Oldest European occurence of Meles (Mustelidae, Carnivora) from the Middle Pliocene (Mn16) of Almenara-Casablanca-4 Karstic Site (Castellón, Spain)

June 27, 2017 | Autor: Josep Marmi | Categoría: Evolutionary Biology, Geology, Ecology, Vertebrate Paleontology, Vertebrate
Share Embed


Descripción

Journal of Vertebrate Paleontology 29(3):961–965, September 2009 # 2009 by the Society of Vertebrate Paleontology

SHORT COMMUNICATION OLDEST EUROPEAN OCCURENCE OF MELES (MUSTELIDAE, CARNIVORA) FROM THE MIDDLE PLIOCENE (MN16) OF ALMENARA-CASABLANCA-4 ´ N, SPAIN) KARSTIC SITE (CASTELLO JOAN MADURELL-MALAPEIRA,*,1 ANDRE´S SANTOS-CUBEDO,1,2 and JOSEP MARMI1; 1Institut Catala` de Paleontologia, Universitat Auto`noma de Barcelona, Av. Campus UAB s/n, Cerdanyola del Valle`s (08193), Barcelona, Spain, [email protected]; [email protected]; 2Grup Guix, c/Santa Lucı´a 75 Vila-real (12540), Castello´, Spain, andre´[email protected] The origin of badgers (Subfamily Melinae) and the early evolutionary history of the genus Meles Brisson, 1762 remain still unresolved. Fossil, morphologic and genetic evidence suggest that only Meles and Arctonyx Cuvier, 1825 are closely related among extant badger genera (Petter, 1971; Bryant et al., 1993; Koepfli et al., 2008). Petter (1971) suggested that Meles, Arctonyx and Arctomeles Stach, 1951 evolved from an ancient “Meles” stock during the beginning of Late Pliocene. The origin of this lineage probably occurred in Asia during the Early Pliocene; afterwards, the Meles lineage spread to the west into Europe between the Late Pliocene and Early Pleistocene (Neal and Cheeseman, 1996). Recently, Koepfli et al. (2008) pointed that Arctonyx and Meles diverged in Eurasia between 4.4 and 3.6 MYA. At present, the Eurasian badger (Meles meles Linnaeus, 1758) has a Palearctic distribution, ranging from the Iberian Peninsula to Japan, including Palestine, southern China, Western Siberia and Great Britain, showing a wide morphologic variability across its range, which complicates its taxonomy at the intraespecific level. On the other hand, the hog badger (Arctonyx collaris Cuvier, 1825) is distributed across South-eastern Asia (China, Bhutan, Assam, Myanmar, Thailand, Vietnam and Sumatra) (Neal and Cheeseman, 1996). Historically, the oldest record of the genus Meles in Europe corresponded to Meles gennevauxi Viret, 1939 from the Early Pliocene of Montpellier (Viret, 1939). Recently, some authors have transferred this form to the genus Arctomeles (Tedford and Harrington, 2003 and references therein). Arctomeles pliocaenicus Stach, 1951, from the Early Pliocene of Weze-1 (Poland) (Stach, 1951), is the type species of this genus, where Parameles ferus Roshchin, 1949 must be also included (Roshchin, 1949; Tedford and Harrington, 2003 and references therein). Therefore according to this revision, the genus Arctomeles includes these five taxa: A. pliocaenicus, A. gennevauxi, A. suillus Teilhard and LeRoy, 1945, A. ferus and A. sotnikovae Tedford and Harrington, 2003. Up to now, six species and one subspecies of the genus Meles have been reported from the Late Pliocene to the Middle Pleistocene: M. thorali Viret, 1951 from Saint-Vallier (France) and Vatera (Greece); M. iberica Arribas and Garrido, 2007 from Fonelas P-1 (Spain); M. dimitrius Koufos, 1992 from Gerakarou and Apollonia-1 (Greece); M. hollitzeri Raebeder, 1976 from Untermassfeld (Germany) and Deutsch-Altenburg 2 (Austria); M. thorali spelaeus Bonifay, 1971 from Lunel-Viel (France); M. atavus Kormos, 1914 from Beftia 5 (Hungary) and the extant badger M. meles (Kormos, 1914; Viret, 1951; Bonifay, 1971; Raebeder, 1976; Koufos, 1992; Wolsan, 2001; Arribas and Garrido, 2007). The latter species is the most frequent mustelid in

