zk and f x, y, z  Fx, y, z  x 2  y 2  z 2.

85.

1 lnx 2  y 2  z 2 2 x y z xi  yj  z k F i 2 j 2 k 2  2 ln f   2 x  y2  z2 x  y2  z2 x  y2  z2 x  y2  z2 f ln f 

87. f n   x 2  y 2  z 2 

n

f n  nx 2  y 2  z 2 

n1

x

 n x 2  y 2  z 2 n1

i  nx 2  y 2  z 2 

n1

x 2  y 2  z 2

z x 2  y 2  z 2

T

 x  y  z   x  y  z

y x 2  y 2  z 2

j

k

 nx 2  y 2  z 2 n2x i  yj  z k  n f n2 F 89. The winds are stronger over Phoenix. Although the winds over both cities are northeasterly, they are more towards the east over Atlanta.

http://librosysolucionarios.net

Section 14.2

Section 14.2

Line Integrals



t i, 3i  t  3 j, 3. rt  9  t i  3j, 12  t j,

x2  y2  9

1.

Line Integrals

x2 y2  1 9 9

0 3 6 9

≤ ≤ ≤ ≤

t t t t

≤ ≤ ≤ ≤

3 6 9 12

cos2 t  sin2 t  1 cos2 t 

x2 9

sin2 t 

y2 9

x  3 cos t y  3 sin t rt  3 cos t i  3 sin t j 0 ≤ t ≤ 2

5. r t 

t2i  tit j, 2  tj,

0 ≤ t ≤ 1 1 ≤ t ≤ 2



7. r t  4 t i  3tj, 0 ≤ t ≤ 2; rt  4 i  3j



C



2

x  y ds 

0

5t dt 

0

9. rt  sin t i  cos t j  8t k, 0 ≤ t ≤





2

4t  3t42  32 dt 

 

 2

x 2  y 2  z 2 ds 

2 2 0

 ; rt  cos t i  sin t j  8k 2

sin2 t  cos2 t  64t 2cos t2  sin t2  64 dt

 2







651  64t 2 dt  65 t 

0

11. rt  t i, 0 ≤ t ≤ 3

x 2  y 2 ds 

C

64t 3 3

 

3

t 2  02 1  0 dt

2  83  3

65

6

1

3

t 2 dt

x 1

3 t  1

3

3

0

 

 2

2

3

−1

9

13. rt  cos t i  sin t j, 0 ≤ t ≤

x 2  y 2 ds 

0

 65

2

0



 2



y

0





 10

0

C



 5t2 

 2

y

1

cos 2 t  sin2 t sin t2  cos t2 dt

0

C



 2

0

dt 

 2

x 1

http://librosysolucionarios.net

3  16 2

183

184

Chapter 14

Vector Analysis

15. rt  t i  t j, 0 ≤ t ≤ 1

 C

 1

x  4y  ds 

0

y

t  4t 1  1 dt

 2  3 t  t2

 2



8

1

3 2

0



(1, 1)

1

192 6

x 1

t i, 0 ≤ t ≤ 1 17. rt  2  t i  t  1 j, 1 ≤ t ≤ 2 3  t j, 2 ≤ t ≤ 3

  C1

C2

x  4y ds 

x  4y  ds 

  1

0

C3

C

x  4y  ds 

1







t2 8  t  13 2 2 3

2 1





3

2

C2

C3

2  t   4t  1 1  1 dt

 2 2t 

 

(0, 1)

1 2

t dt 

2

y

C1

(1, 0)

x

192 6

8 43  t dt   3  t3 2 3



3 2



8 3

1 192 8 19  192 191  2     x  4y  ds   2 6 3 6 6

1 19. x, y, z  x 2  y 2  z 2 2 rt  3 cos t i  3 sin tj  2t k, 0 ≤ t ≤ 4 rt  3 sin t i  3 cos t j  2k rt  3 sin t2  3 cos t2  22  13 Mass 



 x, y, z ds 

C



4

1 3 cos t2  3 sin t2  2t2 13 dt 2

0

 

13

2



4

9  4t 2 dt 

0



13

2

4

9t  4t3  3

0

213 27  64 2  4973.8 3 23. Fx, y  3x i  4yi

21. Fx, y  xyi  yj C: rt  4t i  tj, 0 ≤ t ≤ 1

C: rt  2 cos t i  2 sin t j, 0 ≤ t ≤

Ft  4t 2 i  t j

Ft  6 cos t i  8 sin t j

rt  4i  j



C

F  dr 







 2

rt  2 sin t i  2 cos t j



1

16t 2  t dt

C

0



16 3 1 2 t  t 3 2

1 0



F  dr 



 2



35 6

12 sin t cos t  16 sin t cos t dt

0

http://librosysolucionarios.net

 2



 2 sin2 t

0

2

Section 14.2 25. Fx, y, z  x 2 yi  x  zj  x yzk

Line Integrals

27. Fx, y, z  x 2 z i  6yj  yz 2 k

C: rt  t i  t 2 j  2k, 0 ≤ t ≤ 1

rt  t i  t 2 j  ln t k, 1 ≤ t ≤ 3

Ft  t 4 i  t  2j  2 t 3 k

Ft  t 2 ln t i  6t 2 j  t 2 ln 2 tk

r t  i  2 t j

1 d r  i  2 t j  k dt t



C

F  dr  



1



 2t t  2 dt t4

0

 t5  2t3 5

3

 2t 2



1



0

185

17 15



C

F  dr 



3



t 2 ln t  12t 3  t ln t2 dt

1

 249.49

29. Fx, y  x i  2y j C: y  x3 from 0, 0 to 2, 8 rt  t i  t 3 j, 0 ≤ t ≤ 2 rt  i  3t 2 j Ft  t i  2t 3 j F  r  t  6t 5 Work 



C

F  dr 



2

0





1 t  6t 5 dt   t 2  t 6 2

2 0

 66

31. Fx, y  2xi  yj C: counterclockwise around the triangle whose vertices are 0, 0, 1, 0, 1, 1



t i, 0 ≤ t ≤ 1 1 ≤ t ≤ 2 rt  i  t  1 j, 3  t i  3  t j, 2 ≤ t ≤ 3 On C1:

Ft  2t i, rt  i Work 



F

C1

On C2:



1

2t dt  1

0

Ft  2 i  t  1 j, rt  j Work 



C2

On C3:

 dr 

F  dr 



2

t  1 dt 

1

Ft  23  t i  3  t j, rt  i  j Work 

Total work 



C



C3

F  dr 

F  dr  1 



3

2 3  t  3  t dt  

2

35. rt  3 sin t i  3 cos t j 

C: rt  2 cos t i  2 sin t j  t k, 0 ≤ t ≤ 2 rt  2 sin t i  2 cos t j  k



C

F  dr 



2

5t dt  10  2

10 t k, 0 ≤ t ≤ 2  2

F  150k



dr  3 cos t i  3 sin t j 

Ft  2 cos t i  2 sin t j  5tk F  r  5t

3 2

1 3  0 2 2

33. Fx, y, z  x i  yj  5zk

Work 

1 2



C

F  dr 



0

http://librosysolucionarios.net

2

0



10 k dt 2



2



1500 1500 dt  t 2 2

0

 1500 ft  lb

186

Chapter 14

Vector Analysis

37. Fx, y  x2 i  xyj r1t  2t i  t  1 j, 1 ≤ t ≤ 3

(a)

r2t  23  t i  2  t j, 0 ≤ t ≤ 2

(b)

r1t  2 i  j

r2t  2i  j

Ft  4t i  2tt  1 j 2



C1

F  dr 



3

8t 2  2tt  1 dt 

1



236 3

Ft  43  t2 i  23  t2  t j F  dr 

C2

Both paths join 2, 0 and 6, 2. The integrals are negatives of each other because the orientations are different.

236 3



rt  i  2 t j

Ft  2 t i  t j



Ft  t 3  2t 2 i  t 

F  r  2t  2t  0 F  dr  0.





C

F  dr  0.

y 43. x  2t, y  10t, 0 ≤ t ≤ 1 ⇒ y  5x or x  , 0 ≤ y ≤ 10 5



10

x  3y 2 d y 

0

C

5y  3y dy   10y  y 

10

2

2

3

0

 1010

y 1 45. x  2t, y  10t, 0 ≤ t ≤ 1 ⇒ x  , 0 ≤ y ≤ 10, dx  dy 5 5





10

xy dx  y dy 

0

C





y2 y3 y2  y dy   25 75 2



10 0

190 OR 3



y  5x, d y  5 dx, 0 ≤ x ≤ 2



xy dx  y dy 



2

5x 2  25x dx 

0

C

 5x3

3



25x 2 2



2 0



190 3 y

47. rt  t i, 0 ≤ t ≤ 5 3

xt  t, yt  0 dx  dt,



C

dy  0

2x  y dx  x  3y d y 

2 1



x

5

0

2t dt  25

1

2

3

4

−1 −2

http://librosysolucionarios.net

5



t2 j 2

F  r  t 3  2t 2  2t t  Thus,





y j 2

C: rt  t i  t 2 j

rt  i  2 j

C

83  t2  23  t2  t dt

0

41. Fx, y  x 3  2x 2 i  x 

C: rt  t i  2 t j



2



39. Fx, y  yi  x j

Thus,





t2 0 2

Section 14.2

t3ii,  t  3j,

49. rt 

Line Integrals

0 ≤ t ≤ 3 3 ≤ t ≤ 6

xt  t, yt  0,

C1:



dx  dt, dy  0



2t dt  9



3  3t  3 dt 

3

2x  y dx  x  3y dy 

0

C1

C2: xt  3, yt  t  3 dx  0, dy  dt

 

2x  y dx  x  3y dy 

6

3

C2

2x  y dx  x  3y dy  9 

C

2

3t 2

 6t



6



3

45 2

45 63  2 2

y

(3, 3) 3

2

C2 1

C1 x 1

2

3

51. xt  t, yt  1  t2, 0 ≤ t ≤ 1, dx  dt, dy  2t dt



2x  y dx  x  3y dy 

C

 

