Mesozoic clastic sequences from a Jurassic rift to Cretaceous foreland basin, Austral Basin, Patagonia, Argentina

Share Embed


Descripción

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

MESOZOIC CLASTIC SEQUENCES FROM A JURASSIC RIFT TO A CRETACEOUS FORELAND BASIN, AUSTRAL BASIN, PATAGONIA, ARGENTINA.

3rd – 6th October 2010, Santa Cruz, Argentina

Daniel G. Poiré, Juan Franzese

Field Excursion Guide

- 1-

- 2-

PUBLISHER ´S NOTE This publication was prepared by the Congress Organization as the Field Excursion Guidebook for the 18th International Sedimentological Congress “Sedimentology at the Foot of the Andes”, 2010 Mendoza, Argentina. Reference to any field excursion guidebook in this publication should be cited as follow: Poiré, D. and Franzese, J. (2010) Mesozoic clastic sequences from a Jurassic rift to a Cretaceous foreland basin, Austral Basin, Patagonia, Argentina. In: del Papa, C & Astini, R (Eds.), Field Excursion Guidebook, 18th International Sedimentological Congress, Mendoza, Argentina, FE-C13, pp.1-53

- 3-

- 4-

ITINERARY 1st DAY: Sunday, 3rd October Departure from El Calafate (Hotel Mirador del Lago and Airport). Drive to Tres Lagos and Bahía de La Lancha (4 hours). Lunch on the bus. STOP 1. La Lancha Bay viewpoint. Bahía de la Lancha Formation, El Quemado Complex and Springhill Formation. STOP 2. Arroyo de la Mina. Section. Arroyo de la Mina Formation type locality (Triassic ?Jurassic). STOP 3. La Lancha Bay mouth, Andean Cordillera structural megalineations. STOP 4. Subida del Chancho and La Lila Farm section. Bahía de la Lancha Formation, El Quemado Complex, Las Lilas, Springhill and Río Mayer formations. Drive to El Calafate stopping at El Calafate Airport (5 hours). Dinner on the bus. Overnight: El Calafate (Hotel Mirador del Lago) 2nd DAY: Monday, 4th October Drive to Tres Lagos (3 hours) STOP 5. Piedra Clavada section. Piedra Clavada Formation type locallity. STOP 6. Mata Amarilla, Mata Amarilla Formation type locallity.. STOP 7. “María Elena” in situ-petrified forest, Mata Amarilla Formation. Lunch at the Tres Lagos camping. STOP 8. Quebrada Don Nielsen-Co. Waring. Piedra Clavada Formation. Hardground with Trypanites ichnofacies. Mata Amarailla and La Anita formation. STOP 9. Arroyo de los Paisanos section. Upper Piedra Clavada Formation and Lower Mata Amarilla Formation.Drive to El Calafate (3 hours) El Calafate (Hotel Mirador del Lago) 3rd DAY: Tuesday, 5th October STOP 10. Cerro Calafate section, General stratigraphy. STOP 11. La Anita Formation at the Cerro Calafate base. STOP 12. Cachorro and La Irene formations. Lunch. STOP 13. El Calafate Formation, on the southwestern side of Cerro Calafate. STOP 14. 15 Roud. General view La Anita Formation depositional clinoforms. STOP 15. La Anita Farm. La Anita Formation type locallity. El Calafate (Hotel Mirador del Lago) 4th DAY: Wednesday, 6th October Drive to Los Glaciares National Park (2 hours) STOP 16. Mitre River Mouth section. Cerro Toro Formation. - 5-

STOP 17. Del Comendattore Bend section. Cerro Toro Formation Lunch and surpise … surprise! Drive to Calafate (2 hours) Final stop: El Calafate Airport.

- 6-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin, Patagonia, Argentina. Daniel G. Poiré and Juan Franzese Centro de Investigaciones Geológicas, UNLP-CONICET, calle 1 n. 644, 1900 La Plata, Argentina. [email protected]; [email protected]

Introduction This field trip to will focus on the stratigraphy, sedimentology and reservoir characteristics of the Mesozoic infilling of the Austral Basin in the southern west Santa Cruz Province, Patagonia, Argentina. The main goal of this fieldtrip will be characterise and recognize the depositional evolution from proximal fluvial systems to the distal, deep-water turbidite system. The Austral Basin outcrops provide an excellent opportunity to have a look the stratigraphy, tectonic, sedimentology and facies associations of their siliciclastic units. The field trip will highlight the stratigraphic architecture of fluvial, delta, shallow marine and deep marine sequences and hydrocarbon reservoir rocks. This fieldtrip guide is intended to provide a basic geology platform to be use by the participants. Besides, it presents ideas and data from the authors' recent work. Overview of dates and stops (Fig. A.1) SUNDAY, 3RD OCTOBER Departure from El Calafate (Hotel Mirador del Lago and Airport). Drive to Tres Lagos and Bahía de La Lancha (4 hours). Lunch on the bus. Afternoon: STOP 1. La Lancha Bay viewpoint. Bahía de la Lancha Formation, El Quemado Complex and Springhill Formation. STOP 2. Arroyo de la Mina. Section. Arroyo de la Mina Formation type locality (Triassic ?Jurassic). STOP 3. La Lancha Bay mouth, Andean Cordillera structural megalineations. STOP 4. Subida del Chancho and La Lila Farm section. Bahía de la Lancha Formation, El Quemado Complex, Las Lilas, Springhill and Río Mayer formations. Drive to El Calafate stopping at El Calafate Airport (5 hours). Dinner on the bus.

Overnight: El Calafate (Hotel Mirador del Lago) MONDAY, 4TH OCTOBER Drive to Tres Lagos (3 hours) Morning: STOP 5. Piedra Clavada section. Piedra Clavada Formation type locallity. STOP 6. Mata Amarilla, Mata Amarilla Formation type locallity.. Bonus track: STOP 7. “María Elena” in situpetrified forest, Mata Amarilla Formation. Lunch at the Tres Lagos camping. Afternoon: STOP 8. Quebrada Don Nielsen-Co. Waring. Piedra Clavada Formation. Hardground with Trypanites ichnofacies. Mata Amarailla and La Anita formation. Bonus track: STOP 9. Arroyo de los Paisanos section. Upper Piedra Clavada Formation and Lower Mata Amarilla Formation. Drive to El Calafate (3 hours) Overnight: El Calafate (Hotel Mirador del Lago) TUESDAY, 5TH OCTOBER Morning: STOP 10. Cerro Calafate section, General stratigraphy. STOP 11. La Anita Formation at the Cerro Calafate base. STOP 12. Cachorro and La Irene formations. Lunch. Afternoon: STOP 13. El Calafate Formation, on the southwestern side of Cerro Calafate. STOP 14. 15 Roud. General view La Anita Formation depositional clinoforms. Bonus track: STOP 15. La Anita Farm. La Anita Formation type locallity. Overnight: El Calafate (Hotel Mirador del Lago) WEDNESDAY, 6TH OCTOBER Drive to Los Glaciares National Park (2 hours)

- 7-

Daniel G. Poiré and Juan Franzese

Morning: STOP 15. Mitre River Mouth section. Cerro Toro Formation. STOP 16. Del Comendattore Bend section. Cerro Toro Formation

Bonus track: Lunch and surpise … surprise! Drive to Calafate (2 hours) Final stop: El Calafate Airport.