*

Corresponding author.

the European late Palaeolithic subfossil record suggesting a widespread distribution of this species during the Last Glacial (Sommer and Benecke, 2004). However, the distribution of the badger lineage throughout the European Plio-Pleistocene is poorly known. Forms similar to Meles thorali from the mid Villafranchian of China suggest that this species was widespread throughout the Paleartic region since its origins (Neal and Cheeseman, 1996). The discovery of badger remains close to the Plio-Pleistocene boundary is highly significant to elucidate the ancient history of Meles, especially in Western Europe, far away from the most likely area of origin of this genus. In the Early Pleistocene from the Iberian Peninsula, Meles has been reported from Venta Micena, Barranco Leo´n 5, Fuente Nueva 3 and Trinchera Dolina (TDE5) in Atapuerca (Garcı´a, 2003; Martı´nez-Navarro et al., 2003 and references therein). However, the scarcity of remains from these localities has thus far prevented their determination at the species level. In this paper, we report new material of Meles cf. thorali from the Middle Pliocene (MN16) of Almenara-Casablanca-4 (ACB-4) (Castello´n, Spain). Abbreviations—ACB, Almenara-Casablanca, Almenara, Spain; IPS, Institut de Paleontologia M. Crusafont, Sabadell, Spain; ICP, Institut Catala` de Paleontologia, Cerdanyola del Valle`s, Spain.

Geological Setting ACB-4 is a fissure infilling belonging to the karstic complex of Almenara-Casablanca. This site is situated close to the town of Almenara (province of Castello´n, Eastern Coast of Spain) (Fig. 1). This complex is situated in a Triassic calcareous massif exploited by quarries, in which many fissure infillings of Late Neogene and Early Quaternary age occur. Some of these sites are ACB-M (Mio-Pliocene boundary), ACB-4 (Middle Pliocene), ACB-1 and -6 (Late to latest Pliocene) and ACB-3 (Early Pleistocene) (Table 1; Furio´ et al., 2005). ACB-4 was discovered during the surveys carried out during the 1985 and 1986 campaigns. It has produced a rich micromammalian association that includes the following species: Desmaninae indet.; Deinsdorfia doukasi Furio´ and Mein, 2008; Myosorex meini Jammot in Furio´ et al., 2007; Prolagus cf. calpensis Major, 1905; Eliomys aff. intermedius Friant, 1953; Stephanomys progressus Cordy, 1976; Castillomys crusafonti Michaux, 1969; Apodemus aff. mystacinus Danford and Alston, 1877; Apodemus sp. Kaup, 1829; Kislangia sp. (aff. cappettai) Kretzoi, 1954 (Gil and Sese´, 1985; Furio´ et al., 2007; Furio´ and Mein, 2008). The faunal list of macrovertebrates still remains unpublished. ACB-4 is assigned to MN-16 by the presence of Kislangia cappettai (J. Agusti pers. comm., June, 2008).

961

962

JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 29, NO. 3, 2009

FIGURE 1. Geographical location of the karstic complex of Almenara-Casablanca (eastern Spain).

SYSTEMATIC PALEONTOLOGY Order CARNIVORA Bowdich, 1821 Family MUSTELIDAE Fisher, 1817 Subfamily MELINAE Bonaparte, 1838 Genus MELES Brisson, 1762 MELES CF. THORALI Viret, 1951 (Table 2; Figs. 2, 3) Referred Specimen—ACB4-35, right M1, stored at the Museo de Geologı´a de la Universidad de Valencia (Valencia, Spain). Description—The M1 displays a trapezoid contour in occlusal view, the buccal mesiodistal length being shorter than the lingual one (Fig. 2). The trigon displays two main cusps, the paracone and the metacone, which are about equal in size. These cusps are well separated by a pronounced buccolingual notch. A narrow cingulum runs along the mesiobuccal base of the metacone. The metaconule is a large cuspule, similar in size to the protocone. It is situated distobuccally from the protocone and distolingually from the metacone, being isolated from the latter cusp by a deep

