Photonic crystal fibres

Share Embed


Descripción

PHOTONIC CRYSTAL FIBRES G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Via E. Orabona 4 - 70125 Bari, Italy

F. Prudenzano Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile Politecnico di Bari, Via Orabona, 4, 70125 Bari, Italy, e-mail:[email protected]

7th International Conference on Transparent Optical Networks

July 3 - 7, 2005, Barcelona, Spain

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

OUTLINE Brief introduction on PCF properties Passive PCFs Active PCFs Conclusion and prospect

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

INTRODUCTION

www.photonics.phys.strath.ac.uk www.photonics.phys.strath.ac.uk

PBFs

Microstructured Optical Fibres

PCFs

HFs

The cladding pumping technique and LMA-HFs

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Microstructured fibers PCFs, MSFs, MOFs High Index Core fiber, Index Guiding Core, Holey Fibers

High NA

Large Mode

High NL

(HNA)

Area (LMA)

(HNL)

PBG fiber Bandgap guiding fiber

Low Index Core (LIC)

Air guiding core Hollow core (AG,HC)

Bjarklev, J. Broeng, A. S. Bjarklev, Photonic crystal fibers, Kluwer Acad. Publ. 2003

Bragg Fiber (BF)

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

PASSIVE PCFs

Λ=2.3 µm A= 40µm

Single mode over the wavelength range from 337 to 1550 nm V=

2π λ

nco − ncl

Veff =

2π λ

no − neff

2

2

2

2

FSM SEM image of PCF cross section J.C. Knight, T. A. Birks, P. St. J. Russel, D. M. Aktin, “All silica single mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547-1549, 1996. T. A. Birks, J.C. Knight, P. St. J. Russel, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963, 1997. J. Broeng, D. Mogilevstev, S. E. Barkou, A. Biarklev, “Photonic Crystal Fibers: A New Class of Optical Waveguides,” Optical Fiber technology, vol. 5, pp. 305-330, 1999. Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Control of GVD dispersion

APPLICATIONS Single mode propagation Polarization GVD Dispersion Soliton propagation Generation and amplification Sensor Biomedicine

Biomedicine SEM image of PCF cross section core diameter dc = 1 µm

………….

core silica bridges having width wb=120 nm J.C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. St. J. Russel, “Anomalous Dispersion in Photonic Crystal Fiber,” Photonics Techn. Lett., vol. 12, pp. 807-809, 2000. A. Ferrando, E. Silvestre, P. Andrès, J. Miret, M. V. Andrès, “Designing the properties of dispersion-flattened photonic crystal fibers,” Optics Express, vol. 9, pp. 687-697, 2001.

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

ACTIVE PCFs

SEM image of double cladding ytterbium doped core PCF

Output characteristic of the laser made by the double cladding ytterbium doped core PCF

K. Furusawa, A.N. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, D. J. Richardson, “A cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding," Opt. Express, vol. 9, pp. 714-720, 2001.

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

DESIGN OF ERBIUM DOPED PCF AMPLIFIER Theory The design of PCF amplifiers/lasers: Electromagnetic investigation: Element Methodthe (FEM) Great effort Finite is needed, because fiber section morphology affects the other device characteristics: The model takes into account : The ground state absorption (GSA) The stimulated emission of the signal (SE) The amplified spontaneous emission (ASE). The effects of cross-relaxation and up-conversion

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

PCF amplifier

PCF parameters

Outer-cladding Outer-cladding diameter

Outer-cladding hole diameter Pitch

Dcl-out = 122 µm

D = 6 µm ? = 8 µm (D/ ? =0.75)

§Inner-cladding InnerInner-cladding apothem h = 41.57 µá µ(m (a) di=2.5 µm (i=1÷5); (d/ ?¿ =0.31) ?·=0.31)

α

=

(a)

(a’) di=3.4 µm (i=1÷5); (d/ ?V ?N=0.42)

(a’)

(b) d1=2 µm and di+1 - di=0.8µ =0.8µm;

(b)

(c) d1=2.5 µm and di+1 - di =0.7µ =0.7µm; (d) d1=3 µm and di+1 - di=0.6 µm.

(c)

Ac A ic − A hic α

≅ 0.009

α

≅ 0.0098

α

≅ 0.011

(d)

§Er3+-doped core PUMP SIGNAL Wavelength ?á 980 [nm] 1536 [nm] ?° [nm] Core refractive index 1.45167 1.44519 (SiO2-GeO2) ∆n = ncore - nsilica = 0.001 due only to erbium ions losses 0.41 [dB/Km] 2 [dB/Km] Excited state lifetime 21 = 10 ms

Other simulation parameters Nonradiative relaxation rates A32 = A43 = 109 [s-1];Cup=C3=10-22 [m3s-1], C14=3.5x10-23 [m3s1]; σ -25 [m2] and σ -25 Er21=7.9x10 Er12=7.1x10 [m2] at λs = 1534 nm;σ nm;σEr13=2.55x10-25 [m2] at λp = 980 nm. Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Electric field modulus fundamental mode HEX11 ?á s = 1536nm

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Electric field modulus of the inner cladding pump modes HE11x,cl and HE12x,cl at the pump wavelength, λ = 980 nm.