Figure A.1 – Road map showing the itinerary for the Field Excursion C13.

Geological setting Austral Basin is located at the southern part of South America, south of latitude 46° S, in the Patagonia Argentina. It is flanked to the west of the Patagonian Andes, and north and east by the Deseado Massif and Dungeness Ridge and Rio Chico (Fig. A.2). The basin started as an extensional basin during the Late Jurassic. The

extensional episode affected all the Patagonia area and is related to the effect of the Karoo Mantle Plume and the openning of the South Atlantic Ocean. During the Late Cretaceous and Cainozoic, tectonic activity linked to the evolution of the Andean margin resulted in the inversion of previous sequences. The Austral - 8-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Basin evolved as a retro-arc foreland Basin. Along the eastern flank of the Patagonian Cordillera, a fold and thrust belt developed as a product of tectonic compression during the paleo-pacific SouthAmerica plate conver-gence. The Mesozoic and Cainozoic sedimentary and volcano-sedimentary record of the Austral Basin is mostly found in the subsurface of the Santa Cruz and Tierra del Fuego province, as well as in the south-western Atlantic Ocean, in the Argentine epicontinental sea. Their outcrops appear in a long belt which covers the eastern slope of the Andes and the area occupied by the chain glacial lakes of the Patagonian at the Santa Cruz province. At the foot of the Andean belt developed a deep depozone whose fill reaches 8 km (Fig. A.3). The fieldtrip area is located in the north-western margin of the main depocenter of the basin. The main structure in the Andean zone is dominated by an internal system of overthrust that exposes the metamorphic basement, while its Jurassic units at the tectonic thrustfront. Evidence associated transcurrent Andean shortening (Fig. A.4). Exposed units in the Andean region are shown in Figures A.5 and A.6. Some of these are recorded in the subsurface acting as reservoirs of petroleum systems of the Austral Basin. During this fieldtrip we travel various places with exhibitions of these systems (as Zilli et al., 2000):

- Tobifera – Springhill - Lower inoceramus – Springhill - Upper inoceramus – Magallanes The lithostratigraphic units of these systems and others associated units to be visited during this fieldtrip are as follow (Fig. A.6 and A.7). Bahía de la Lancha Formation (Shell Capsa, 1965; Borrello, 1967) is composed by dark gray leptometamorphic sedimentary rocks which are unconformable overlaid by conglomerates and sandstone of Arroyo de la Mina Formation and/or the volcano-sedimentary El Quemado Complex. Trace fossils are very abundant and some plant debris have been reported. Detrital zircons from Bahía de la Lancha Formation display Carboniferous maximum depositional age (U-Pb 330 Ma, Carita et al., 2006). In the same way, trace fossil Orchesteropus atavus also suggest an Upper Carboniferous age. Arroyo de la Mina Formation (Riccardi, 1971) is a conglomeratic unit associated with lightbrownish sandstone levels, which outcrops are restricted to the Arroyo de la Mina Creek, at the La Lancha Bay, San Martín Lake. The conglomerates are oligomitic composed mainly by the letometamorphites of the Bahía de la Lancha Formation.

Figura A.2 – Tectonic setting of the Austral Basin

- 9-

Daniel G. Poiré and Juan Franzese

Figure A.3 – Fieldtrip area and its location in the context of the Austral Basin

- 10-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure A.4 – Structural overview of the fieldtrip area

- 11-

Daniel G. Poiré and Juan Franzese

Figure A.5 - Geological map of the western sector of the Austral Basin.

- 12-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure A.6 – Stratigraphic framework of the Mesozoic of Austral Basin.

- 13-

Daniel G. Poiré and Juan Franzese

Figure A.7 – Stratigraphic framework of the Lower part of the Austral Basin.

El Quemado Complex (Feruglio, 1938; Riccardi, 1971) consisting of a succession of dominantly acid volcanic rocks and volcaniclastic rocks with very extensive development along the southern Patagonian Andes, in Argentina and Chile where they are known as Ibañez Group. These rocks are included in a extensive volcanic sequences known as Jurassic magmatic province of Chon Aike. This province was built over a period ranging from 190 Ma to 150 Ma (Pankhurst et al., 2000) in various settings from intraplate tectonic Gondwana to the Andean magmatic arc. El Quemado Complex is part of the latest manifestations of Chon Aike volcanism. The geochemical characteristics are related to the development of magmatic arc Patagonian and age for the Late Jurassic, between 157 and 153 Ma (Pankhurst et al., 2000). Some intercalated marine black marl and shale successions has been recently reported (Poiré et al 2006, “Laguna Azul Beds”) as well as marine platform limestones (Poiré et al 2002, “Cerro Castillo Beds”). Springhill Formation (Thomas, 1949): quartzrich sandstones, with subordinate sandstones compositionally and texturally less mature, conglomerates and interbedded carbonaceous shales. The Springhill Formation outcrops appear associated to faults along the eastern flank of the Patagonian Andes. Even in several localities not registered their presence. The reason for this

regional discontinuity is probably due to the Springhill Formation is developed as the initial fill of extensional basins bounded by faults (hemigrabens, grabens) because of the structure of the substrate consisting essentially of the El Quemado Complex (Kraemer and Riccardi, 1997; Arbe, 2002, Franzese et al., 2006). Springhill Formation also has a strong diachronic, as generated in depressions in the south of the basin has filled Tithonian to Berriasian age, while heading north, this corresponds to the Barremian and Aptian including (Riggi, 1957, Riccardi and Rolleri, 1980, Kraemer and Riccardi, 1997; Urreta Ottone and Aguirre, 2000 Aguirre Urreta, 2002). Rio Mayer Formation (Hatccher 1897, Riccardi, 1971) is a very fossiliferous black shale succession, which was interpreted as deposited in a low energy marine shelf environment, with restricted circulation, in a anaerobic to dysarobic condition. The lower part of the Rio Mayer Formation is conformed by dark limestones and marls. Rio Mayer Formation is the most important rock source from the Austral Basin. Its age is ranging from the Berriasian to Albian (Aguirre Urreta 2002; Medina et al., 2008). Lower Cretaceous-Tertiary succession of southern Patagonia. On this issue there are two major methodological problems, which persist to the

- 14-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

present and lead to confusion. One of them is the use of different classifications for stratigraphic units of similar constitution and age. The other is the use, by different authors, of the same name to characterize stratigraphic units with different lithologic and facial attributes. Without the intention of establishing a stratigraphic table valid for the entire western sector of the Austral Basin, but in order to clarify the nomenclature we propose the following lithostratigraphic framework (A.6): Piedra Clavada Formation (Feruglio, 1938; Bianchi, 1967; Leanza, 1972): A set of very bioturbated and fossiliferous yellowish sandstones, with dark mudstone, interbedded heterolithic facies, and some conglomerate and coquina levels. They are interpreted as deltaic deposits open environments that change, after a marked omission surface, to restricted to coastal marine deposits (Poiré, et al., 2002). The presence of ammonites at the base of Piedra Clavada Formation at the Cerro Chara, indicates the beginning of sedimentation in the Early Albian (Riccardi et al., 1986), whereas in Lake Cardiel signal a late Aptian (Leanza, 1970). The fauna studied in La Vega (northwest of Tres Lagos) by Leanza (1970) suggests that the deposition could rich until the late Albian. Recently, palinologic studies from the Upper part of Piedra Clavada Formation support a Lower Albian age (Archangelsky et al 2008). Mata Amarilla Formation (Feruglio, 1938; Leanza, 1972, Russo and Flores, 1972): very marked alternation of white sandstone and gray and black shales, in which bioclastic sandstones occur with marine and continental fossils (Varela et al., 2008). The mud layers contain channelized sandstone bodies, which are ordered in a marked alternating light and dark layers arrangement. The unit is interpreted as formed in mixed environment and continental (river systems and paleosols, paralic pounds and even coastal deltaic). The diversity of marine and continental fauna present in this unit is consistent with a continuous alternation of mixed and continental environments (Goin et al., 2002). Moreover, the chronological information provided by the invertebrates, theropod dinosaurs, fish and turtles is not consistent (Goin et al., 2002) and therefore the age of this unit is still uncertain, ranking among the Albian and Campanian. Recently, Varela et al (unpublished) have report a 96 Ma primary zircon

