Numero de Oxidacion y Elementos contaminantes del medio ambiente Química 1

June 26, 2017 | Autor: Rafael Guzman Mtz | Categoría: Química, IGE
Share Embed


Descripción

Numero de Oxidación

En química, el estado de oxidación (EO) es indicador del grado de oxidación de un átomo que forma parte de un compuesto u otra especie química.
La oxidación se da cuando un elemento o compuesto pierde uno o más electrones. Generalmente, cuando una sustancia se oxida (pierde electrones), otra sustancia recibe o capta dichos electrones reduciéndose. Este es el mecanismo básico que promueve las reacciones de óxido-reducción o redox.


En un enlace covalente apolar ambos átomos comparten el par de electrones para cumplir la regla del octeto, no obstante el de mayor electronegatividad -en este caso el carbono- los atrae más fuertemente y se recibe una carga parcial negativa (δ-); por el contrario, el otro átomo -el hidrógeno- está más alejado del par de electrones y se carga parcialmente de forma positiva (δ+). El EO busca cuantificar y explicar esta interacción: el carbono tiene un EDO de -4 y cada hidrógeno +1 y al sumarlos da la carga de la molécula (0).
Un átomo tiende a obedecer la regla del octeto para así tener una configuración electrónica igual a la de los gases nobles, los cuales son muy estables eléctricamente. Dicha regla sostiene que un átomo tiende a tener ocho electrones en su nivel de energía más externo. En el caso del hidrógeno este tiende a tener 2 electrones, lo cual proporciona la misma configuración electrónica que la del helio.
Cuando un átomo A necesita, por ejemplo, 3 electrones para obedecer la regla del octeto, entonces dicho átomo tiene un número de oxidación de -3. Por otro lado, cuando un átomo B tiene los 3 electrones que deben ser cedidos para que el átomo A cumpla la ley del octeto, entonces este átomo tiene un número de oxidación de 3+. En este ejemplo podemos deducir que los átomos A y B pueden unirse para formar un compuesto, y que esto depende de las interacciones entre ellos. La regla del octeto y del dueto pueden ser satisfechas compartiendo electrones (formando moléculas) o cediendo y adquiriendo electrones (formando compuestos de iones).
Los elementos químicos se dividen en 3 grandes grupos, clasificados por el tipo de carga eléctrica que adquieren al participar en una reacción química:
Metales
No metales
Gases nobles
Existen elementos metálicos que, dependiendo de las condiciones a que sean sometidos, pueden funcionar como metales o no metales indistintamente. A estos elementos se les denomina metaloides.


EJEMPLOS

Cloruro de sodio
2Na0 + Cl02 2Na+1 + 2Cl-1-H2O
Los gases de un solo tipo de elemento, en este caso el cloro, están presentes en forma diatómica.
El sodio (Na) se combina con el cloro (Cl), produciendo cloruro de sodio. El número de oxidación de ambos elementos sin combinar es 0 (cero), ya que están equilibrados eléctricamente. El número de oxidación del sodio combinado es +1, ya que cede un electrón. El número de oxidación del cloro combinado es -1, ya que acepta el electrón cedido por el sodio.


Oxido de aluminio
Al0 + O02 Al3+ + 2O2
El oxígeno (O) está presente en forma diatómica (gas).
El aluminio (Al) se combina con el oxígeno (O), produciendo óxido de aluminio (Al2O3). El número de oxidación de ambos elementos sin combinar es 0 (cero), ya que están equilibrados eléctricamente. El número de oxidación del aluminio combinado es 3+, ya que cede tres electrones. El número de oxidación del oxígeno combinado es 2 , ya que acepta hasta 2 electrones.

Los electrones cedidos y aceptados por los distintos elementos crean un problema con las cargas eléctricas. Por ejemplo, el aluminio cede tres electrones y el oxígeno sólo acepta dos, por lo que sobra uno. De esto se concluye que en la reacción no interviene un solo átomo de oxígeno, por lo que se procede a balancear la ecuación, para que coincidan todos los electrones transferidos con las capacidades de cada elemento aceptor.
La ecuación balanceada queda así:
4Al0 + 3O02 4Al3+ + 6O2 2Al3+ + 3O2
Con lo que se logra el balance perfecto para que se acomoden todos los electrones excedentes. Los elementos de un elemento libre o en estado basal tienen un número de oxidación igual a 0.



