1

2 t  1  t 2  t  3  3t 22t dt

0



1

6t 3  t 2  4t  1 dt 

0

 3t2

4





t3  2t 2  t 3

1



0

11 6

53. xt  t, yt  2t 2, 0 ≤ t ≤ 2 dx  dt, dy  4t dt



2x  y dx  x  3y dy 

C

 

2

2t  2t 2 dt  t  6t 2 4t dt

0



2

0

55. f x, y  h



2 24t 3  2t 2  2t dt  6t 4  t 3  t 2 3

r  3t i  4t j, 0 ≤ t ≤ 1



316 3

rt  cos t i  sin t j, 0 ≤ t ≤ rt  sin t i  cos t j

rt  5

rt  1

Lateral surface area:

C

0

C: x 2  y 2  1 from 1, 0 to 0, 1

rt  3i  4j



1

f x, y ds 

2

57. f x, y  xy

C: line from 0, 0 to 3, 4





0

5h dt  5h

Lateral surface area:



f x, y ds 

 2

cos t sin t dt

0

C



http://librosysolucionarios.net



 2

 sin2 t 2

0



1 2

 2

187

188

Chapter 14

Vector Analysis

59. f x, y  h C: y  1  x 2 from 1, 0 to 0, 1 rt  1  t i  1  1  t2 j, 0 ≤ t ≤ 1 rt  i  21  tj rt  1  41  t 2 Lateral surface area:





1

f x, y ds 

h1  4 1  t2 dt

0

C

 



h 21  t1  41  t2  ln 21  t  1  41  t2 4



0 1

h 25  ln 2  5   1.4789h 4

61. f x, y  xy C: y  1  x 2 from 1, 0 to 0, 1 You could parameterize the curve C as in Exercises 59 and 60. Alternatively, let x  cos t, then: y  1  cos2 t  sin2 t rt  cos t i  sin2 t j, 0 ≤ t ≤  2 rt  sin t i  2 sin t cos t j rt  sin2 t  4 sin2 t cos2 t  sin t1  4 cos2 t Lateral surface area:



f x, y ds 



 2

cos t sin2 t sin t1  4 cos2 t  dt 

0

C



 2

sin2 t 1  4 cos2 t1 2 sin t cos t dt

0

1 Let u  sin2 t and dv  1  4 cos2 t1 2 sin t cos t, then du  2 sin t cos t dt and v   12 1  4 cos2 t3 2.



C

 2

 2





1 1 sin2 t 1  4 cos2 t 3 2  1  4 cos2 t5 2 12 120



1 1 1 1  55 2    255  11  0.3742 12 120 120 120

   





1 sin2 t1  4 cos2 t3 2 12

f x, y ds  

0



1 6

1  4 cos2 t3 2 sin t cos t dt

0

 2



0



63. (a) f x, y  1  y 2

(c)

z

rt  2 cos t i  2 sin t j, 0 ≤ t ≤ 2

5 4

rt  2 sin t i  2 cos t j rt   2 S



f x, y ds 

C





2

−3

1  4 sin2 t2 dt

0

(b) 0.212 

2



 2t  4t  sin t cos t

0

3 x

 12  37.70 cm2

12  7.54 cm3 5

http://librosysolucionarios.net

3

y

Section 14.2 65. S  25

Line Integrals

z 60

Matches b

50 40 30 20 10 3

3 x

y

67. (a) Graph of: rt  3 cos t i  3 sin t j  1  sin2 2t k 0 ≤ t ≤ 2 z

3

2 1

3

3 4

4

y

x

(b) Consider the portion of the surface in the first quadrant. The curve z  1  sin2 2t is over the curve r1t  3 cos t i  3 sin t j, 0 ≤ t ≤  2. Hence, the total lateral surface area is 4



f x, y ds  4



 2

1  sin2 2t3 d t  12

0

C

34  9 sq. cm

(c) The cross sections parallel to the xz-plane are rectangles of height 1  4 y 321  y 2 9 and base 29  y 2. Hence,



3

Volume  2



29  y 2 1  4

0



y2 y2 1 9 9

dy  42.412 cm

3

69. See the definition of Line Integral, page 1020. See Theorem 14.4.

71. The greater the height of the surface over the curve, the greater the lateral surface area. Hence, z 3 < z1 < z 2 < z 4 .

y 4 3 2

1 x 1

73. False



C



2

3

75. False, the orientations are different.

1

xy ds  2

4

t 2 dt

0

http://librosysolucionarios.net

189

190

Chapter 14

Vector Analysis

Section 14.3

Conservative Vector Fields and Independence of Path

1. Fx, y  x 2 i  xy j (b) r2   sin  i  sin2  j, 0 ≤  ≤

(a) r1t  t i  t 2 j, 0 ≤ t ≤ 1 r1t  i  2t j

r2   cos  i  2 sin  cos  j

Ft  t 2 i  t 3 j



C

F  dr 



 2

Ft  sin2  i  sin3  j

1

t 2  2t 4 dt 

0



11 15

C



2

F  dr 

sin2  cos   2 sin4  cos  d

0

2

 sin3   2 sin5  3



5

0



11 15

3. F x, y  y i  x j (a) r1  sec  i  tan  j, 0 ≤  ≤

 3

r1  sec  tan  i  sec2  j F  tan  i  sec  j



C

F  dr 



3

0



sec  tan2   sec3  d 



3



sec  d  ln sec   tan 

F  dr 

  3



t

2 t  1

0



1 2

3

0



t  1

2 t

N  e x cos y x

 dt   12

3

 ln 2  3  1.317

0



1 1 dt   2 t t  1

1 1 dt   ln 2 t  12 2  14

 



M  e x cos y y

N M  , F is conservative. x y



t  21  t



2

3

0

7. Fx, y 

1 t 2  t  14  14



t

    12 ln 7  4 3  1.317

7 1 1 ln  2 3  ln 2 2 2

5. Fx, y  e x sin yi  ex cos yj

Since

3

0

1 1 i j 2 t  1 2 t

Ft  t i  t  1 j

C

sec sec2   1  sec3  d

0 ≤ t ≤ 3

(b) r2t  t  1 i  t j,



3

0

0

r2t 





0

1 x i  2j y y

N 1  2 x y Since

3

1 M  2 y y

N M

, F is not conservative. x y

9. Fx, y, z  y 2 z i  2xyz j  xy 2 k curl F  0 ⇒ F is conservative.

http://librosysolucionarios.net

dt

Section 14.3

Conservative Vector Fields and Independence of Path

191

11. Fx, y  2xyi  x 2 j (a) r1t  t i  t 2 j, 0 ≤ t ≤ 1

(b) r2t  t i  t 3 j, 0 ≤ t ≤ 1

r1t  i  2t j

r2 t  i  3t 2 j

Ft  2t 3 i  t 2 j

Ft  2t 4 i  t 2 j



C

F  dr 





1

4t 3 dt  1

0

C

F  dr 



1

5t 4 dt  1

0

13. Fx, y  yi  xj (a) r1t  t i  t j,

0 ≤ t ≤ 1

(c) r3t  t i  t 3 j,

r2 t  i  2t j

r3t  i 

Ft  t i  t j

Ft  t 2 i  t j

Ft  t 3 i  t j

C



(b) r2t  t i  t 2 j,

r1t  i  j

 15.

0 ≤ t ≤ 1



F  dr  0

C

F  dr 



1

t 2 dt  

0



1 3

C

F  dr 

0 ≤ t ≤ 1

3t 2 j



1

2t 3 dt  

0

1 2

y 2 dx  2 xy dy

C

Since M y  N x  2y, Fx, y  y 2 i  2xy j is conservative. The potential function is f x, y  xy 2  k. Therefore, we can use the Fundamental Theorem of Line Integrals. (a)



4, 4

 

y 2 dx  2xy dy  x 2 y

C

0, 0

 64

(c) and (d) Since C is a closed curve,

(b)



C



1, 0

 

y 2 dx  2xy dy  x 2 y

1, 0

0

y 2 dx  2xy dy  0.

C

17.



2x y dx  x 2  y 2 dy

19. Fx, y, z  yz i  xz j  xyk

C

Since curl F  0, Fx, y, z is conservative. The potential function is f x, y, z  xyz  k.

Since M y  N x  2x, Fx, y  2xyi  x 2  y 2 j is conservative. The potential function is f x, y  x2y  (a)

 

(b)







y3 3



2x y dx  x 2  y 2 dy  x 2 y 

C

0, 4

y3 3

2x y dx  x 2  y 2 dy  x 2 y 

C

(a) r1t  t i  2j  tk, 0 ≤ t ≤ 4

y3  k. 3 5, 0 0, 4

2, 0



64 3



64 3



C



C

(a) r1t  t i  t 2 j  k, 0 ≤ t ≤ 1 r1t  i  2t j Ft  2t 2  t i  t 2  1 j  2t 2  4k

C



1

0

2t 3  2t 2  t dt 

2 3

—CONTINUED—

http://librosysolucionarios.net

4, 2, 4

 

F  dr  xyz

Fx, y, z is not conservative.

F  dr 

0, 2, 0

 32

(b) r 2t  t 2 i  t j  t 2 k, 0 ≤ t ≤ 2

21. Fx, y, z  2y  x i  x2  z j  2y  4zk



4, 2, 4

 

F  d r  xyz

(0, 0, 0

 32

192

Chapter 14

Vector Analysis

21. —CONTINUED— (b) r2t  t i  t j  2t  12 k, 0 ≤ t ≤ 1 r2t  i  j  4 2t  1k Ft  3t i  t 2  2t  12 j  2t  4 2t  1 2 k



C

 

1

F  dr 

3t  t 2  2t  12  8t 2t  1  162t  13 dt

0 1



 17t3

17t 2  5t  2t  12  162t  13 dt 

0

23. Fx, y, z  e z  y i  x j  x y k

25.