age for a tuff from the uppermost lower section of the Mata Amarilla Formation. Cerro Toro Formation (Katz, 1963): alternation of whitish sandstones and black shales, with abundant trace fossils, inoceramids, which are interpreted as marine turdibites with occasional fine calcareous levels. The bathymetry of the turbidite deposits indicate deep marine deposits from the type locality in Chile, with a tendency to outer shelf in the area of Argentino Lake. His age is very wide, considered by Kramer and Riccardi (1997) from the Albian to early Campanian. Alta Vista Formation (Furque, 1973; Arbe and Hechem, 1984): blackish claystones with interbedded sandstones, interpreted as offshore marine deposits. These deposits pass in transition to those for the La Anita. Both units show a clear coarsening depositional style. Based on the invertebrate fossil fauna (mainly ammonites) this unit is assigned to the early Campanian (Kramer and Riccardi, 1997). La Anita Formation (Feruglio, 1938; Bianchi, 1967; Leanza, 1972): coarse-grained siliciclastic facies, fluent in sandstones and conglomerates, rather low levels interbedded mudstones and charred. In the region are shallow marine deposits, generated under the sway of the tides. In the southern bank of Lake Argentino show the development of depositional clinoforms. In more northern areas are clearly bioclastic sandstones and marine coquinas probably be assigned to the La Anita, but could be more modern (in studio). Through the few ammonites found in this unit has been assigned a Campanian age. Cachorro Formation (Furque, 1973): carbonaceous shales on the base with lenticular sandstone bodies (paralic pounds with overwash sandstone bars) that pass trough gray mudstones and claystones (paleosols) associated o gravel lenticular deposits (channels). Aquatic flora has been recognise (Iglesias et al., unpublished). This sedimentary unit occur between the La Anita and La Irene Formation. His age is Campanian/Maastrichtian (cf. Arbe and Hechem, 1984; Macellari et al., 1989). La Irene Formation (Arbe, 1989; Macellari et al., 1989): thick, white, yellow and even orange, conglomerate deposits, associated to sabulites, sandstones, shales and subordinate pyroclastic.

- 15-

Daniel G. Poiré and Juan Franzese.

Fluvial environment generated on a sharp discontinuity erosion has been inferred by (Arbe (1989). There are no evidence about its age but is assigned to de Maastrichtian by the stratigraphic position (Kramer and Riccardi, 1997). Calafate Formation (Feruglio, 1938; Furque, 1973): olive green sandstones, glauconitic in a tabular massive banks, with some planar and sigmoidal crossbedding. It is bearing a very abundant and diverse trace fossils. Arrangements have been observed sets of parasequences consist of greenish mudstones, greenish glauconitic sandstones and polymictic conglomerates levels. Has been interpreted a formed in a marine shelf environment. His age has been considered as Maastrichtian although some authors suggest that the uppermost part can be rich the Palaeocene. rd

1st DAY: Sunday, 3 October Departure from El Calafate (Hotel Mirador del Lago and Airport). Drive to Tres Lagos and Bahía de La Lancha (4 hours). Lunch on the bus. Afternoon: STOP 1. La Lancha Bay viewpoint. Bahía de la Lancha Formation, El Quemado Complex and Springhill Formation. STOP 2. Arroyo de la Mina. Section. Arroyo de la Mina Formation type locality (Triassic ?Jurassic). STOP 3. La Lancha Bay mouth, Andean Cordillera strcuctural megalineations. STOP 4. Subida del Chancho and La Lila Farm section. Bahía de la Lancha Formation, El Quemado Complex, Las Lilas, Springhill and Río Mayer formations. Drive to El Calafate stopping at El Calafate Airport (5 hours). Dinner on the bus. Overnight: El Calafate (Hotel Mirador del Lago) La Lancha Bay, San Martín Lake region Subida del Chancho Section In this locality, a section of the leptometamorphic basement (Bahía de la Lancha Formation), conglomerates of Arroyo de la Mina Formation, volcano-sedimentary rocks of the El Quemado Complex and the Early Cretaceous

sedimentary infill is observed (B.1. and B.2). The Bahía La Lancha Formation is part of a huge belt of metasedimentary rocks that constitutes the oldest stratigraphic unit present in the Andean Patagonian cordillera at these latitudes. The schists and phyllites derived from a paleozoic sedimentary sequence. The Mesozoic volcano-sedimentary cover started with fluvial conglomerates of the Arroyo de la Mina Formation, whose age is not well constrained because of the lack of biostratigraphic elements. This sequence is 160 m thick, the clasts derived mainly from the Bahía La Lancha Formation. It is irregularly distributed over a paleorelief created on the metasedimentary basement. A 180 m thick pyroclastic and volcanoclastic succession of the El Quemado Complex is deposited over the conglomerates or directly over the basement (section 8; Fig 7). It is comprised of a lower part with thick superimposed mantles of ignimbrites separated by minor gravity flow deposits as a result of the subaerial reworking of the pyroclastic material. The upper part of the El Qumado Compkex is very different, showing a well stratified succession of fine breccias and conglomerates, tufaceous sandstones, and carbonaceous mudstones and ash fall deposits near the top (“La Lila Beds”). This succession is covered by quartzose sandstone bodies that represent the base of the Springhill Formation. They show sigmoidal cross bedded stratification with mud drapes and strong bioturbation suggesting shallow marine conditions with tidal influence. Black shales and coal beds are intercalated with the quartz rich sandstone, suggesting a paralic subenvironment. The thickness of the Springhill Formation reaches 50 m. The age of the Springhill Formation in this locality is Berriasian to Early Valanginian, constrained by a significant and well preserved ammonite fauna (Riccardi, 1988) and ostracods (Kielbowicz et al., 1983). The Rio Mayer Formation covered the Springhill Formation and consists of black shales and subordinated carbonates of Late Valanginian to Late Albian age (Riccardi, 1988). Figure B.3. is an integrated profile of these units and the following photos (B.4. to B.22) show different attributes related to their lithology, sedimentary structures, trace fossils and body fossils.

- 16-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure B.1. – Geological sketch map of the La Lancha Bay, San Martín Lake.

Figure B.2. – Subida del Chancho Section, eastern cost of the La Lancha Bay. BLF = Bahía de la Lancha Formation; EQC = El Quemado Complex; LLB: La Lila Beds; SPF = Springhill Formation.