groove. The buccal incision between the metacone and metaconule is well developed. The postprotocrista is long and reaches metaconule (B1 morphotype according to Baryshnikov et al., 2003). There is a marked lingual cingulum that is continuous from the mesiolingual aspect of the base of the paracone until the distolingually aspect of the metaconule. The talon is strongly projected distolingually. DISCUSSION The Meles remains of ACB-4 show a strongly-developed and continuous lingual cingulum. In this regard, the ACB-4 M1 clearly differs from the genus Arctomeles, which is characterised by the reduction of the M1 lingual cingulum that may be absent mesially. The M1 from ACB-4 also displays a paracone and metacone that are about equal in size, as in M. thorali and M. dimitrius. On the contrary, in M. iberica, M. hollitzeri and the extant M. meles, the paracone is much larger than the metacone. The buccal mesiodistal length of the reported specimen is smaller

SHORT COMMUNICATIONS TABLE 1. Relative age for each Almenara-Casablanca localities. Pleistocene Pliocene

ACB-3 Villanyian Ruscinian

Miocene

Turolian

MN17 MN16 MN15 MN14 MN13

ACB-1 ACB-6 ACB-4 ACB-M

than the lingual one; its relative buccal length ((M1 buccal length x 100)/(M1 lingual width x 100)) is 65.9% (Table 2). The value of this parameter is 62.9 in M. thorali; 68.5 in M. iberica; 63.9 in M. dimitrius and 70.4 in the extant Meles (Koufos, 1992). The metaconule is located distolingually with respect to the metacone in the Almenara specimen, just like in M. thorali and M. dimitrius, whereas in the extant badgers this cusp is more buccally situated. This position of the metaconule results in an incision on the crown labial margin (B1 and B2 morphotypes according to Baryshnikov et al., 2003), a feature that is also present in M. iberica from Fonelas. The talon is strongly projected distolingually like in specimens of M. thorali and M. hollitzeri. In M. iberica and M. dimitrius, the talon is short and displays a quadrangular occlusal outline, while in the former species and in the Almenara specimen this outline is trapezoidal (Fig. 2). ACB4-35 resembles the specimen of M. iberica by its small size; unfortunately the upper dentition of the later taxon is too worn, preventing an adequate comparison with our material. Evaluating the taxonomic status of M. iberica is outside the scope of this paper, but this species displays strong affinities with M. thorali in cranial and dental characters. The sizes of M. iberica and ACB4-35 specimen are close to the minimum values reported for M. thorali recovered from Saint-Vallier (Argant, 2004). The living Eurasian badger currently displays a great degree of morphological variability regarding its dentition (Baryshnikov et al., 2003). Some authors have previously reported significant differences among extant European and Asian populations; three living species are distinguished: M. meles (from Europe), M. leucurus Hodgson, 1847 (from continental Asia) and M. anakuma Temminck, 1844 (from Japan) (Abramov and Medvedev,