C

Fx, y, z is conservative. The potential function is f x, y, z  xye z  k.

3



5t 2 2t  1 3   22t  14 2 6



3, 8

 

 yi  x j  dr  xy

0, 0

 24

(a) r1t   4 cos t i  4 sin tj  3k, 0 ≤ t ≤ 



C

4, 0, 3

 

F  dr  xye z

4, 0, 3

0

(b) r2t  4  8t i  3k, 0 ≤ t ≤ 1



C

27.

4, 0, 3

 

F  dr  xye z

4, 0, 3

0



cos x sin y dx  sin x cos y dy  sin x sin y



e x sin y dx  e x cos y dy  e x sin y



 y  2z dx   x  3z dy  2x  3y dz



C

29.



C

31.

32, 2



2, 0



0, 0

0, 

 1

0

C

Fx, y, z is conservative and the potential function is f x, y, z  xy  3yz  2xz. 1, 1, 1

(a)

xy  3yz  2xz

(b)

xy  3yz  2xz

(c)

xy  3yz  2xz

0, 0, 0 0, 0, 1

0, 0, 0

1, 0, 0

33.



0, 0, 0

000







 xy  3yz  2xz



0, 0, 1

1, 1, 0

1, 0, 0

2, 3, 4



sin x dx  z dy  y dz  cos x  yz

C

1, 1, 1



 xy  3yz  2xz

0, 0, 0

000



1, 1, 1



 xy  3yz  2xz

1, 1, 0

 12  1  11

35. Fx, y  9x 2 y 2 i  6x 3 y  1 j is conservative.



5, 9



Work  3x 3 y 2  y

0, 0

 30,366

http://librosysolucionarios.net

 0  1  1  0

1 0



17 6

Section 14.4

Green’s Theorem

193

37. rt  2 cos 2 t i  2 sin 2 t j rt  4  sin 2 t i  4  cos 2 t j at  8 2 cos 2 t i  8 2 sin 2 t j Ft  m  a t   W



C

1 2 at   cos 2 t i  sin 2 t j 32 4



F  dr 



C

2 cos 2 t i  sin 2 t j   4sin 2 t i  cos 2 t j dt    3 4



0 dt  0

C

39. Since the sum of the potential and kinetic energies remains constant from point to point, if the kinetic energy is decreasing at a rate of 10 units per minute, then the potential energy is increasing at a rate of 10 units per minute. 41. No. The force field is conservative.

43. See Theorem 14.5, page 1033.

45. (a) The direct path along the line segment joining 4, 0 to 3, 4 requires less work than the path going from 4, 0 to 4, 4 and then to 3, 4. (b) The closed curve given by the line segments joining 4, 0, 4, 4, 3, 4, and 4, 0 satisfies



C

47. False, it would be true if F were conservative.

F  dr 0.

49. True

51. Let F  Mi  Nj  Then

f f i  j. y x

M  2f  f   2 y y y y

 

and

f  2f  N     2. Since x x x x





2f  2f M N   0 we have  . x 2 y 2 y x Thus, F is conservative. Therefore, by Theorem 14.7, we have

 C

f f dx  dy  y x







M dx  N dy 

C

F  dr  0

C

for every closed curve in the plane.

Section 14.4

Green’s Theorem



0 ≤ t ≤ 4 4 ≤ t ≤ 8 8 ≤ t ≤ 12 12 ≤ t ≤ 16

t i, 4 i  t  4 j, 1. r t  12  t i  4j, 16  t j,



C



4

y dx  x dy  2

2

y

(4, 4) 4 3



2

8

0 dt  t 0  2

0



t  4 0  16 dt 2

4

12



16dt  12  t20 

R

1

16  t20  0dt

12

 0  64  64  0  0

 

x

16

8

By Green’s Theorem,



1

N M  dA  x y



 4

0

4

0



4

2x  2y dy dx 

8x  16 dx  0.

0

http://librosysolucionarios.net

2

3

4

194

Chapter 14

3. rt 



Vector Analysis



  4

y 2 dx  x 2 dy 

0

C

4



0

By Green’s Theorem,

  R

0 ≤ t ≤ 4 4 ≤ t ≤ 8

t i  t 2 4 j, 8  t i  8  t j,

N M dA   x y



y

   

8

t4 t dt  t 2 dt 16 2



t4 t3 dt   16 2

 4



3

8  t2dt  8  t2dt

C2

2

4

8

28  t2 dt 

4

224 128 32   5 3 15

C1

1

x 1

x

 4

2x  2y dy dx 

x 2 4

0

(4, 4)

4

3

2

4



x3 32 x4 dx  .  2 16 15

x2 

0

5. C: x 2  y 2  4 Let x  2 cos t and y  2 sin t, 0 ≤ t ≤ 2.

  

xey dx  e x dy 

C

R



2

2 cos te2 sin t 2 sin t  e2 cos t 2 cos t dt  19.99

0

N M  dA  x y

In Exercises 7 and 9,

7.

 



4x 2

2



2

2  4x 2

ex  xey dy dx 

2

2 4  x

2

2

2

N M   1. x y

  2

 y  x dx  2x  y dy 

0

C

y

x

dy dx

(2, 2)

x2 x

2

y=x

2



2x  x 2 dx

1

0



y = x2 − x

4 3

x 1

2

9. From the accompanying figure, we see that R is the shaded region. Thus, Green’s Theorem yields



 y  x dx  2x  y dy 



y

(− 5, 3)

1 dA

(− 1, 1)

 Area of R

(− 1, − 1)

C

(5, 3) (1, 1) x

11. Since the curves y  0 and y  4  x 2 intersect at 2, 0 and 2, 0, Green’s Theorem yields 2xy dx  x  y dy 



   2

1  2x d A 

R

4x2

2 0

1  2x dy dx

2



2

4x2



y  2xy

0

dx

2



2

−2

(− 5, − 3) −4

 56.

C

4 2

R

 610  22





e x  xe 4x  xe 4x dx  19.99

2



4  8x  x 2  2x3 dx

 4x  4x 2 

x3 x4  3 2



2 2

8 8 32     16  . 3 3 3

http://librosysolucionarios.net

(1, − 1)

4

(5, − 3)

Section 14.4

Green’s Theorem

13. Since R is the interior of the circle x 2  y 2  a 2, Green’s Theorem yields



 

x 2  y 2 dx  2xy dy 

2y  2y dA

C

R

a2 x 2

a



15. Since



a

a  a2 x 2

4y dy dx  4

a

0 dx  0.

2x N M  2  , y x  y2 x

we have path independence and

  R

N M  dA  0. x y



17. By Green’s Theorem,



sin x cos y dx  xy  cos x sin y dy 

C

  1



0

19. By Green’s Theorem,



y  sin x sin y  sin x sin y dA

R

xy dx  x  y dy 

C

 

x

y dy dx 

x



1

x  x 2 dx 

0



1 x 2 x3  2 2 3



1 0



1 . 12

1  x dA

R



1 2

2

3

1  r cos r dr d 

1

0



2

0

4  263 cos  d  8.

21. Fx, y  xy i  x  y j C: x 2  y 2  4 Work 



xy dx  x  y dy 

C



1  x dA 

R

 2

0

2

1  r cos r dr d 

0



2

0

2  38 cos  d  4

23. Fx, y  x 3 2  3y i  6x  5 y  j C: boundary of the triangle with vertices 0, 0, 5, 0, 0, 5 Work 



C

x 3 2  3y dx   6x  5 y  dy 

 R

9 dA  9 12 55  225 2

25. C: let x  a cos t, y  a sin t, 0 ≤ t ≤ 2. By Theorem 14.9, we have A

1 2



C

x dy  y dx 

1 2



2

0

a cos t a cos t  a sin t a sin t dt 

1 2



2

0

http://librosysolucionarios.net

a 2 dt 

2

a2 t 2

0

  a 2.

195

196

Chapter 14

Vector Analysis

27. From the accompanying figure we see that

y

C1: y  2x  1, dy  2 dx C2: y  4 

(1, 3) 2

dy  2x dx.

x 2,

−6

Thus, by Theorem 14.9, we have

  

1

1 2

A

3 1

1 2



3 1

1 2



1 dx 

3

1 dx 

1 2 1 2

 

3



3

1 2

x2  2x  1 dx 

4

(− 3, − 5)

x2x  4  x 2 dx

−4 −6

1

x 2  4 dx

1 1

3

x

−4

x 2  4 dx 



1

1 2

3

3  x 2 dx 

29. See Theorem 14.8, page 1042.



1 x3 3x  2 3



1 3

32 . 3



31. Answers will vary. F1x, y  yi  xj F2x, y  x2 i  y2 j F3x, y  2xyi  x2 j

33. A 



x

1 2A

2



4  x 2 dx  4x 

2



1 2A

x 2 dy 

C1



x3 3



2 2

y

32 3



y = 4 − x2 3

x 2 dy 2

C2

For C1, dy  2x dx and for C2, dy  0. Thus, 1 232 3

x



2

x 22x dx 

2

1

2

643  2  x4

C1

2

 0.