Electronegatividad

La electronegatividad es una medida de la capacidad de un átomo (o de manera menos frecuente de un grupo funcional) para atraer a los electrones, cuando forma un enlace químico en una molécula

La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes: su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia.2 La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares.

El procedimiento de cálculo más común es el inicialmente propuesto por Pauling. El resultado obtenido mediante este procedimiento es un número adimensional que se incluye dentro de la escala de Pauling. Esta escala varía entre 0,7 para el elemento menos electronegativo y 4,0 para el mayor.

Es interesante señalar que la electronegatividad no es estrictamente una propiedad atómica, pues se refiere a un átomo dentro de una molécula3 y, por tanto, puede variar ligeramente cuando varía el "entorno"4 de un mismo átomo en distintos enlaces de distintas moléculas. La propiedad equivalente de la electronegatividad para un átomo aislado sería la afinidad electrónica o electroafinidad.










Impacto ecológico y ambiental de algunos elementos

Antimonio (Sb) . Se emplea en aleaciones, metal de imprenta, baterías, cerámica. El principal daño que provoca es el envenenamiento por ingestión o inhalación de vapores, principalmente por un gas llamado estibina SbH3.

Arsénico (As).
Se emplea en venenos para hormigas, insecticidas, pinturas, Es uno de los elementos más venenosos que hay, así como todos los compuestos.

Aunque todos los compuestos solubles de arsénico son venenosos, algunos tienen uso en medicina. Los que lo consumen adquieren cierta tolerancia al mismo y pueden tomar mayores cantidades de las que otras personas no habituadas.
Los compuestos de arsénico se utilizan en agricultura en pulverizaciones y baños para ganado, con el fin de destruir insectos y parásitos.


Azufre (S)
Principalmente son óxidos SO2 y SO3 contaminan el aire y con agua producen la lluvia ácida. El gas H2S es sumamente tóxico y contamina el aire. El azufre es empleado en algunos medicamentos para la piel.

Bromo (Br)
Sus vapores contaminan el aire, además sus compuestos derivados son lacrimógenos y venenosos.

Cadmio (Cd)
Metal tóxico que se origina en la refinación del zinc; también proviene de operaciones de electrodeposición y por tanto contamina el aire y el agua. Contenido en algunos fertilizantes contamina el suelo.


Cloro (Cl)
Sus valores contaminan el aire y son corrosivos. Se le emplea en forma de cloratos para blanquear la ropa, para lavados bucales y fabricación de cerillos. Los vapores de compuestos orgánicos clorados como insecticidas, anestésicos y solventes dañan el hígado y el cerebro. Algunos medicamentos que contienen cloro afectan el sistema nervioso.

Cromo (Cr)
El cromo y sus compuestos son perjudiciales al organismo, pues destruyen todas las células. Se le emplea en síntesis orgánicas y en la industria del acero. Cualquier cromato solubles contamina el agua.




Mercurio (Hg)
Metales de gran utilidad por ser líquidos; se utiliza en termómetros y por ser buen conductor eléctrico se emplea en aparatos de este tipo, así como en iluminación, baterías, pinturas, insecticidas, fungicidas, catalizadores, amalgamas dentales, plaguicidas, etc. pero contamina el agua, el aire y causa envenenamiento.

Plomo (Pb)
El plomo se acumula en el cuerpo conforme se inhala del aire o se ingiere con los alimentos y el agua. La mayor parte del plomo que contamina el aire proviene de las gasolinas para automóviles. También se le emplea en pinturas, como metal de imprenta, soldaduras y acumuladores. Por su uso el organismo se afecta de saturnismo. Sus sales, como el acetato, son venenosas.

Los vapores de plomo son los causantes de una gran enfermedad llamada saturnismo, caracterizada entre otros síntomas por anorexia, constipación pertinaz, anemia parálisis muscular, insomnio, angustia etc. Suele afectar a mineros que extraen plomo, a tipógrafos a pintores y a quienes fabrican acumuladores.



Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.