963

2003). On the other hand, some researchers support the contention that there is a single Eurasian species including up to 20 subspecies (Petrov, 1953; Wozencraft, 1993). Phylogenetic relationships among these (sub)species and their potential ancestors remain still unresolved due to the scarcity of fossil remains from the Eurasian Plio-Pleistocene, as well as to the great morphological diversity between the several living and extinct populations. Genetic analyses provide a simple scenario. The analysis of the mitochondrial DNA control region of extant Eurasian badger populations reveals three main lineages or haplogroups, suggesting that European, Central-South-West Asian and the remaining Asian populations evolved separately since the end of the Pliocene (Marmi et al., 2006). Baryshnikov et al. (2003) suggested a common origin for the fossil forms attributed to M. thorali, which display a mosaic of characters typical of M. meles and M. anakuma, as well as a Palearctic distribution during the Late Pliocene. This is supported by the finding of a form closely related to M. thorali in the middle Villafranchian of China (Neal and Cheeseman, 1996). On the basis of genetic and paleontological data, we propose the hypothesis that the divergence between Meles thorali and closely-related forms between Late Pliocene and Middle Pleistocene would have lead to the current Eurasian badger species. This would be a consequence of geographic isolation on glacial refuges since the beginning of the glacial ages without significant gene flow during any of the several interglacial stages. Fossil data suggest that the ancestors of Eurasian badgers appeared in Asia during the Pliocene. Phylogenetic and dating analyses suggested that the appearance and diversification of Eurasian badgers correspond to a second diversification of mustelids. This event took place during the Pliocene and coincides with major paleoenvironmental and biotic changes, during which Arctonyx and Meles diverged in Asia between 4.4 and 3.6 MYA (Koepfli et al., 2008). During glacial ages, the Iberian Peninsula, where ACB4-35 was found, constituted a southern European refuge. Meles thorali reached Europe by the Late Pliocene, but up to now there has been no clear evidence for the presence of badger ancestors in the Iberian Peninsula during this epoch. The badger remains reported in this paper confirm that M. cf. thorali was present in this region before the first glacial stage.

TABLE 2. Dental measurements (in mm) of the first upper molars of Meles. Localities

Species

ACB-4 St. Vallier1

M. cf. thorali M. thorali

Deutsch-Altenburg 22

M. hollitzeri

Untermassfeld3 Gerakarou4

M. hollitzeri M. dimitrius

4

Apollonia 5

Fonelas Extant6 Extant7

M. dimitrius M. iberica M. meles (n = 23) M. meles (n = 6)

Record N

M1/Ll

M1/Lb

M1/W

ACB-4-35 QSV1 QSV2 QSV3 QSV17 QSV18 QSV1052 QSV1055 QSV1056 SV991086 14/113 74 112 IQW24619 GER159 GER160 APL544 APL-545 FP120000564

12.3 14.5 13.5 13.4 15.0 14.2 13.3 15.0 13.1 12.8 13.4 12.3 13.8 13.3 13.3 13.0 13.6 13.5 12.7 13.9 14.1

8.1 9.6 9.1 8.2 9.2 8.9 8.8 9.0 8.5 8.6

10.4 12.3 12.9 11.8 12.0 12.0 12.0 12.3 12.0 11.6 11.5 11.3 11.4 9.7 12.1

8.5 8.8 8.5 8.7 11.0

12.0 12.0 11.2 11.8 11.3

Abbreviations: Ll, lingual mesiodistal length; Lb, buccal mesiodistal length; W, maximum width. Sources: 1Viret (1951); 2Raebeder (1976); 3Wolsan (2001); 4Koufos (1992); 5Arribas & Garrido (2007); 6Sierra de Aralar (Spain), Zabala (1980); 7 Catalonia (Spain), from the collections of the Institut Catala` de Paleontologia.

964

JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 29, NO. 3, 2009

FIGURE 2. First upper molars of different members of the subfamily Melinae in occlusal view. A, Arctomeles pliocaenicus from Weze-1 (modified from Stach, 1951); B, Meles cf. thorali ACB4-35 from Almenara-Casablanca-4; C, Meles thorali IPS 17110 from Saint-Vallier, cast from the collections of Institut Catala` Paleontologia (ICP); D, Extant Meles meles.

CONCLUSIONS The Meles material from Almenara-Casablanca-4 site shares several morphological characters with Meles thorali. These features are: main cusps of the trigon equal in size, metaconule located distolingually with respect to the metacone, marked lingual cingulum and talonid strongly projected distolingually. Nevertheless, the lingual length and buccolingual width are clearly lower than the range previously reported for M. thorali and living Iberian M. meles, closely approaching instead the values for M. hollitzeri from Untermassfeld (Germany) (Table 2, Fig. 3). On this basis, and given the scarcity of the currently available material, we refer the ACB-4 specimen to Meles cf. thorali. Considering that Early Pliocene remains are attributed to the genus Arctomeles, the ACB-4 specimen constitutes the oldest evidence of the genus Meles in the European Pliocene (MN16),