−2

x

−1

C2 1

2

To calculate y, note that y  0 along C2. Thus, 1 232 3

y



2

4  x 22 dx 

2

3 64



2

2

16  8x 2  x 4 dx 



3 8x 3 x 5 16x   64 3 5



2 2

8  . 5

 85

x, y   0,



1

35. Since A 

x  x 3 dx 

0

y  x, dy  dx. Thus, x2

 

x 2 dy  2

C

0

y  2

 

0



1 1  , we have  2. On C1 we have y  x 3, dy  3x 2 dx and on C2 we have 4 2A

x2 dx

y

6 2 8   5 3 15

(1, 1)

1

C2 C1

y 2 dx

1

x



0

x 6 dx  2

0

x, y  

x 2 dx 

1

C

 2

4 1

C2

0

x 4 dx  2

2

x 23x 2 dx  2

C1

1

6

 

x2  x4

1

1

8 2 2 x 2 dx     . 7 3 21

158 , 218 

http://librosysolucionarios.net

Section 14.4

37. A  

1 2

 

2

197

a21  cos 2 d

0

2

a2 2

1  2 cos  21  cos22  d  a2 32  2 sin  41 sin 2 2

0

39. In this case the inner loop has domain

41. I 

Green’s Theorem

A

1 2



1 2

 

4 3

2 3 4 3

2 3

2 0



a2 3a2 3  2 2

4 2 ≤ ≤ . Thus, 3 3

1  4 cos  4 cos2  d

3  4 cos  2 cos 2  d 



1 3  4 sin  sin 2

2

4 3



2 3



3 3 . 2



y dx  x dy x2  y2 C

(a) Let F 

x y i 2 j. x2  y2 x  y2 x2  y2 N M   2 . x y x  y 2 2

F is conservative since

F is defined and has continuous first partials everywhere except at the origin. If C is a circle (a closed path) that does not contain the origin, then



C

F  dr 



M dx  N dy 

C

  R

N M  dA  0. x y



(b) Let r  a cos t i  a sin t j, 0 ≤ t ≤ 2 be a circle C1 oriented clockwise inside C (see figure). Introduce line segments C2 and C3 as illustrated in Example 6 of this section in the text. For the region inside C and outside C1, Green’s Theorem applies. Note that since C2 and C3 have opposite orientations, the line integrals over them cancel. Thus, C4  C1  C2  C  C3 and



F  dr 

C4

But,



F  dr 

C1

 Finally,



C



F  dr 

C1

 

2

2

C

F  dr  0.

t a cos ta cos t  dt aacossinttaa sin sin t a cos t  a sin t 2

0



2

2

2

2

0

F  dr  



2



sin2 t  cos2 t dt  t

0

2

2

2

 2.

F  dr  2.

C1

Note: If C were orientated clockwise, then the answer would have been 2. y 3

C

2

C1

C2 x 4

C3 −2 −3

43. Pentagon: 0, 0, 2, 0, 3, 2, 1, 4, 1, 1 A  12 0  0  4  0  12  2  1  4  0  0  19 2

http://librosysolucionarios.net

198

45.

Chapter 14



y n dx  x n dy 

C

Vector Analysis

  R

N M  dA x y

y



2a

y = a2 − x2

For the line integral, use the two paths C1: r1 x  x i, a ≤ x ≤ a

C2

C2: r2 x  x i  a 2  x 2 j, x  a to x  a

   

−a

x

C1

a

y n dx  x n dy  0

C1

y n dx  x n dy 

a

a

C2

R



N M  dA  x y



 a

2

a

a2 x 2

 x 2 n 2  x n



a 0

x a 2  x 2

dx

nx n1  nyn1 dy dx

(a) For n  1, 3, 5, 7, both integrals give 0. (b) For n even, you obtain n  2 :  43 a 3

5 n  4 :  16 15 a

7 n  6 :  32 35 a

256

n  8 :  315 a 9

(c) If n is odd and 0 < a < 1, then the integral equals 0.

47.



 

f DN g  gD N f ds 

C

f D N g ds 

C



R



gDN f ds

C

f 2g  f  g dA 



g2 f  g  f dA 

R



f  2g  g 2 f dA

R

49. F  M i  N j N M N M  0 ⇒   0. x y x y



C

F  dr 



M dx  N dy 

C

Section 14.5

  R

N M  dA  x y





0 dA  0

R

Parametric Surfaces

1. r u, v  u i  vj  uvk

3. r u, v  2 cos v cos ui  2 cos v sin uj  2 sin vk

z  xy

x2  y2  z2  4

Matches c.

Matches b.

v 5. r u, v  ui  vj  k 2

7. r u, v  2 cos ui  vj  2 sin uk x2  z2  4

y  2z  0

Cylinder

Plane

z z 3 3 2 −4 3 4 5 5 x

y x

5

5 −3

http://librosysolucionarios.net

y

Section 14.5 For Exercises 9 and 11,

Parametric Surfaces

199

z

r u, v  u cos vi  u sin vj  u 2 k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2.

5

Eliminating the parameter yields z  x 2  y 2, 0 ≤ z ≤ 4. 2

2

y

x

9. s u, v  u cos v i  u sin v j  u 2 k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2 z   x 2  y 2

The paraboloid is reflected (inverted) through the xy-plane. 11. s u, v  u cos v i  u sin v j  u 2 k, 0 ≤ u ≤ 3, 0 ≤ v ≤ 2 The height of the paraboloid is increased from 4 to 9. 15. r u, v  2 sinh u cos vi  sinh u sin vj  cosh uk,

13. r u, v  2u cos v i  2u sin v j  u 4 k, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2 z



x2

0 ≤ u ≤ 2, 0 ≤ v ≤ 2

z



16

y2 2

z2

3

1

2



x2 4



y2 1

z

1

9 6

1 9

6

3

6

9

x 2 2

x

y

17. r u, v  u  sin u cos v i  1  cos u sin v j  uk, 0 ≤ u ≤ , 0 ≤ v ≤ 2

z 5 4 3

−2 −3 3

−2 2

−1

1

2

−3

3

y

x

21. x 2  y 2  16

19. z  y r u, v  ui  vj  vk 23. z  x 2

25. z  4 inside x 2  y 2  9.

r u, v  ui  vj  u 2 k x 27. Function: y  , 0 ≤ x ≤ 6 2 Axis of revolution: x-axis x  u, y 

r u, v  4 cos ui  4 sin uj  vk

u u cos v, z  sin v 2 2

r u, v  v cos u i  v sin u j  4k, 0 ≤ v ≤ 3

29. Function: x  sin z, 0 ≤ z ≤  Axis of revolution: z-axis x  sin u cos v, y  sin u sin v, z  u 0 ≤ u ≤ , 0 ≤ v ≤ 2

0 ≤ u ≤ 6, 0 ≤ v ≤ 2

http://librosysolucionarios.net

y

200

Chapter 14

Vector Analysis

31. r u, v  u  v i  u  v j  vk, 1, 1, 1

33. r u, v  2u cos v i  3u sin v j  u 2 k, 0, 6, 4

ru u, v  i  j, rv u, v  i  j  k

ru u, v  2 cos v i  3 sin v j  2uk

At 1, 1, 1 , u  0 and v  1.

rv u, v  2u sin v i  3u cos v j

ru 0, 1  i  j, rv 0, 1  i  j  k

 

i N  ru 0, 1 rv 0, 1  1 1

j 1 1

k 0  i  j  2k 1

Tangent plane: x  1  y  1  2 z  1  0

At 0, 6, 4 , u  2 and v   2.

 2   3j  4k, r 2, 2   4i

ru 2,

 2  r 2, 2 

N  ru 2,

x  y  2z  0 (The original plane!)

v





i 0 4

v

j 3 0



k 4  16j  12k 0

Direction numbers: 0, 4, 3 Tangent plane: 4 y  6  3 z  4  0 4y  3z  12 35. r u, v  2ui 

v v j  k, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1 2 2

1 1 ru u, v  2i, rv u, v   j  k 2 2

 

i ru rv  2 0

j 0  12

k 0  j  k 1 2

ru rv  2

 1

A

0

2

2 du dv  22

0

37. r u, v  a cos ui  a sin uj  vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ b ru u, v  a sin ui  a cos uj rv u, v  k





i j k ru rv  a sin u a cos u 0  a cos ui  a sin uj 0 0 1 ru rv  a

 b

A

0

2

a du dv  2ab

0

39. r u, v  au cos v i  au sin v j  uk, 0 ≤ u ≤ b, 0 ≤ v ≤ 2 ru u, v  a cos vi  a sin vj  k rv u, v  au sin v i  au cos v j ru rv 



ru rv  au1  a 2 A

 2

0



i j k a cos v a sin v 1  au cos v i  au sin v j  a 2uk au sin v au cos v 0

b

a1  a 2 u du dv   ab21  a 2

0

http://librosysolucionarios.net

Section 14.5

Parametric Surfaces

41. r u, v  u cos v i  u sin v j  uk, 0 ≤ u ≤ 4, 0 ≤ v ≤ 2 ru u, v 

cos v sin v i jk 2u 2u

rv u, v   u sin v i  u cos v j

ru rv 



i cos v 2u

k

j sin v 2u

 u sin v u cos v

0

u  41  u  41 du dv  6 17

ru rv  A



2

0



1   u cos vi  u sin vj  1 k 2

4



17  1  36.177

0

45. (a) From 10, 10, 0

43. See the definition, page 1051.

(b) From 10, 10, 10

(c) From 0, 10, 0

(d) From 10, 0, 0

47. (a) r u, v  4  cos v cos ui 

(b) r u, v  4  2 cos v cos ui 

4  cos v sin u j  sin vk,

4  2 cos v sin uj  2 sin vk,

0 ≤ u ≤ 2, 0 ≤ v ≤ 2

0 ≤ u ≤ 2, 0 ≤ v ≤ 2

z

z

4

4

−6

−6

6 x

(c)

6

−4

y

r u, v  8  cos v cos u i 

6

6

x

y

(d) r u, v  8  3 cos v cos ui 

8  cos v sin uj  sin vk,

8  3 cos v sin uj  3 sin vk,

0 ≤ u ≤ 2, 0 ≤ v ≤ 2

0 ≤ u ≤ 2, 0 ≤ v ≤ 2

z

z 12

9

3 3 y

x

12 x

12

−9

y −12

The radius of the generating circle that is revolved about the z-axis is b, and its center is a units from the axis of revolution.