- 17-

Daniel G. Poiré and Juan Franzese.

Figure B.3. – General sedimentary log of the La Lancha Bay area (Franzese et al., unpublished)

- 18-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure B.4. Ignimbrites of the Lower section of the El Quemado Complex.

Figure B.5. Upper section of the El Quemado Complex showing well stratified chonites and tuffs.

- 19-

Daniel G. Poiré and Juan Franzese.

Figure B.6. Upper part of the El Quemado Complex showing the contact between the chonites and tuffs with volcaniclastic sediments (“La Lila Beds”)

Figure B.7.- Lower sandstones of the Springhill Formation covering La Lila Beds.

Figure B.8. Detail of the trough crossbedding of the lower sandstones of the Springhill Formation.

- 20-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure B.9.- Sigmoidal attributes of the crossbedding

Figure B.10. High bioturbated sandstones at the upper sandstones of the Springhill Formation.

Figure B.11. Close-up showing high bioturbation.

- 21-

Daniel G. Poiré and Juan Franzese.

Figure B.12. Skolithos isp., Sprinhill Formation

Figure B.13. Ophiomorpha isp.

Figure B.14. Cylindrichnus isp. and Rosselia isp.

- 22-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure B.15.- Sharp contact between sandstones of the Springhill Formation and fossiliferous limestones and shales of the Rio Mayer Formation.

Figure B.16. Close-up of the fossiliferous limestones of the Río Mayer Formation.

Figure B.17.- Bivalves from the Rio Mayer Formation.

- 23-

Daniel G. Poiré and Juan Franzese.

Figure B.18.- Belemnite in transverse cutting from Río Mayer Formation.

Figure B.19.- Panoramic view of the Springhill Formation some kilometres to the south from Subida del Chancho Section. Figure B.20.- Close-up showing quartz sandstone beds interbedded with carbonaceous shales, Springhill Formation.

- 24-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure B.21.- Thick sandstone bodies laying over the carbonaceous shales, Springhill Formation.

Figure B.22.- Close-up

2nd DAY: Monday, 4th October Drive to Tres Lagos (3 hours) Stop 5. Piedra Clavada section. Morning: Piedra Clavada Formation type locality. STOP 6. Mata Amarilla, Mata Amarilla Formation type locality.. Bonus track: STOP 7. “María Elena” in situpetrified forest, Mata Amarilla Formation. Lunch at the Tres Lagos camping. Afternoon: STOP 8. Quebrada Don NielsenCo. Waring. Piedra Clavada Formation. Hardground with Trypanites ichnofacies. Mata Amarailla and La Anita formation. Bonus track: STOP 9. Arroyo de los Paisanos section. Upper Piedra Clavada Formation and Lower Mata Amarilla Formation. Drive to El Calafate (3 hours)

Overnight: El Calafate (Hotel Mirador del Lago) Tres Lagos Región In the Tres Lagos area (Fig. C.1) three Cretaceous sedimentary units are outcropping: Piedra Clavada, Mata Amarilla and La Anita Formations (Fig. C.2). The Piedra Clavada and the Lower part of the Mata Amarilla are a clear example of deltaic systems in Southern Patagonia during Cretaceous times (Robles, in Turic et al., 1987; Arbe, 1989, 2002, Marinelli, 1998; Sylwan et al., 1996; among others). In recent years there have been various sedimentological, paleontological and ichnological studies on these units in the Tres Lagos area (Poiré et al., 2001, 2002, 2004, Carloni, 2002; Ferrer, 2002, Goin et al., 2002, Iglesias et al., 2007, Varela et at., 2008)) which have allowed to get more details about the sedimentological and paleoecological features of

- 25-

Daniel G. Poiré and Juan Franzese.

these units at the Extrandean part of the Austral Basin. Piedra Clavada Formation is distributed from Cardiel Lake in the north to the Leona River in the south.. To the west, the outcrops are wedged on the southern margin of Viedma Lake, near the mouth of the Rio Guanaco, while extending into the subsurface Andean Patagonia to the east, until the region of Laguna Grande (Russo & Flores, 1972; Russo et al., 1980), passing laterally Palermo Aike Formation. Transitionally overlies the Rio Mayer Formation (cf. Ramos, 1982; Arbe, 1989), and is covered by littoral-continental deposits of the Mata Amarilla Formation (Goin et al., 2002). Ammonites at the base of Piedra Clavada Formation at the Cerro Chara, indicates the beginning of sedimentation in the Early Albian (Riccardi et al., 1986), whereas in the Cardiel Lake signal a late Aptian (Leanza, 1970). The fauna studied in La Vega (northwest of Tres Lagos) by Leanza (1970) suggests that the deposition could rich until the late Albian. Recently, palinological studies from the Upper part of Piedra Clavada Formation support a Lower Albian age (Archangelsky et al 2008). Concerning the Mata Amarilla Formation, chronological information provided by the invertebrates, theropod dinosaurs, fish and turtles is not consistent (Goin et al., 2002) and therefore the age of this unit was uncertain (ranging among the

Albian and Campanian). Recently, Varela et al (unpublished) have report a 96 Ma primary zircon age for a tuff from the uppermost lower section of the Mata Amarilla Formation. Some authors have established a nondepositional hiatus between Piedra Clavada and Mata Amarilla Formations (cf. Arbe, 1989) while others advocated the idea of lateral continuity between both units (e.g. Russo et al., 1980). While this is still an important point to be solved. Palynological and paleobotany studies are being carried on in the area of Tres Lagos. They seem to support the second hypothesis, with a side partially overlap between these units, with a discordance intra Piedra Clavada Formation (Arbe, 1989; Poiré et al., 2002). Piedra Clavada Formation Four sections corresponding to the type locality of Piedra Clavada Formation (PPC) and the Quebrada Don Nielsen (QDN), the Arroyo Los Paisanos (PAP) and Tres Lagos (PTL) have been logged by Poiré et al. (2002)(Fig. C.3) Piedra Clavada Formation is conformed by yellowish sandstone, dark gray and black mudstones, heterolithic facies and scarce conglomerates. Nineteenth sedimentary facies have been recognized, mainly silicoclastic with some bioclastic sandstone and coquina beds.

Figure C.1: Location map of the Cerro Waring and Tres Lagos.

- 26-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure C.2.- Panoramic view of the Cerro Waring from the Don Nilsen Creek. PCF= Piedra Clavada Formation, MAF= Mata Amarilla Formation, LAF= La Anita Formation.

Figure C.3.- Sedimentary logs from Piedra Clavada Formation at Tres Lagos area with their environmental interpretations.