being older than the M. thorali remains from Saint-Vallier that are attributed to the MNQ17 biozone (Gue´rin et al., 2004). The ACB-4 material unequivocally confirms that Meles reached the Iberian Peninsula before the first glacial maximum, further indicating that this genus was already widely distributed during the Middle Pliocene, soon after it first appears in eastern Asia. In fact, Arctonyx and Meles diverged in Asia between 4.4 and 3.6 MYA (Koepfli et al., 2008) and then Meles dispersed quickly along the European continent to the most western part of Eurasian region, as suggested by the ACB4-35 fossil. These data are in agreement with the phylogeographic results obtained from the analyses of mtDNA of extant species (Marmi et al., 2006). ACKNOWLEDGMENTS We are indebted to D. M. Alba, I. Casanovas and M. Furio´ for reviewing a previous draft of this manuscript. We sincerely thank to B. Martı´nez-Navarro, an anonymous reviewer and the editor R. Asher for their helpful suggestions. Also we thank F. Gusi, for his efforts to preserve ACB karstic complex. J. Marmi is funded by the Juan de la Cierva program (Ministerio de Ciencia e Innovacio´n, Spanish Government, ref. JCI-2007-187-1593). LITERATURE CITED

FIGURE 3. Scatter diagram comparing the lingual mesiodistal length and maximum buccolingual width of the first upper molars of fossil and extant Meles spp. Data are taken from the following sources: Viret (1951): Meles thorali. Arribas and Garrido (2007): Meles iberica. Raebeder (1976) and Wolsan (2001): Meles hollitzeri. Koufos (1992): Meles dimitrius. Zabala (1980): Meles meles. This paper: ACB4-35; Meles meles (from the collections of ICP). All measurements are in millimeters.

Abramov, A., and S. G. Medvedev. 2003. Notes on zoogeography and taxonomy of the badgers (Carnivora, Mustelidae, Meles) and some of their fleas (Siphonaptera, Ceratophyllidae, Paraceras). Zoosystematica Rossica 11:397–402. Argant, A. 2004. Les Carnivores du gisement Plioce`ne final de SaintVallier (Droˆme, France). Geobios 37:S133–S182. Arribas, A., and G. Garrido. 2007. Meles iberica n. sp., a new Eurasian badger (Mammalia, Carnivora, Mustelidae) from Fonelas P-1 (PlioPleistocene boundary, Guadix Basin, Granada, Spain). Comptes Rendus Palevol 6:545–555. Baryshnikov, G. F., A. Y. Puzachenco, and A.V. Abramov. 2003. New analysis of variability of cheek teeth in Eurasian badgers (Carnivora, Mustelidae, Meles). Russian Journal of Theriology 1:133–149. Bonaparte, C. L. J. L. 1838. Synopsis vertebratorum systematis. Nuovi Annali delle Scienze Naturalli, Bologna 1:105–133. Bonifay, M. F. 1971. Carnivores quaternaries du Sud-Est de la France. Me´moires du Muse´um National d’Historie Naturelle Nouvelle Se´rie C. Tome 21(2):1–377. Bowdich, T. E. 1821. An Analysis of the Natural Classification of Mammalia, for Use of Students and Travelers. J. Smith, Paris, 115 pp. Brisson, M. J. 1762. Le regnum animale in classes IX distributum, sive synopsis methodica sistens generalem animalium distributionem in classes IX, & duarum primarum classium, quadrupedum scilicet & cetaceorum, particularem dibvisionem in ordines, sections, genera & species. T. Haak, Paris, 296 pp. Bryant, H. N., A.P. Russell, and W. D. Fitch. 1993. Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the