http://librosysolucionarios.net

201

202

Chapter 14

Vector Analysis

49. r u, v  20 sin u cos v i  20 sin u sin v j  20 cos uk 0 ≤ u ≤ 3, 0 ≤ v ≤ 2 ru  20 cos u cos v i  20 cos u sin v j  20 sin uk rv  20 sin u sin v i  20 sin u cos v j



i j k ru  rv  20 cos u cos v 20 cos u sin v 20 sin u 20 sin u sin v 20 sin u cos v 0



 400 sin2 u cos v i  400 sin2 u sin vj  400 cos u sin u cos2 v  cos u sin u sin2 v k  400 sin2 u cos v i  sin2 u sin vj  cos u sin uk ru  rv  400sin4 u cos2 v  sin4 u sin2 v  cos2 u sin2 u  400sin4 u  cos2 u sin2 u  400sin2 u  400 sin u

   

S

dS 

S

2

400 sin u du dv 

0

0



3

2



2

0

3

400 cos u

dv

0

200 dv  400 m2

0

51. r u, v  u cos v i  u sin vj  2vk, 0 ≤ u ≤ 3, 0 ≤ v ≤ 2 ru u, v  cos v i  sin vj rv u, v  u sin v i  u cos vj  2k ru  rv 





i j cos v sin v u sin v u cos v

k 0  2 sin vi  2 cos vj  uk 2

ru  rv  4  u2 A

 2



3

4  u2 du dv   313  4 ln

0

0

3  2 13 

z 4π



−4

−2

2

4

4

y

x

53. Essay

Section 14.6

Surface Integrals

1. S: z  4  x, 0 ≤ x ≤ 4, 0 ≤ y ≤ 4,

 S

  4

x  2y  z dS 

z z  1, 0 x y

4

x  2y  4  x 1  1 2  0 2 dy dx

0

0

4

4

 2

0

4  2y dy dx  0

0

http://librosysolucionarios.net

Section 14.6 z z  0 x y

3. S: z  10, x 2  y 2 ≤ 1,



  

1x 2

1

x  2y  z dS 

2



2



1

0

2 0

5. S: z  6  x  2y, (first octant) xy dS 

   0

y 5 4

xy1  1  2 dy dx 2

2

3 x2



1

dx

x

0 −1

6

6

2

y = 3 − 21 x

3 2

xy 2 2

0

1

2

3

4

5

6



1 x 9  3x  x 2 dx 4

0

6 9x 2

2

z z  1,  2 x y

0

 6



 10

3 x2

6





1 2 cos   sin   5 d 3 3

 13 sin   32 cos   5



S

r cos   2r sin   10 r dr d

0

0



x  2y  10 1  0 2  0 2 dy dx

1 1x 2

S

6

Surface Integrals

2

 x3 

x4 16



6 0



276 2

7. S: z  9  x 2, 0 ≤ x ≤ 2, 0 ≤ y ≤ x, z z  2x, 0 x y



 2

xy dS 

0

S

2

xy1  4x 2 dx dy 

y

39117  1 240

9. S: z  10  x 2  y 2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2



 2

x 2  2xy dS 

0

S

2

x 2  2xy 1  4x 2  4y 2 dy dx  11.47

0

1 1 11. S: 2x  3y  6z  12 (first octant) ⇒ z  2  x  y 3 2 x, y, z  x 2  y 2 m

  

7  6 

7 6

0

6

0

5

2

1   2

y = 4 − 23 x

4

   dA 1 1  3

x 2  y 2

R

6

y

2

3 2

R

1

4 2x3

x  y dy dx 2

x

2

−1

0



2 1 2 x2 4  x  4  x 3 3 3

  dx  67 43 x 3

3

1 1 2  x4  4  x 6 8 3



4 6 0



http://librosysolucionarios.net

364 3

1

2

3

4

5

6

203

204

Chapter 14

Vector Analysis

v 13. S: r u, v  ui  vj  k, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2 2 ru  rv 



  21 j  k  

 2

y  5 dS 

2

1

0

S

5

v  5

5

0

2

du dv  65

 , 0 ≤ v ≤ 2 2

15. S: r u, v  2 cos ui  2 sin uj  vk, 0 ≤ u ≤ ru  rv  2 cos ui  2 sin uj  2



 2

xy dS 

0

S

2

8 cos u sin u du dv  8

0

17. f x, y, z  x 2  y 2  z 2 S: z  x  2, x 2  y 2 ≤ 1



f x, y, z dS 

S

    

1x 2

1

1 1x 2 2

 2

0

1

0

1

0

2

 2

r 2  r 2 cos2   4r cos   4 r dr d

0

2

 2

r 2  r cos   2 2 r dr d

0

2

 2

x 2  y 2  x  2 2 1  1 2  0 2 dy dx

0

 d

r4 r4 4r 3  cos2   cos   2r 2 4 4 3

1 0

9 1 1  cos 2 4   cos  d 4 4 2 3





2

 94  81   21 sin 2  34 sin 

 2

0

 184  4   19 4 2 

 2

19. f x, y, z  x 2  y 2  z 2 S: z  x 2  y 2, x 2  y 2 ≤ 4



f x, y, z dS 

S



4x 2

2

2 4x 2

  

 2 2 2

x 2  y 2  x 2  y 2

4x 2

2

2 4x 2

2

4x 2

2 4x 2 2

0

2

2

0

x y

x 2

2

2

1 

x 2

x  y2

 y2  x2  y2 dy dx x2  y2

x 2  y 2 dy dx



r 2 dr d  2

2

0

r3 3



2 0

d 

2

 163

0



32 3

http://librosysolucionarios.net

  x y y  2

2

2

2

dy dx

Section 14.6

Surface Integrals

21. f x, y, z  x 2  y 2  z 2 S: x 2  y 2  9, 0 ≤ x ≤ 3, 0 ≤ y ≤ 3, 0 ≤ z ≤ 9 Project the solid onto the yz-plane; x  9  y 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 9.



   3

f x, y, z dS 

0

S

 9  y 2  y 2  z 2

0

3



1 

9

9

9  z 2

0

0

3

 324

0

 3

3 dz dy  9  y 2

0

y 9  y 2

2

 0 2 dz dy

3 z3 9z  3 9  y 2







3

3 y d y  972 arcsin 3 9  y 2

0

 972



9

dy

0

2  0  486

23. F x, y, z  3z i  4 j  yk

y

S: x  y  z  1 (first octant) 1

G x, y, z  x  y  z  1

y = −x + 1

G x, y, z  i  j  k

 S

F N dS 

 R

F G dA 

0

1x

3 1  x  y  4  y dy dx

0

1

1x

0

1  3x  2y dy dx

0

1



1

3z  4  y dy dx

0

0



x

1x

1



R

      1

y  3xy  y 2

0



1x

dx

0

1

 1  x  3x 1  x  1  x 2 dx



0

1

2  2x2 dx  



0

4 3

25. F x, y, z  x i  yj  z k

y

S: z  9  x 2  y 2, 0 ≤ z

4

G x, y, z  x 2  y 2  z  9

2

G x, y, z  2 x i  2y j  k

 S

F N dS 

−4

 R

F G dA  

    



 z dA

2y 2

R

2x 2  2y 2  9  x 2  y 2 dA

R



x 2  y 2  9 dA

R



2

0



2

0

3

r 2  9 r dr d

0

r 4 9r 2  4 2



3 0

d 

243 2

http://librosysolucionarios.net

R x

−2

2 −2

2x 2

x2 + y2 ≤ 9

−4

4

205

206

Chapter 14

Vector Analysis

27. F x, y, z  4i  3j  5k S: z  x  y , 2

2

x2

y

x 2 + y2 ≤ 4

y ≤ 4 2

G x, y, z  x  y 2  z

1

2

G x, y, z  2 x i  2y j  k

 S

F N dS 

x

−1



F G dA 

R

R



   

8x  6y  5 dA

2

2

8r cos   6r sin   5 r dr d

0

2

0



−1

R

0



1

2

8 5  r 3 cos   2r 3 sin   r 2 3 2 

0



 



2

d

0



64 cos   16 sin   10 d 3

64 sin   16 cos   10 3

2



0

 20

29. F x, y, z  4xyi  z2 j  yzk

z

S: unit cube bounded by x  0, x  1, y  0, y  1, z  0, z  1 1

S1: The top of the cube N  k, z  1

 S1

F N dS 

 1

0

1

y 1 dy dx 

0

1 2



F N dS 

S2

S3: The front of the cube N  i, x  1

 1



1

0

y 0 dy dx  0

0

S3

S4: The back of the cube N  i, x  0

 S4

F N dS 

F N dS 

 S6

F N dS 

 1

0

N  j, y  1

1

4 0 y dy dx  0

0

 S5

F N dS 

 1

0

1

z 2 dz dx  

0

1 3

Therefore,

 S

F N dS 

1 1 1 5 020   . 2 3 3 2

31. The surface integral of f over a surface S, where S is given by z  g x, y , is defined as

 S

 1

0

1

4 1 y dy dz  2

0

S5: The right side of the cube

S6: The left side of the cube N  j, y  0

y

x

S2: The bottom of the cube N  k, z  0

1

1

f x, y, z dS  lim

n

 f x , y , z S . (page 1061)

 →0 i1

i

i

i

i

See Theorem 14.10, page 1061. 33. See the definition, page 1067. See Theorem 14.11, page 1067.

http://librosysolucionarios.net

 1

0

1

0

z 2 dz dx 

1 3

Section 14.6 35. (a) 4 −6

−6

x

207

(c) r u, 0  4 cos 2u i  4 sin 2u j

(b) If a normal vector at a point P on the surface is moved around the Möbius strip once, it will point in the opposite direction.

z

Surface Integrals

This is a circle. z

6 6

−4

4

y

−2 2 2

x

y −4

(d) (construction)

(e) You obtain a strip with a double twist and twice as long as the original Möbius strip.