- 27-

Daniel G. Poiré and Juan Franzese

Trace fossils are very abundant and the ichnodiversity is quite high, mainly by bioturbation and some bioerosion. In a ethnology point of view, Fodinichnia, Domichnia, Equilibrichnia, Cubichnia and Agrichnia have been recorded, grouped in Trypanites, Glossifungites, Psilonichnus, Skolithos and Cruziana ichnofacies (Poiré et al., 2001, 2002). These trace fossils allow to distinguish soft substrates (ichnofacies of Psilonichnus, Skolithos and Cruziana), firmgrounds (Glossifungites) and hardgrounds (Trypanites). Fossils in this unit have been reported by several authors in different localities (Feruglio, 1949-1950; Leanza, 1970, 1972; Riccardi & Rolleri, 1980; Ramos, 1982). In the Tres Lagos area invertebrates, vertebrates and plants are very often, mainly in sandstones and limestones, while plant debris, seeds, fish bones, insects and ostracods are typically of the shale levels (Poiré et al., 2002, Poiré et al., 2008 ). Figures C.3. shows the palaeoenvironmental interpretation for Piedra Clavada Formation based on the four logged section. Piedra Clavada and the lower part of the Mata Amarilla formations constitute a clear example of deltaic systems, developed during the Cretaceous in Southern Patagonia (Robles, in Turic et al., 1987; Arbe, 1989, 2002; Marinelli, 1998). Formación Mata Amarilla Mata Amarilla Formation, bearer of the remains studied here, is mainly composed by a distinct alternation of whitish sandstones and grey and black mudstones, sandstones and bioclastic sandstones bearing marine and continental fossils in between (Fig. C.4). This unit shows abundant vertebrates, invertebrates and plants throughout. However, in the lower portion there is a more prominent participation of marine invertebrates compared to the upper one. Several plantiferous levels show an abundance in trunks and leaves along the unit. The vertebrates found have not shown marked differences along the Mata Amarilla Formation are mainly continental ones (dinosaurs, crocodiles, turtles, amphibians and fish), some sea shark teeth have also been found (Goin et al., 2002). All this evidence clearly indicates that, even though continental fauna and

flora prevail, the lower part sporadically includes marine elements, this representing a typical palaeoecological association of subaereal delta transitional to fluvial systems. The analysis of sedimentary facies, bioturbations, and fossils allows the determination of five associations of charac-teristic facies (Cione et al., 2007). The most conspicuous facies among the coarse ones is the (k) association of graindecreasing canaliform bodies of sandstones and whitish and grey-whitish conglomeratic sandstones, friable, well selected, constituted by facies SGt, St, Sp and Sm, and Fh mudstones of abandoned channels, with frequent vertebrates and trunks, and sparse bioclastic basal lags (SCQ) of marine fossils. At the basal and medial portions of the Mata Amarilla Formation, the sandstone bodies reach 4 m in width and 60 to 100 m in length, contrasting with the upper part of the unit where bodies are thinner and more extended. In the former, the facies are interpreted as stranded, channelled, interdistributary channels, while on the upper part, the channels are fluvial, wider and winding course, forming mantle-like bodies. Sandy channels in the lower part of Mata Amarilla Formation are closely related to the association (l) of sandstones (Sm) in lobular interdigitated bodies with mudstone facies (Fh, Fm) –some of which fill abandoned channels–, heterolithic (Hw, Hl) and with bioclastic sandstones (SQm) which bear from marine molluscs as well as leaves to lightly slanted stumps, indicating subaereal deltaic plain facies that culminate cycles above intedistributary channels in lowstand systems tracks. One of these associations preserves a petrified forest in life position; in its mudstone substratum marine invertebrates have been found, this suggesting the development of forests near deltas, the sea entering and exiting due to changes in its level (Poiré et al., 2004). The analysis of sedimentary facies, bioturbations, and fossils allows the determination of five associations of characteristic facies. The most conspicuous facies among the coarse ones is the (k) association of graindecreasing canaliform bodies of sandstones and whitish and grey-whitish conglomeratic sandstones, friable, well selected, constituted by facies SGt, St, Sp and Sm, and Fh mudstones of abandoned channels, with frequent

- 28-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

vertebrates and trunks, and sparse bioclastic basal lags (SCQ) of marine fossils. At the basal and medial portions of the Mata Amarilla Formation, the sandstone bodies reach 4 m in width and 60 to 100 m in length, contrasting with the upper part of the unit where bodies are thinner and more extended. In the former, the facies are interpreted as stranded, channelled, interdistributary channels, while on the upper part, the channels are fluvial, wider and winding course, forming mantle-like bodies. Sandy channels in the lower part of Mata Amarilla Formation are closely related to the association (l) of sandstones (Sm) in lobular interdigitated bodies with mudstone facies (Fh,

Fm) –some of which fill abandoned channels–, heterolithic (Hw, Hl) and with bioclastic sandstones (SQm) which bear from marine molluscs as well as leaves to lightly slanted stumps, indicating subaereal deltaic plain facies that culminate cicles above intedistributary channels in lowstand systems tracks. One of these associations preserves a petrified forest in life position; in its mudstone substratum marine invertebrates have been found, this suggesting the development of forests near deltas, the sea entering and exiting due to changes in its level (Poiré et al., 2004).

Figure C.4.- Taphoflora levels from Piedra Clavada and Mata Amarilla Formation (based on Poiré, et al., 2003; Iglesias, 2007).

- 29-

Daniel G. Poiré and Juan Franzese

Towards medial and upper parts of this Formation, the sandy channels are accompanied by an association (ll) of massive grey mudstones (Fm) in light and dark bands, in Fm facies, frequently with slikenside structures and abundant continental vertebrates and trunks, interpreted as an alternation of sequences of palaeosoils developed in the hydrical basin. A fourth association (IV) of fine massive sandstones (Sm) eventually develops in interdigitated lobes with massive mudstones (Fm) rich in carbonise material, with abundant vertebrates and vegetal strands corresponding to crevasses in flooding plains. Finally, one of the most conspicuous facies associations (V) in the medial and upper part of the Mata Amarilla Formation is that of black mudstones (Fh, Fm) with abundant organic matter, vegetal strands and well preserved cuticles and continental vertebrates, sparse shark remains, which suggest littoral lagoons with mainly marshy facies, eventually connecting to the sea (Goin et al., 2002). To sum up, from Piedra Clavada Formation to the top of Mata Amarilla Formation deep environmental changes are observed, ranging from a prodeltaic area to fluvial channels with trace fossil, fauna and flora (Fig. C.5).

Formación La Anita The La Anita Formation is formed mainly in its type locality (South margin of the Argentino Lake) for coarse-grained siliciclastic facies, with a predominance of sandstones and conglomerates, more rare interbedded mudstones and charred levels of net cut shallow marine, generated under tide conditions. In contrast, in the Cerro Waring this siliciclastic succession change laterally to conglomerates, bioclastic sandstones and coquinas (Figs. C.7, C.8). The lower bioclastic bank is 20 m thick (Fig. C.9) overlaying sharply the Mata Amarilla (Fig. C.10). It is conformed by conglomerates, bioclastic sandstones and coquina beds. They are both massive and crossbeded (Fig. C.11), which area bearing trunks (Fig. C.12), invertebrates (Figs. C.13, C.14), sometimes forming coquina beds (C.15). Trace fossils are very developed as negative and positive hypo relief (Figs. C.16, C.17, C.18). Top ward, the succession is becoming finer, with sandstones and mudstones (Fig. C.19). In the upper part, the La Anita Formation is characterised by crossbeded sandstones (Fig. C.20).

Figure C.5.- Environmental sketch for Piedra Clavada and Mata Amarilla Formation at Tres Lagos area..

- 30-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure C.6.- Paleogeographic distribution of the deltas of Piedra Clavada Formation in subsurface and outcrops (based on Turic et al., 1987; Marinelli, 1998 and Poirè et al., 2002).

Figure C.7.- Sketch log of La Anita Formation on the top of the Cerro Waring.