SHORT COMMUNICATIONS cladistic stauts of the Simpsonian subfamilies. Zoological Journal of the Linnean Society 108:301–334. Cordy, J. M. 1976. Essai sur la microe´volution du genre Stephanomys (Rodentia, Muridae). Unpublished Ph.D. dissertation, Universite´ Lie`ge, Belgique, 351 pp. Cuvier, F. G. 1825. In E. Geoffroy Saint-Hilaire and F. G. Cuvier, Historie Naturelle des Mammife`res. 5(51), 2 pp., 1 pl. Danford, C., and E. Alston. 1877. On the Mammals of Asia Minor. Proceedings of the Zoological Society of London 1880:270–281. Fischer von Waldheim, G. 1817. Adversaria Zoologica. Me´mories de la Socie´te´ Impe´riale des Naturalistes de l’Universite´ Impe´riale de Moscou 5:368–428. Friant, M. 1953. Une faune du Quatemaire ancien en France mediterraneenne (Sete, Herault). Annales de la Socie´te´ ge´ologique du Nord 73:161–170. Furio´, M., A. Santos-Cubedo, H.-A. Blain, E. Blaya, I. Casanovas-Vilar, J. Madurell, and D. Martı´nez-Alba. 2005. Sı´ntesis sobre las faunas fo´siles del complejo ca´rstico de Almenara-Casablanca (Castello´n); pp. 273–286 in G. Mele´ndez, C. Martı´nez-Pe´rez, S. Ros, H. Botella, and P. Plasencia, Miscela´nea Paleontolo´gica. Publicaciones del Seminario de Paleontologı´a de Zaragoza SEPAZ, 6 (2005), Zaragoza, Spain. Furio´, M., A. Santos-Cubedo, R. Minwer-Barakat, and J. Agustı´. 2007. Evolutionary history of the African soricid Myosorex (Insectivora, Mammalia) out of Africa. Journal of Vertebrate Paleontology 27:1018–1032. Furio´, M., and P. Mein. 2008. A new species of Deinsdorfia (Soricidae, Insectivora, Mammalia) from the Pliocene of Spain. Comptes Rendus Palevol 7:347–359. Garcı´a, N. 2003. Osos y otros carnı´voros de la Sierra de Atapuerca. Fundacio´n Oso Asturias, Oviedo, Espan˜a, 575 pp. Gil, E., and C. Sese´. 1985. Micromamı´feros (Insectivora, Rodentia y Lagomorpha) del nuevo yacimiento Villafranquiense de Casablanca B (Almenara, Prov. de Castello´n). Estudios Geolo´gicos 41:495–501. Gue´rin, C., M. Faure, A. Argant, J. Argant, E. Cre´gut-Bonnoure, E. Debard, E. Delson, V. Eisenmann, M. Hugueney, N. LimondinLozouet, E. Martı´n-Sua´rez, P. Mein, C. Mourer-Chauvire´, F. Parenti, J. F. Pastre, S. Sen, and A. Valli. 2004. The Late Pliocene site of Saint-Vallier (Droˆme, France) synthesis of biostratigraphic and palaeoecological conclusions. Geobios 37:S349–S360. Hodgson, B. H. 1847. On the Tibetian badger (Taxidia leucurus). Journal of the Asiatic Society of Bengal 16:763–771. Kaup, J. 1829. Skizzierte Entwicklungsgeschichte und Natu¨rliches System der Europa¨ischen Thierwelt. C. W. Leske, Darmstadt/Leipzig. 203 pp. Kretzoi, M. 1954. Bericht u¨ber die calabrische (Villafrankische) fauna von Kislang. Jahresbericht der Ungarischen Geologischen Anstalt. 212–265. Koepfli, K. P., K. A. Deere, G. J. Slater, C. Begg, K. Begg, L. Grassman, M. Lucherini, G. Veron, and R. K. Wayne. 2008. Multigene phylogeny of the Mustelidae: Resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biology 6(10):1–22. Kormos, T. 1914. Drei neue Raubtiere aun den Pra¨glazial-Schichten des Somlyo´hegy bei Pu¨po¨kfu¨rdo´. Mittheilungen aus dem Jahrbuche der Ko¨niglichen Ungarischen geologischen Reichsanstalt 22:223–247. Koufos, G. D. 1992. The Pleistocene carnivores of the Mygdonia basin (Macedonia, Greece). Annales de Pale´ontologie 78:205–257.