37. z  x 2  y 2, 0 ≤ z ≤ a m

 

  

k dS  k

S

Iz 

R

k x 2  y 2 dS 

S

2

0

2

2

2

2



2 dA  2 ka 2

dA  k

R

k x 2  y 2 2 dA

a

2ka 4

r 3 dr d 

4

0

2ka 4

  x y y  2

x x 2  y 2

R



 2k 

1



2

2 a2

2ka 2  a 2m 2

39. x 2  y 2  a 2, 0 ≤ z ≤ h

z

x, y, z  1

h

y  ± a 2  x 2 Project the solid onto the xz-plane.

   

x 2  y 2 1 dS

Iz  4

a

h

1 

a

x 2  a 2  x 2

4

0

0

h

a

 4a 3

0

0

y

x a 2  x 2



2

 0 2 dx dz

1 dx dz  x2

a 2

h

 4a 3

a

x

S

arcsin

0

x a

a



0

dz  4a 3

2  h  2a h 3

41. S: z  16  x 2  y 2, z ≥ 0 F x, y, z  0.5zk

 S

F N dS  

  R

F gx x, y i  gy x, y j  k dA  0.5 z dA 

R

 0.5

 2

0



R

0.5 z k 2x i  2y j  k dA

0.5 16  x 2  y 2 dA

R

4

0



16  r 2 r dr d  0.5



2

64 d  64

0

http://librosysolucionarios.net

208

Chapter 14

Vector Analysis

Section 14.7

Divergence Theorem

1. Surface Integral: There are six surfaces to the cube, each with dS  1 dA. z  0,

N  k,

z  a,

N  j,

y  a, Therefore,

S2

  F  N dS  a

4

s

a

0

2a dy dz 

S4

a 2 dx dy  a 4

0

 a

a

0

2a dy dz  2a3

0

0 dA  0

S5

F  N  2y,

N  j,

a

0 dA  0

 N  2y,

F



S3

F  N  2x,

N  i,

y  0,

a 2 dA 

F  N  2x,

N  i,

x  a,

0 dA  0

S1

F  N  z 2,

N  k,

x  0,

     

 N  z 2,

F

2a dA 

S6

 a

a

0

2a dz dx  2a 3

0

 2a 3  2a 3  a 4.

Divergence Theorem: Since div F  2z, the Divergence Theorem yields



 a

div F dV 

a

0

Q

0

a

 a

2z dz dy dx 

0

0

a

a 2 dy dx  a 4.

0

3. Surface Integral: There are four surfaces to this solid.

z

 N  z

z  0, N  k, F



6

0 dS  0

S1

y  0, N  j, F  N  2y  z, dS  dA  dx dz



 6

z dS 

0

S2



6z

z dx dz 

0

3

y

6

6

z 2  6z dz  36

x

0

x  0, N  i, F  N  y  2x, dS  dA  dz dy



 3

y dS 

0

S3

Therefore,

6y  2y 2 dy  9

0

i  2j  k 2x  5y  3z , FN , dS  6 dA 6 6

 3

2x  5y  3z dz dy 

S4

3

y dz dy 

0

x  2y  z  6, N 





62y

0

62y



3

18  x  11y dx dy 

0

90  90y  20y 2 dy  45

0

  F  N dS  0  36  9  45  18. s

Divergence Theorem: Since div F  1, we have



1 1 dV  Volume of solid  Area of base  Height  96  18. 3 3

Q

http://librosysolucionarios.net

Section 14.7

Divergence Theorem

5. Since div F  2x  2y  2z, we have



  a

div F dV 

0

Q

a

a

0

a

2x  2y  2z dz dy dx

0

0

a

0

   

div F dV 

Q

0

Q

2

a



0

0

2

 2

0

0

 3a 4.

2 sin cos  sin sin  cos  2 sin d d d

0

0

2 5sin cos sin3 cos  d d d

0

2



 2

0

a



  a

2xyz dV 

a



2a 2x  2a 3 dx  a 2x 2  2a 3x

0

7. Since div F  2x  2x  2xyz  2xyz





a

2ax  2ay  a 2 dy dx 



1 5  sin cos d d  2

  a

0

 5 sin2 2 2



2



0

d  0.

9. Since div F  3, we have



 43  2   32.

3 dV  3Volume of sphere  3

3

Q

11. Since div F  1  2y  1  2y, we have

 Q

  4

2y dV 

9y 2

3

3 9y2

0

 6

4 x 2 dV 

0

Q

4

0

4y

3

 6

4x 2 dz dy dx 

0

0



3

0

13. Since div F  3x 2  x 2  0  4x 2, we have



 4

2y dx dy dz 

4

4y9  y 2 dy dz 

4

0



4 2 3 2  9  y  3

6

4x 24  y dy dx 

0

32x 2 dx  2304.

0

15. Fx, y, z  xyi  4yj  xz k div F  y  4  x

 S

F  N dS 

         

div F dV 

Q

3



0

3



0

3



0

3



0



0



0



2

 sin sin   sin cos  42 sin d d d

0 2

3 sin2 sin  3 sin2 cos  42 sin d d d

0

 3 sin2 cos  3 sin2 sin  42 sin

0



82 sin d d

82 cos

3

162 d 

0

2

 0 d d

0

0



 y  x  4 dV

Q

3











0

d

163 3



3 0

 144.

http://librosysolucionarios.net



3 3

dz  0.

209

210

Chapter 14

Vector Analysis

17. Using the Divergence Theorem, we have

 S

curl F  N dS 



div curlF dV

Q

i curl Fx, y, z  x 4xy  z 2

j y 2x 2  6yz

k z 2xz

div curl F  0. Therefore,



 6y i  2z  2z j  4x  4x k  6yi

div curl F dV  0.

Q

19. See Theorem 14.12, page 1073. 21. Using the triple integral to find volume, we need F so that div F 

M N P    1. x y z

Hence, we could have F  x i, F  yj, or F  z k. For dA  dy dz consider F  xi, x  f  y, z, then N  For dA  dz dx consider F  yj, y  f x, z, then N 

i  fy j  fz k 1  fy2  fz2

fx i  j  fz k 1  fx2  fz2

fx i  fy j  k

For dA  dx dy consider F  z k, z  f x, y, then N  Correspondingly, we then have V 

 S

F  N dS 

23. Using the Divergence Theorem, we have



x dy dz 

S



curl F  N dS 

S

Fx, y, z  M i  Nj  Pk curl F  div curl F  Therefore,

 S

1  fx2  fy2

and dS  1  fy2  fz2 dy dz. and dS  1  fx2  fz2 dz dx. and dS  1  fx2  fy2 dx dy.



y dz dx 

S



z dx dy.

S



div curl F dV. Let

Q

N P M N M  i  j  k  P y z x z x y 2P 2N 2P 2M 2N 2M       0. x y x z y x y z z x z y

curl F  N dS 



0 dV  0.

Q

25. If Fx, y, z  x i  yj  z k, then div F  3.

 S

27.

F  N dS 



div F dV 

Q



f D N g dS 

S

 

f g

S



3 dV  3V.

Q

 N dS

div  f g dV 

Q





 f div g  f  g dV 

Q



 f 2g  f  g dV

Q

http://librosysolucionarios.net

Section 14.8

Section 14.8

Stokes’s Theorem

Stokes’s Theorem

     

1. F x, y, z  2y  z i  xyz j  e z k

curl F 

i  x

j  y

k  z

2y  z

xyz

ez

 xyi  j   yz  2k

3. F x, y, z  2z i  4x 2 j  arctan xk j  y

k  z

4x2

arctan x

i  curl F  x 2z

5. F x, y, z  e x

curl F 

2 y 2

i  ey

i  x

ex

2

y 2

j  y

ey

2

2 z 2



 2



1 j  8xk 1  x2

j  xyzk

k  z

z 2

xyz

 xz  2ze

y 2 z 2

 i  yz j  2ye x

 zx  2e y

2 z 2

 i  yz j  2ye x

2 y 2

2 y 2

k

k

7. In this case, M  y  z, N  x  z, P  x  y and C is the circle x 2  y 2  1, z  0, dz  0. Line Integral:



C

F  dr 



y dx  x dy

C

Letting x  cos t, y  sin t, we have dx  sin t dt, dy  cos t dt and



y dx  x dy 

C



2

sin 2 t  cos 2 t dt  2.

0

Double Integral: Consider F x, y, z  x 2  y 2  z 2  1. Then N

F 2x i  2yj  2zk   x i  yj  zk. F  2x 2  y 2  z 2

Since z 2  1  x 2  y 2, z x 

2x x y  , and z y  , dS  2z z z

Now, since curl F  2k, we have

S

curl F  N dS 

R

2z

1  xz

2 2



y2 1 dA  dA. z2 z

1z  dA  2 dA  2Area of circle of radius 1  2. R

http://librosysolucionarios.net

211

212

Chapter 14

Vector Analysis

9. Line Integral: From the accompanying figure we see that for

z

C1: z  0, dz  0

6 4

C2: x  0, dx  0

C2

C3

2

C3 : y  0, dy  0. Hence,



C

F  dr  



C

y dy 



3

0

y dy 

0

4

y dy  z dz 

C2





C3

6

y dy 

3

(0, 3, 0)

2

xyz dx  y dy  z dz

C1



(0, 0, 6)

x

(4, 0, 0)

C1

y

z dz



0

z dz 

0

z dz  0.

6

Double Integral: curl F  xyj  xzk Considering Fx, y, z  3x  4y  2z  12, then N

3i  4j  2k F  and dS  29 dA. F  29

Thus,

S

curl F  N dS 



4xy  2xz dy dx

R

4



(3x12) 4

0

0

4



4xy  2x6  2y  23 x dy dx

(123x) 4

0

8xy  3x 2  12x dy dx

0

4



0 dx  0.

0

\

\

11. Let A  0, 0, 0, B  1, 1, 1 and C  0, 2, 0. Then U  AB  i  j  k and V  AC  2j. Thus, N

U V 2i  2k i  k   .  U V 2 22

Surface S has direction numbers 1, 0, 1, with equation z  x  0 and dS  2 dA. Since curl F  3i  j  2k, we have

S

curl F  N dS 

R

1 2

2  dA 



dA  Area of triangle with a  1, b  2  1.