HE11x,cl

HE12cl

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Amplifier Design Optimal gain G(Lopt) [dB]

32

Pp(0)=3W Ps(0)=100µW

fiber (a) fiber (a’)

28

fiber (b) fiber (c) fiber (d) 24

≅ 0.009

(a’)

α

≅ 0.0098

α

≅ 0.011

(c)

(a) G(Lopt)=32.1 dB

0

α

(b) (d)

(b) G(Lopt)=33.4 dB 20

(a)

2 4 6 8 Erbium concentration NEr x1024 [ions/m3]

10

G. Carlone, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, “ Design of double-clad erbium doped holey fibre amplifier,” Journal of Non Crystalline Solids 2005

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

103

Optimal Length Lopt [m]

fiber (a) fiber (a’) Pp(0)=3W

fiber (b) fiber (c) fiber (d)

102

Ps(0)=100µW Lopt ≅ 140 ÷160 m NEr=1x1024[ions/m3] (b) G(Lopt)=33.4 dB (a) G(Lopt)=32.1 dB

101

0

2 4 6 8 Erbium concentration NEr x1024 [ions/m3]

10

(b) (c) (d) G ≅ 32.6 dB, Lopt ≅ 50 m, NEr=3x1024[ions/m3] (a) (a’)

G ≅ 31. dB

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Optimal Noise Figure F(Lopt) [dB]

11

10

fiber (a) fiber (a’)

9

fiber (b) fiber (c) fiber (d)

Pp(0)=3W Ps(0)=100µW Lopt +

1 P (L, s ) F = + ASE G Gh ∆ s

8

7

6

0

2 4 6 8 Erbium concentration NEr x1024 [ions/m3]

10

Politecnico di Bari

s

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Output Signal Power Ps(L) [dBm]

30 Pp(0)=3W NEr=3x1024[ions/m3]

20 fiber (a) Lopt =48.94 m fiber (a') Lopt =44.55 m fiber (b) Lopt =53.4 m fiber (c) Lopt =49.46 m fiber (d) Lopt=46.3 m

10

G=32.7 dB Lopt= 53.4 m F = 6.5 dB QCE = 9.50% λ P (L )− P (0 ) p s s  QCE =  λ P (0 ) s p

NEr= 3×1024 0 -40

-30

-20

-10

0

Input signal power Ps(0) [dBm]

10

20 Inner cladding air holes with a graded diameter.

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Ytterbium doped laser, LMA-HF section LMA-HF parameters Outer-cladding diameter

Dcl-out = 122 µ¢ m

Pitch

?u= 8 µu m

Outer-cladding hole diameter

D = 6 µ“m

(D/?“= 0.75)

Inner-cladding hole diameter d = 2.5 µ5 m (d/?5 =0.31) Inner-cladding sizes

a = 80 µÐ m b = 50 µg m

§Yb3+-doped core Wavelength ?£ Core refractive index (SiO2-GeO2) losses σA σE Excited state lifetime

PUMP 975 1.45167 4.2 2.64 x 10-24 2.64 x 10-24 21 = 0.8 ms

Core diameter

dc = 7.6 µžm

Refractive index change

?ån = 0.001

SIGNAL 1030 1.45106 2 5 x10-26 6.8 x10-25

[nm] [dB/Km] [m2] [m2]

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

Laser Design

Optimal Length

L opt [m]

12 10

94

R =0.05 2

Max output power Pmax [W]

Input mirror Reflectivity R1=0.99 Pp(0) = 100 W Inner cladding air filling factor d/?=0.31

R =0.3 2

8

R2=0.05 R2=0.3

92

R2=0.6

90

6

R =0.6 4 2

2

R =0.8 3

R2=0.8

88

4

2

5 25 6 7 3 Yb concentration N x 10 [ions/m ] Yb

86 2

3

4

5 6 7 25 3 x 10 [ions/m ] Yb

Yb concentration N

Ytterbium concentration NYb=6·1025; optimal laser length Lopt ≅ 4.6 m Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

LASER CHARACTERISTIC Ytterbium concentration NYb=6x1025 ioni/m3 Input mirror reflectivity R1=0.99 Laser length L = 4.6 m, d/?Š d/?•=0.31

Output power

P out [W]

200

R2=0.05

R1=0.99

150

R1=0.95

100 50 0 0

R1=0.9

50 100 Pump power

150 Pin [W]

Slope efficiency S=93.6% Threshold pump power Pth=217 mW

200

D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, “Design of double-clad ytterbium doped microstructured fibre laser,” Applied Surface Science. 2005

Politecnico di Bari

7th International Conference on Transparent Optical Networks July 3 - 7, 2005, Barcelona, Barcelona, Spain

OPTIMIZATION: INNER CLADDING AIR FILLING FACTOR EFFECT Λ = 8 µm Core single mode for 0
Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.