- 31-

Daniel G. Poiré and Juan Franzese

Figure C.8.- General view of the La Anita Formation in the Cerro Waring.

Figure C.9.- Conglomerates and bioclastic sandstones with crossbedding, and coquina beds in the lower part of the La Anita Formation.

Figure C.10.- Erosive contact between the mudstones (paleosols) of the Mata Amarilla Formation and the coquinoid sedimentites of the La Anta Formation.

- 32-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure C.11.- Crossbedded bioclastic sandstones.

Figure C.12.- Trunks in a crossbedded bioclastic sandstone.

Figure C.13. Gastropods in sandstones of the La Anita Formation.

- 3334-

Daniel G. Poiré and Juan Franzese

Figure C.14.- Coquina beds with abundant oysters up to 6 cm long, trigonids and ornamented bivalves Eryiphyla-type.

Figure C.15.- Trigonid 4 cm long.

Figure C.16. Thalassinoides on the base of bioclastic sandstones

- 3436-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure C.17. Substratal surface with high bioturbation grade (thick burrow tubes).

Figure C.18. Finer hypichnial trace fossils showing some pattern (Gordia isp., Helminthopsis isp., possible Phycodes isp.

Figure C.19. Alternation of sandstones and mudstones covering the lower bioclastic part of the La Anita Formation. Fossil plants have been recorded from de mudstones.

- 3538-

Daniel G. Poiré and Juan Franzese

Figure C.20. Well-sorted, crossbedded sandstones from the upper part of the La Anita Formation (Co. Waring).

3rd DAY Tuesday, 5th October Morning: STOP 10. Cerro Calafate section, General stratigraphy. STOP 11. La Anita Formation at the Cerro Calafate base. STOP 12. Cachorro and La Irene formations. Lunch. Afternoon: STOP 13. El Calafate Formation, on the south-western side of Cerro Calafate. STOP 14. 15 Road. General view La Anita Formation depositional clinoforms. Bonus track: STOP 15. La Anita Farm. La Anita Formation type locality. Overnight: El Calafate (Hotel Mirador del Lago)

beds and mudstones on top, all included in the Cachorro Formation. Thick succession of conglomerate beds of the La Irene Formation are overlain the mudstones in a transitional contact. A thick succession of glauconitic, green-sandstones of Calafate Formation is deposited over the conglomerates toward the top of the hill. The upper part of the La Anita Formation shows sigmoidal clinoforms (Fig. D.4) over crossbeded sandstones that are prograding to N140. The crosbedded sandstone are mainly sigmoidal (Fig. D.5) bearing marine trace fossils of Ophiomorpha isp. (Fig. D.6) and Skolithos isp. Over the La Anita Formation, a succession of carbonaceous shales on the base (Fig. D.8) with lenticular sandstone bodies (paralic pounds with overwash sandstone bars) occur (Fig. D.9). They pass trough gray mudstones and claystones (paleosols) associated o gravel lenticular deposits (channels). Aquatic flora has been recognise (Iglesias et al., unpublished). This sedimentary unit occur between the La Anita and La Irene Formation (Fig D.3 and D.7).

ARGENTINO LAKE Cerro Calafate section This locality shows an remarkable exposure of the Upper Cretaceous/Lower Tertiary of the Austral Basin, compose by La Anita, Cachorro, La Irene and Calafate Formations (Fig. D.1). The section start with the upper part of the La Anita Formation outcrops, which show strong crossbeded sandstones with few trace fossil levels. Then, the sandstone are covered by carbonaceous shales with scarce sandstones

- 3640-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure D.1 – Lithostratigraphic map of Argentino Lake region.

Figure D.2 – General view of the Cerro Calafate section and main stratigraphic units.

- 3741-

Daniel G. Poiré and Juan Franzese

Figure D.3 – Sketch showing the stratigraphy of the Cerro Calafate.

Figure D.4: Sandstone clinoforms over crossbeded sandstones of the La Anita Formation prograding to N140

- 3842-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure D.5: Detail of the crossbedded sandstone of the La Anita Formation

Figure D.6: Ophiomorpha isp.

Figure D7: Sketch showing clinoforms of La Anita Formation, shales from Cachorro Formation covered by conglomerates from La Irene Formation.

- 3943-

Daniel G. Poiré and Juan Franzese

Figure D.8: Carbonaceous shales with aquatic fossil flora of the Cachorro Formation

Figure D.9: Lobular sandstone body interlayer on carbonaceous shales

At the base of the La Irene are more than 40 meters of conglomerates with subordinate sandstones (Fig. D.10), massive and with cross stratification (Fig. D.11). The texture (Fig. D.12) are fine gravels (average size: 1.5 cm maximum size: 4 cm), clast support, wellrounded, quartz and volcanic composition. Topward the clasts sizes can reach 9 cm and an average size of 3 cm. After 40 m not exposed, the conglomerates are associated with sandstones and some mudstones levels with plant debris. Some magmatic intrusive bodies are cutting La Irene Formation in the Cerro Calafate and the Calafate Formation, as well.

Upstream Calafate Creek good exposures of the greenish sandstones of the Calafate Formation are outcropping. They are mainly massive in structure because bioturbation is so intense, but some trough crossbeding has been recognised (Fig. D.14). The ichnodiversity is moderate to high (Fig. 4.16), with abundant Ophiomorpha (Fig. 4.16). Big tidal bars have been observed in the Calafate Formation associated with shoreface sedimentary facies (Fig. D.17) In general, a stacking arrangement of the parasequences is very remarkable in the upper part of the Calafate Formation (Fig. D.18).

- 4044-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin.

Figure D.10.- Conglomerate facies of the La Irene Formation

Figure D.11.- Crossbedded fine conglomerates of the La Irene Formation.

Figure D-12.- Detail of the texture of the conglomerates of the La Irene Formation.

- 4146-

Daniel G. Poiré and Juan Franzese

Figure D.13.- Crossbedded whitish sandstones in the upper part of the La Irene Formation.

Figure D.14.- Glauconitic sandstones of Calafate Formation. Massive with some trough crossbedding beds.

Figure D.15.- Intense bioturbation in the massive sandstones.

- 4247-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

Figure D.16.- Ophiomorpha isp.

Figure D.17 – Sketch showing tide bars and lower shoreface facies in the Calafate Formation.

Figure D.18 – Stacking arrangement of the parasequences of the Calafate Formation.

- 4348-

Daniel G. Poiré and Juan Franzese

15 ROAD General view of the La Anita Formation depositional clinoforms. Along 15 Road will see the stratigraphic relationships between the Alta Vista, La Anita, La Irene and Calafate Formation (Fig. D.19), in

well-exposed outcrops, which are crowned by more than 30 kilometers the hills of the south margin of the Argentino Lake (Fig. D.20). La Anita and Alta Vista Formations type localities are there.

Figure D.19 – Single sketh of the stratigraphic relationship beteen Alta Vista, La Anita, La Irene and Calafate Formations.

Figure D.20 – Panoramic view of the outcrops along the 15 Road.