R

 

13. F x, y, z  z 2 i  x 2 j  y 2 k, S: z  4  x 2  y 2, 0 ≤ z i  curl F  x

j  y

k  z  2yi  2z j  2xk

z2

x2

y2

Gx, y, z  x 2  y 2  z  4 Gx, y, z  2x i  2yj  k

S

curl F  N dS 



4xy  4yz  2x dA 

R



2

4x 2

2 2

4x 2

2

4x 2

4x 2

4xy  4y 4  x 2  y 2  2x dy dx

4xy  16y  4x 2y  4y 3  2x dy dx

2



2

4x4  x 2 dx  0

http://librosysolucionarios.net

Section 14.8

Stokes’s Theorem

15. Fx, y, z  z 2 i  yj  xzk, S: z  4  x 2  y 2

 

i  curl F  x

j  y

k  z

z2

y

xz

 zj

Gx, y, z  z  4  x 2  y 2 Gx, y, z 



x y i jk 2 2 4  x  y 4  x 2  y 2

curl F  F dS 

S



yz dA  4  x 2  y 2

R

x 17. Fx, y, z  lnx 2  y 2 i  arctan j  k y

curl F 



j  y

k  z

arctan x y

1

i  x 1 2 ln

x2





y2





R

y4  x 2  y 2 dA  4  x 2  y 2

  1 1 y x y  x 2

2

2



2

4x 2

2 4x 2



y dy dx  0



y 2y k 2 k  y2 x  y2

S: z  9  2x  3y over one petal of r  2 sin 2 in the first octant. Gx, y, z  2x  3y  z  9 Gx, y, z  2i  3j  k

S

curl F  N dS  

R

 2

0



 2

0



 2

2y dA x2  y2 2 sin 2

0

2r sin

r dr d

r2

4 sin cos

2 sin dr d

0

8 sin 2 cos d 

0

19. From Exercise 10, we have N 

S

curl F  N dS 

 

R

2x i  k

a

0

a

j  y

k  z

1

1

2

Letting N  k, we have

0



8 3



0

0

ax 3 dx 

ax4

4 a 0



a5 . 4

23. See Theorem 14.13, page 1081.

0

S

 2

a

x 3 dy dx 

21. Fx, y, z  i  j  2k i  curl F  x

3

and dS  1  4x 2 dA. Since curl F  xyj  xzk, we have

1  4x 2

xz dA 

8 sin3

curl F  N dS  0.

http://librosysolucionarios.net

213

214

Chapter 14

25. (a)



f g

C

Vector Analysis

 dr 

S

g g g if jf k x y z

f g  f

curl  f g 





curl f g  N dS (Stoke’s Theorem)



i  x

j  y

f g x f g y f g z  2g

(b)



C

(c)



f

g

 2g

f

g

 2g

f

g

 2g

f

g

f xy  x  y   f yx  y  x  k

 

f g f g f g f g i         j         k yf gz   zf g y  x z z x x y y x

 f f   dr 

j

k

f y g y

f z g z

 dr 



 f

S



S

 f g  gf   dr 

 f g

C





curl f g  N dS 

 f g  dr  f  f

S



C

since

C r  dr 



i C r a x and

curlC r 

1 2

j b y



S

k c z

i  x





g  N dS.

 gf   dr

g  N dS 





g  N dS 

S

S

27. Let C  ai  bj  ck, then

C

f

S

f   N dS (using part a.)

S



g





1 2

f

 2g

 0 since f f  0.

C

 2g

f xz  x  z   f zx  z  x  j

f g

C

g



f  x g x



f



f yz  y  z   f zy  z  y  i

i

Therefore,

k  z

curl C r  N dS 

1 2

 g f   N dS (using part a.)   f g  N dS  0

S

2C

 N dS 



C

S

 bz  cy i  az  cx j  ay  bx k

j  y

k  z

bz  cy cx  az ay  bx



 2ai  b j  ck  2C.

http://librosysolucionarios.net

 N dS

Review Exercises for Chapter 14

Review Exercises for Chapter 14 1. Fx, y, z  x i  j  2k

3. f x, y, z  8x 2  xy  z 2 Fx, y, z  16x  y i  x j  2z k

z 3 2

3 4 x

4

y

5. Since My  1y 2  Nx, F is not conservative. 7. Since My  12xy  Nx, F is conservative. From M  Ux  6xy 2  3x 2 and N  Uy  6x 2 y  3y 2  7, partial integration yields U  3x 2 y 2  x3  h y and U  3x 2 y 2  y3  7y  gx which suggests h y  y3  7y, gx  x3, and Ux, y  3x 2 y 2  x3  y3  7y  C. 9. Since N M  4x  , y x P M 1 . z x F is not conservative. 11. Since M 1 N  2  , y y z x

M 1 P  2  , z yz x

P x N  22 , z y z y

F is conservative. From U x U 1 U x  , N  2 , P  2 x yz y y z z yz

M we obtain U

x  f  y, z, yz

U

x x x  gx, z, U   hx, y ⇒ f x, y, z   K yz yz yz

13. Since F  x 2 i  y 2 j  z2 k: (a) div F  2x  2y  2z (b) curl F 

N P M N M  i  j  k  0i  0j  0k  0 P y z  x z  x y 

15. Since F  cos y  y cos x i  sin x  x sin y j  x yz k: (a) div F  y sin x  x cos y  xy (b) curl F  xz i  yz j  cos x  sin y  sin y  cos xk  xz i  yz j

http://librosysolucionarios.net

215

216

Chapter 14

Vector Analysis

17. Since F  arcsin x i  xy 2 j  yz2 k: 1  2xy  2yz (a) div F  1  x 2

19. Since F  lnx 2  y 2i  lnx 2  y 2j  z k: (a) div F 

(b) curl F  z 2 i  y 2 k 

2y 2x  1 x2  y 2 x2  y 2 2x  2y 1 x2  y 2 2x  2y k x2  y 2

(b) curl F 

21. (a) Let x  t, y  t, 1 ≤ t ≤ 2, then ds  2 dt.





2

x 2  y 2 ds 

1

C



2t 22 dt  22

t3 

3

2 1

 62

(b) Let x  4 cos t, y  4 sin t, 0 ≤ t ≤ 2, then ds  4 dt.





2

x 2  y 2 ds 

C

164 dt  128

0

23. x  cos t  t sin t, y  sin t  t cos t, 0 ≤ t ≤ 2,



x 2  y 2 ds 

C



2

dx dy  t cos t,  t sin t dt dt

cos t  t sin t2  sin t  t cos t2 t 2 cos2 t  t 2 sin2 t dt 

0



2

t 3  t dt

0

 2 21  2 2 25. (a) Let x  2t, y  3t, 0 ≤ t ≤ 1





1

2x  y dx  x  3y dy 

0

C



1

7t2  7t3 dt 

35t dt 

0

35 2

(b) x  3 cos t, y  3 sin t, dx  3 sin t dt, dy  3 cos t dt, 0 ≤ t ≤ 2



2x  y dx  x  3y dy 

C

27.





2

9  9 sin t cos t dt  18

0

2x  y ds, r t  a cos3 t i  a sin3 t j, 0 ≤ t ≤

C

x t  3a

 2

 cos2 t sin t

y t  3a  sin2 t cos t



2x  y ds 



2

0

C

2a  cos3 t  a  sin3 tx t2  y t2 dt 

9 a2 5

29. f x, y  5  sinx  y C: y  3x from 0, 0 to 2, 6 rt  t i  3t j, 0 ≤ t ≤ 2 r t  i  3j r t  10 Lateral surface area:



C2



2

f x, y ds 

0



2

5  sint  3t 10 dt  10

0

5  sin 4t dt 

10

4

http://librosysolucionarios.net

41  cos 8 32.528

Review Exercises for Chapter 14 33. dr  2 sin t i  2 cos t j  k dt

31. d r  2t i  3t 2 j dt

F  2 cos t i  2 sin t j  t k, 0 ≤ t ≤ 2

F  t 5 i  t 4 j, 0 ≤ t ≤ 1



C

F  dr 



1

5t 6

0



5 dt  7

C

F  dr 



2

t dt  2 2

0

35. Let x  t, y  t, z  2t 2, 2 ≤ t ≤ 2, dr  i  j  4t k dt. F  t  2t 2 i  2t 2  t j  2t k



C

F  dr 



2

2

4t 2 dt 

4t3

3 2 2



64 3

37. For y  x 2, r1t  t i  t 2 j, 0 ≤ t ≤ 2

y

y = 2x

For y  2x, r2t  2  t i  4  2t j, 0 ≤ t ≤ 2





xy dx  x 2  y 2 dy 

C

xy dx  x 2  y 2 dy 

C1

4



3

xy dx  x 2  y 2 dy

y = x2

2

C2 1

4 100  32  3 3



(2, 4) C2

C1 x 1

2

3

4

39. F  x i  y j is conservative. Work 

41.



2 x 1

2

4, 8



2  y 32 3

0, 0



2 32 8 1  16  8  3  42  2 3 3

C

43. (a)

1, 4, 3



2xyz dx  x 2z dy  x 2 y dz  x 2 yz



y 2 dx  2xy dy 

C

  

1

0, 0, 0

 12

1  t23  21  3t1  t dt

0



1

3t 2  2t  1  23t 2  4t  1 dt

0



1

9t 2  14t  5 dt

0





 3t 3  7t 2  5t (b)



y 2 dx  2xy dy 

C

  4

1



4

1

 15

0

t 1  2tt 

1 2t

dt

t  t dt

1



 t2

4 1

 15

(c) Fx, y  y 2 i  2xy j  f where f x, y  xy 2. Hence,



C

45.



C

F  dr  42  11  15 2

 2

y dx  2x dy 

0

2

2

0



2

2  1 dy dx 

0

2 dx  4

47.



xy 2 dx  x 2y dy 

C

http://librosysolucionarios.net

 R

2xy  2xy dA  0

217

218

49.