965

Linnaeus, C. 1758. Systema Naturae per regna tria naturae, secundum classis, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Vol. 1. Regnum animale. Edito decimal, reformata (Laurentii, Salvii). Stockholm. 1758. Major, C. I. F. 1905. Rodents from the Pleistocene of the Western Mediterranean region. Geology Magazine 5:462–467. Marmi, J., F. Lo´pez-Gira´ldez, D. W. Macdonald, F. Calafell, E. Zholnerovskaya, and X. Domingo-Roura. 2006. Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Molecular Ecology 15:1007–1020. Martı´nez-Navarro, B., M. P. Espigares, and S. Ros. 2003. Estudio preliminar de las asociaciones de grandes mamı´feros de Fuente Nueva3 y Barranco Leo´n-5 (Orce, Granada, Espan˜a) (Informe de las campan˜as de 1999–2002); 115–136 in El Pleistoceno inferior de Barranco Leo´n y Fuente Nueva-3, Orce (Granada). Memoria cientı´fica campan˜as 1999–2002, Consejerı´a de Cultura de la Junta de Andalucı´a. Sevilla, 206 pp. Michaux, J. 1969. Muridae (Rodentia) du Plioce`ne supe´rieur d’Espagne et du Midi de la France. Palaeovertebrata 3:1–25. Neal, E., and C. Cheeseman. 1996. Badgers, T. and A. D. Poyser Ltd., London, 271 pp. Petrov, V. V. 1953. The data on the intraespecı´fic variability of badgers (genus Meles). Uchenye Zapiski Leningradskogo Pedagogicheskogo Instituta 7:149–205. Petter, G. 1971. Origine, phyloge´nie et systema´tique des blaireaux. Mammalia 35:567–597. Rabeder, G. 1976. Die Carnivoren (Mammalia) aus dem Altpleistoza¨n von Deutsch-Altenburg 2. Mit Beitra¨gen zur Systematik einiger Mus¨ sterreich 1:5–119. teliden und Caniden. Beitra¨ge. Pala¨ontologie O Roshchin, A. D. 1949. A new genus of fossil mammal of the family Mustelidae from the Pliocene of Odessa. Trudy Odesskogo Gosudarstvennogo University 60:97–106. Sommer, R., and N. Benecke. 2004. Late- and Post-Glacial history of the Mustelidae in Europe. Mammal Review 34:249–284. Stach, J. 1951. Arctomeles pliocaenicus new genus and species from Weze. Acta Geologica Polonica 2:129–157. Tedford, R. H., and C. H. Harington. 2003. An Artic mammal fauna from the Early Pliocene of North America. Nature 425:388–390. Teilhard, P., and P. LeRoy. 1945. Les muste´lide´s de Chine. Institute Geobiologique Pe´kin 12:1–56. Temminck, C. J. 1844. Mammife`res qui habitent le Japon et les iles qui en de`pendent. Fauna Japonica: 30–31, pl. 6. Viret, J. 1939. Monographie pale´ontologique de la faune de verte´bres des sables de Montpellier, III Carnivora fissipedia. Travaux du Laboratoire Ge´ologie de la Faculte´ des Sciences de Lyon 37:1–26. Viret, J. 1951. Meles thorali n. sp. du loess villafranchien de Saint-Vallier (Droˆme). Eclogae Geologicae Helvetiae 43:274–287. Wolsan, M. 2001. Remains of Meles hollitzeri (Carnivora, Mustelidae) from the Lower Pleistocene site of Untermassfeld; pp. 659–671 in R. D. Kahlke (ed.), Das Pleistoza¨n von Untermassfeld bei Meiningen (Thu¨ringen), 2, Ro¨misch-Germanisches Zentralmuseum, Mainz. Wozencraft, W. C. 1993. Order Carnivora; pp. 279–348 in D. E. Wilson y and D. M. Reeder, Mammal Species of the World: a Taxonomic and Geographic Reference, 2nd edition, Smithsonian Institution Press, Washington and London. Zabala, J. 1980. Biometrı´a del tejo´n (Meles meles L. 1758) en la Sierra de Aralar. Munibe 32:301–315. Submitted November 3, 2008; accepted December 26, 2008.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.