- 4450-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

4th DAY Wednesday, 6th October Drive to Los Glaciares National Park (2 hours) Morning: STOP 16. Mitre River Mouth section. Cerro Toro Formation. STOP 17. Del Comendattore Bend section. Cerro Toro Formation Bonus track: Lunch and surprise … surprise! Drive to Calafate (2 hours) Final stop: El Calafate Airport. Los Glaciares National Park The Cerro Toro Formation (Katz, 1963) is the most conspicuous lithostratigraphic unit outcropping the Road to Perito Moreno Glacier, at the Los Glaciares National Park. It is compose of an alternation of whitish sandstones and black shales, with abundant trace fossils, inoceramids, which are interpreted as marine turdibites with

occasional fine calcareous levels. The Cerro Toro Formation was originally defined in Chile were coarse-grained deep water strata associated with sandstone and shale beds are outcropping (Hubbard et al, 2008). In Argentina this deposits are less deeper, which causing that the thickbedded sandstone and the thin-bedded sandstone and mudstone are the most abundant third-order architectural elements (Fig. E.1). In the same sense, trace fossils assemblages are shallower and some limestone levels have been observed. Ichnogenera recognised in the Cerro Toro Formation are Bergaueria (Fig. E.2), Chondrites (Fig. E.7 and E.8), Helminthopsis, Helminthoidea, Palaeophycus, Planolites, Taphrelminthopsis (Fig. E.4 and E.5), Thalassinoides and Zoophycus (Fig. E.6) (Poiré, 2000).

Figure E.1. General view of the main architectural elements of the Cerro Toro Formation.

Figure E.2. Bergaueria isp.

- 4552-

Daniel G. Poiré and Juan Franzese

Figure E.3. Thick subhorizontal burrows in the base of a sandstone bed.

Figure E.4. Taphrelminthopsis isp.

Figure E.5. Taphrelminthopsis isp.

- 4653-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

Figure E6. Zoophycus isp.

Figure E7. Chondrites isp.

Figure E8. Close-up of Chondrites isp.

- 4754-

Daniel G. Poiré and Juan Franzese

References Álvarez Marrón, J.; McClay, K. R.; Harambour, SD.; Rojas, L. Skarmeta, J., (1993) Geometry and evolution of the frontal part of the Magallanes foreland thrust and fold belt (Vicuña Area), Tierra del Fuego, southern Chile. American Association of Petroleum Geologists Bulletin 77, 19041921. Aguirre Urreta, M. B. (2002) Inverbrados del Cretácico Inferior. En: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 439-459. El Calafate. Arbe, H. A. (1989) Estratigrafía, discontinuidades y evolución sedimentaria del Cretácico en la Cuenca Austral, provincia de Santa Cruz. In: G. Chebli y L. A. Spalletti (Eds.), Cuencas Sedimenta¬rias Argentinas, Instituto Superior de Correlación Geológica, Universidad Nacional de Tucumán, Serie de Correlación Geológica 6, 419-442. S. M. de Tucumán. Arbe, H. A. (2002) Análisis estratigráfico del Cretácico de la Cuenca Austral. En: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 103-128. El Calafate. Archangelsky, S., A. Archangelsky, D.G. Poiré and N.D. Canessa (2008) Registros Pali-nológico en la formación Piedra Clavada (Albiano) en su localidad tipo, provincia de Santa Cruz, Argentina. Revista del Museo de Ciencias Naturales. Nueva Serie. 10, 105-111. Archangelsky S., V. Barreda., M. G. Passalia, M. Gandolfo, M. Prámparo, E. Romero, R. Cúneo, A. Zamuner, A. Iglesias, M. Llorens, G.G. Puebla, M. Quattrocchio & W. Volkheimer, (2009) Early Angiosperm Diversification: Evidence From Southern South America Cretaceous research. Cretaceous Research, 30, 10731082, USA. ISSN (printed): 0195-6671. ISSN (electronic): 1095-998X Biddle, K.T.; Uliana, M.A.; Mitchum, jr. R.M.; Fitzgerald, M. G., Wright, R.C., (1986) The stratigraphic and structural

evolution of the central and eastern Magallanes Basin, southern South America. In: Macdonald, D. (Ed.) Foreland Basins. International Association of Sedimentologists Special Publication 8, 4161. Cagnolatti, M.J.; Martins, R., Villar, H.J., (1996) La Formación Lemaire como probable generadora de hidrocarburos en el Área Angostura, provincia de Tierra del Fuego, Argentina. 13º Congreso Geológico Argentino Actas 1: 123-139. Buenos Aires. Carita, A., Munker, C., Bahlburg, H, Fanning, C.M. (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society 163(6), 983-995 Canessa, N.D., D.G. Poiré, P. Doyle (2005) Estratigrafía de las unidades cretácicas de la margen norte del Lago Viedma, entre el Cerro Pirámides y la Estancia Santa Margarita, provincia de Santa Cruz, República Argentina. XVI Congreso Geológico Argentino, Actas I: 157-164. Canessa, N.D, J.R. Franzese, D.G. Poiré and P. Doyle (2006) Control tectónico en la sedimentación cretácica de la Cuenca Austral, margen noroeste del Lago Viedma, provincia de Santa Cruz, República Argentina. IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, Resúmenes 66, S.C. de Bariloche. Argentina. Canessa, N.D., M. Bamford, A. Zamuner, S.M. Rivera, D.G. Poiré, P. Doyle (2006) Sedimentología, paleontología y paleoecología de secuencias cretácicas del norte del Lago Viedma, Cordillera Patagónica Austral, provincia de Santa Cruz, República Argentina. 13º Simposio Argentino de Palobotánica y Palinología. Bahía Blanca. Cortiñas, J., Arbe, H., (1981) Un nuevo afloramiento fosilífero de la Formación Springhill en el noroeste de la provincia de

- 4856-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

Santa Cruz. Revista de la Asociación Geológica Argentina, 36 (2), 213-214. Buenos Aires. Cione, A.L., S. Gouiric F. Goin, D.G. Poiré, (2007) Atlantoceratodus, a new genus of lungfish from the upper Cretaceous of South America and Africa. Revista del Museo de La Plata, Paleontología, 10(62), 1-12. Feruglio, E. (1944) Estudios geológicos y glaciológicos en la región del Lago Argentino (Patagonia). Boletín Academia Nacional de Ciencias, 37, 1-208. Córdoba. Feruglio, E. (1938) Nomenclatura estratigráfica de la Patagonia y Tierra del Fuego. En: Fossa Mancini, E. et al., Una reunión de geólogos de YPF y el problema de la terminología estratigráfica. Boletín de Informaciones Petroleras 15 (171): 82-95. Buenos Aires. Franzese, J., D.G. Poiré (2001) Secuencias de Sin-Rift en el área andina de la Cuenca Austral, Argentina. XI Congreso Latinoamericano de Geología y III Congreso Uruguayo de Geología, Abstracts :I-12. Franzese, J.; Poiré, D., Muravchik, M., (2006) Secuencias de sin-rift de la cuenca Austral entre los lagos Argentino y Viedma, Argentina. 4º Congreso Latinoamericano de Sedimentología y 11º Reunión Argentina de Sedimentología. Resúmenes: 100. S. C. de Bariloche. Furque, G. (1973) Descripción geológica de la Hoja 58b, Lago Argentino, Provincia de Santa Cruz. Boletín del Servicio Nacional Minero Geológico 140, 51 pp. Buenos Aires. Goin, F., D.G Poiré, M.S. De la Fuente, A.L. Cione, F.E. Novas, E.S. Bellosi, A. Ambrosio, O. Ferrer, N.D. Canessa, A. Carloni, J. Ferigolo, A.M. Ribeiro, M.S. Sales Viana, M.A. Reguero, M.G. Vucetich, S. Marenssi, M.F. de Lima Filho, S. Agostinho, (2002) Paleontología y geología de los sedimentos del Cretácico superior aflorantes al sur del Río Shehuen (Mata Amarilla, provincia de Santa Cruz, Argentina). XV Congreso Geológico Argentino, Actas, I: 603-608.