Chapter 14



Vector Analysis

 1

xy dx  x 2 dy 

0

C

x

x



1

x dy dx  2

x 2  x3 dx 

0

1 12

z

51. ru, v  sec u cos v i  1  2 tan u sin v j  2u k 0 ≤ u ≤

6

 , 0 ≤ v ≤ 2 3 −4 2 4 x

53. (a)

2

y

4

−2

(b)

z

z 3

3

−4

−4 −4

−4 −3 4

4

y

4

−2

x

3

(d)

z

3

4

y

4

y

3

2

−2

−4 −3 4

2

z

3

3

2 −2

x

−1 −3

−3

(c)

2

−2

x

−3

−4

−4 −4 −3

3

4

y

4

1

−2

3

2 −2

x

3

−3

−3

The space curve is a circle:

 4   3 2 2 cos u i  3 2 2 sin u j 

r u,





(e) ru  3 cos v sin u i  3 cos v cos u j rv  3 sin v cos u i  3 sin v sin u j  cos v k



i j k 3 cos v cos u 0 ru rv  3 cos v sin u 3 sin v cos u 3 sin v sin u cos v



 3 cos2 v cos u i  3 cos2 v sin u j  9 cos v sin v sin2 u  9 cos v sin v cos2 uk  3 cos2 v cos u i  3 cos2 v sin u j  9 cos v sin vk  ru rv   9 cos4 v cos2 u  9 cos4 v sin2 u  81 cos2 v sin2 v  9 cos4 v  81 cos2 v sin2 v Using a Symbolic integration utility,

  2

4

2

 ru rv  du dv 14.44

0

(f) Similarly,

  4

0

2

 ru rv  dv du 4.27

0

http://librosysolucionarios.net

2

2

k

Review Exercises for Chapter 14 0 ≤ u ≤ 2, 0 ≤ v ≤ 2

55. S: ru, v  u cos v i  u sin vj  u  12  u k,

z

ru u, v  cos v i  sin vj  3  2u k rv u, v  u sin v i  u cos vj



i ru ru  cos v u sin v



2

x  y dS 

S

  2

x

3 −2

2

u cos v  u sin v u2u  32  1 du dv

0

0

2



−3

3

j k sin v 3  2u  2u  3u cos v i  2u  3u sin v j  u k u cos v 0

 ru rv   u2u  3  1



2 −3

0

2

cos v  sin vu22u  32  1 dv du  0

0

57. Fx, y, z  x2 i  xyj  z k Q: solid region bounded by the coordinates planes and the plane 2x  3y  4z  12 Surface Integral: There are four surfaces for this solid. z0 y  0, x  0,

S4

F  N dS 

1 4



1 4

 

1 4 1 6

   

0 dS  0

S2

F  N  x 2,

N  i,

0 dS  0

S1

F  N  xy,

N  j,

0 dS  0

S3

2i  3j  4k , dS  29

2x  3y  4z  12, N 



  

F  N  z,

N  k,

1  14  169 dA 

29

dA

4

2x 2  3xy  4z dA

R

6

0

4(2x3)

2x 2  3xy  12  2x  3y dy dx

0

6

2x 2

0

12 3 2x  3x2 12 3 2x

6

x3  x 2  24x  36 dx 

0

2

 12

12 3 2x  2x12 3 2x  23 12 3 2x dx 2





1 x 4 x3    12x 2  36x 6 4 3

6 0

 66

Divergence Theorem: Since div F  2x  x  1  3x  1, Divergence Theorem yields



     6

div F dV 

0

Q

0

6



 

1 4

1 4

1 4

(122x3y)4

3x  1 dz dy dx

0

(122x)3

0





(122x)3

3x  1

0

6

0

6

0

6

0

12  2x4  3y dy dx (122x3







12 3 2x  2312 3 2x dx

3 3x  1 12y  2xy  y 2 2

3x  1 412  2x  2x

dx

0 2





2 3 1 3x 4 35x3 3x  35x 2  96x  36 dx    48x 2  36x 3 6 4 3

http://librosysolucionarios.net

6 0

 66.

y

219

220

Chapter 14

Vector Analysis

59. Fx, y, z  cos y  y cos x i  sin x  x sin y j  xyz k S: portion of z  y 2 over the square in the xy-plane with vertices 0, 0, a, 0, a, a, 0, a Line Integral: Using the line integral we have: dy  0

C1: y  0,



C

z 1

C2: x  0, dx  0,

z  y 2,

dz  2y dy

C3: y  a, dy  0,

z  a2,

dz  0

C4: x  a, dx  0,

z  y 2,

dz  2y dy

F  dr  

  

C4 C1 a

cos y  y cos x dx  sin x  x sin y dy  xyz dz dx 

  

C3

0

a

dx 

sin a  a sin y dy  ay32y dy

C4



a

cos a  a cos x dx 

a

0



cos a  a cos x dx 

0

C2

0





a

sin a  a sin y dy 

2ay 4 dy

0

  y sin a  a cos y  2a 5 

 a  x cos a  a sin x

0

a

a

0

 a  a cos a  a sin a  a sin a  a cos a  a 

y5

a 0

2a6 2a6  5 5

Double Integral: Considering f x, y, z  z  y 2, we have: f 2yj  k  , dS  1  4y 2 dA, and curl F  xz i  yz j. f  1  4y 2

N Hence,

 S

curl F  N dS 

 a

0

a

 a

2y 2z dy dx 

0

0

a



a

2y 4 dy dx 

0

0

2a5 2a6 dx  . 5 5

Problem Solving for Chapter 14 1. (a) T 

25 xi  yi  zk x2  y2  z23 2

N  xi  1  x2 k dS 

1 1  x2

Flux 

dy dx

         kT

N dS

S

R

1 2

 25k

1

1 2 0 1

 25k

0

 25k

1

1 2 0 1 2

 25k



z x2  dA x2  y2  z23 21  x21 2 x2  y2  z23 2

 25k

x2



x2



y2





x2 1 2





x2



y2

1  x2 dy dx  z23 21  x21 2

1 dy dx 1  y23 21  x21 2

1 dy 1  y23 2



22 3  25k 

 1 

z2 3 2

1 2

1 dx  1  x21 2 1 2

2

6

—CONTINUED—

http://librosysolucionarios.net

C2 a y

x

C

C1



C3



Problem Solving for Chapter 14 1. —CONTINUED— (b) ru, v  cos u, v, sin u ru  sin u, 0, cos u, rv  0, 1, 0 ru  rv  cos u, 0, sin u T  

25 xi  yj  zk x2  y2  z23 2 25 cos ui  vj  sin uk v 2  13 2 25

25

 ru  rv  v2  13 2 cos2 u  sin2 u  v2  13 2

T

 1

Flux 

0

2 3

 3

2 25k du dv  25k v2  13 2 6

3. rt  3 cos t, 3 sin t, 2t r t  3 sin t, 3 cos t, 2, r t  13 Ix 

  

 y2  z2 ds 

C

Iy 

x2  z2 ds 

2

0

x2  y2 ds 

C

5.

2

0

C

Iz 

  

2

1 9 sin2 t  4t213 dt  13 322  27 3

1 9 cos2 t  4t213 dt  13 322  27 3

9 cos2 t  9 sin2 t13 dt  1813

0



1 1 x dy  y dx  2 C 2



2

0

a  sin a sin  d  a1  cos a1  cos  d

 

2

1  a2 2

sin  sin2  1  2 cos  cos2 d

0 2

1  a2 2

 sin  2 cos  2 d

0

 3a2 Hence, the area is 3a2. 7. (a) rt  tj, 0 ≤ t ≤ 1 r t  j W





1

F  dr 

0

C

ti  j  j dt 



1

dt  1

0

(b) rt  t  t 2 i  tj, 0 ≤ t ≤ 1 r t  1  2t i  j W  F  dr 

  

1

2t  t 2 i  t  t 22  1 j  1  2ti  j dt

0 1



1  2t2t  t 2  t 4  2t 3  t 2  1 dt

0

1



0

t 4  4t2  2t  1 dt 

13 15

—CONTINUED—

http://librosysolucionarios.net

221

222

Chapter 14

Vector Analysis

7. —CONTINUED— (c) rt  ct  t 2 i  t j, 0 ≤ t ≤ 1 r t  c1  2t i  j F  dr  ct  t 2  tc1  2t  c2t  t 22  11  c 2 t 4  2c 2 t 2  c 2 t  2ct 2  ct  1



W

F  dr 

C

1 2 1 c  c1 30 6

dW 5 1 1  c 0 ⇒ c dc 15 6 2 5 d 2W 1  > 0 c  minimum. dc 2 15 2 9. v  r  a1, a2, a3  x, y, z  a 2 z  a 3 y, a1z  a 3 x, a 1 y  a 2 x curlv  r  2a 1, 2a 2, 2a 3  2v By Stoke’s Theorem,



 

curlv  r  N dS

v  r dr 

C

S



2v

S

 N dS.

11. Fx, y  Mx, y i  Nx, y j  M

m 3xy i  2y 2  x 2 j x 2  y 25 2

3mxy  3mxyx 2  y 25 2 x 2  y 2 5 2

M 5  3mxy  x2  y27 22y  x2  y25 23mx y 2





 3mxx 2  y 27 2 5y 2  x 2  y 2  N

3mxx 2  4y 2 x 2  y 27 2

m2y 2  x 2  m2y 2  x 2x 2  y 25 2 x 2  y 25 2

N 5  m2y 2  x 2  x 2  y 27 22x  x 2  y 25 22mx x 2





 mxx 2  y 27 2 2y 2  x 25  x 2  y 22  mxx 2  y 27 2 3x 2  12y 2  Therefore,

3mxx 2  4y 2 x 2  y 27 2

N M and F is conservative.  x y

http://librosysolucionarios.net

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.