Hervé, F.; Demant, A.; Ramos, V.; Pankhurst, R., Suárez, M. (2000) The Southern Andes. In: Cordani, U.; Milani, E.; Thomaz Filho, A. y Campos, D. (Eds.) Tectonic evolution of South America.: 605634. Río de Janeiro. Hubbard, S.M., B.W. Romans, S.A. Graham, (2008) Deep-water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology 55,1333-1359. Iglesias, A.; Romero, E. J.; Poiré, D.G., Zamuner, A.B., (2002) Nueva tafoflora Cretácica de la Fm. Mata Amarilla, Sur de Santa Cruz, Argentina; descripción y nivel evolutivo alcanzado. Resúmenes Octavo Congreso Argentino de Paleontología y Bioestratigrafía: 72. Corrientes. Iglesias, A.; Zamuner, A.B.; Poiré, D.G., Larriestra, F. (2006) Diversity, taphonomy, and palaeoecology of angiosperms during the Cenomanian-Coniacian in Southern Patagonia, Argentina. Palaeontology 50(2), 445-466. Iglesias, A.; Zamuner, A.B.; Larriestra, F.; Poiré, D. G., Romero, E. J. (2004) Great diversity of Angiosperms in the Late Cretaceous, Mata Amarilla Formation, Patagonia, Argentina. Abstracts 7th International Organization of Paleobotany Conference: 58-59. S.C. de Bariloche. Iglesias, A., A. Zamuner, D. Poiré, A. Varela, S. Richiano and C. Koefed, (2009) Albian-Campanian continuous record of compression floras in Tres Lagos, Austral Basin, Patagonia, Argentina. RACAPA-09, Resumens, 52-53. Buenos Aires. Kielbowicz, A.A., Ronchi, D.I, Stach, N.H, (1983) Foraminíferos y ostracodos valanginianos de la Formación Springhill, Patagonia Austral. Revista de la Asociación Geológica Argentina 38(3-4): 313.339. Kraemer, P. E., Riccardi, A. C., (1997) Estratigrafía de la región comprendida entre los lagos Argentino y Viedma (49º 40- 50º 10 lat. S), Provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 52 (3), 333-360. Buenos Aires.

- 4957-

Daniel G. Poiré and Juan Franzese

Leanza, A. F., (1970) Amonites nuevos o poco conocidos del Aptiano, Albiano y Cenomaniano de los Andes Australes con notas acerca de su posición estratigráfica. Revista de la Asociación Geológica Argentina 25 (2): 197-261. Buenos Aires. Leanza, A. F. (1972) Andes patagónicos australes. In: Leanza, A. F. (Ed.) Geología Regional Argentina: 689-706. Academia Nacional de Ciencias. Córdoba. Limeres, M., D. Dellapé (2006) Formación Mata Amarilla: descubrimiento de petróleo al norte del Río Santa Cruz, Cuenca Austral, Argentina. 6º Congreso de Exploración y Desarrollo de Hidrocarburos. CD. Macellari, C.E.; Barrio, C.A., Manassero, M.J., (1989) Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of southwestern Patagonia (Argentina and Chile). Journal of South American Earth Sciences 2, 223-239. Malumián, N. (2002) El Terciario Marino. Sus relaciones con el eustatismo. En: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 237-244. El Calafate. Marenssi, S.A.; Casadío, S., Santillana, S.N., (2003) Estratigrafía y sedimentología de las unidades del Cretácico superior – Paleógeno aflorantes en la margen sureste del lago Viedma, provincia de Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina 58 (3): 403-416. Buenos Aires. Marinelli, R. V., (1998) Reservorios deltaicos de la Formación Piedra Clavada. Boletín de Informaciones Petroleras XV (54): 28-37. Buenos Aires. Medina, F., S. Archangelsky, V. Guler, A. Archangelsky, O. Cárdenas (2008) Estudio bioestratigráfico integrado del perfil La Horqueta (Límite Aptiano-Albiano), Lago Cardiel, Patagonia, Argentina. Revista del Museo Argentino de Cs. Ns., n.s. 10: 273289. Novas, F. E.; Bellosi, E. S., Ambrosio, A., (2002) Los “Estratos con Dinosaurios” del Lago Viedma y Río La Leona (Santa Cruz): sedimentología y contenido fosilífero. Actas

del 15º Congreso Geológico Argentino 1: 596-602. El Calafate. Nullo, F. E., Combina, A. M., (2002) Sedimentitas Terciarias Continentales. En: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 245-258. El Calafate. Nullo, F. E.; Panza, J. L., Blasco, G., (1999) Jurásico y Cretácico de la Cuenca Austral. En: Caminos, R. (Ed.) Geología Argentina. Subsecretaría de Minería de la Nación, Servicio Geológico Minero Argentino: 528535. Buenos Aires. O'Gorman, P., A.N. Varela, T. Martin, J.N. Gelfo, F.J. Goin, L. Chornogubsky, D.G. Poiré & Z. Gasparini (2009) Los plesiosaurios (Reptilia, Sauropterygia) más antiguos del Cretácico Superior de Patagonia, Argentina. RACAPA-09, Resumenes: 59-60. Ciudad Aut. Bs. As. Ottone, E. G., Aguirre Urreta, M. B. (2000) Palinomorfos cretácicos de la Formación Springhill en Estancia El Salitral, Patagonia Austral, Argentina. Ameghiniana 37 (3): 379-382. Buenos Aires. Pankhurst, R. J.; Riley, T. R.; Fanning, C. M., Kelley, S. P., (2000) Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41 (5): 605-625. Pittion, J. L., Arbe, H. A., (1999) Sistema Petrolero de la Cuenca Austral. 4º Congreso de Exploración y Desarrollo de Hidrocarburos, Actas 1: 251-262. Buenos Aires. Poiré, D.G. (2000) Trazas fósiles de la Formación Cerro Toro y su significado ambiental, Cretácico de la Cuenca Austral, Argentina. II Congreso Latinoamericano de Sedimentologìa y VIII Reunión Argentina de Sedimentología, Resúmenes :144, Mar del Plata. Poiré, D.G., J.H. Maggi, (1998) Sedimentación de plataforma en la Formación Cerro Toro, Lago Argentino, Provincia de Santa Cruz, Argentina. Séptima

- 5058-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

Reunión Argentina de Sedimentología, Resúmenes :169, Salta. Poiré, D.G., J.R. Franzese, (2008) Trazas fósiles de ambientes litorales marinoparálicos de la Formación Springhill (Cretácico Inferior), Andes Patagónicos Australes, provincia de Santa Cruz, Argentina. XII Reunión Argenitna de Sedimentología, Abstract :143. Buenos Aires. Poiré, D.G., S. Ballent, A.P. Carignano., (2008) Micropaleontología y consideraciones paleoambientales de la Formación Piedra Clavada (Cretácico Inferior), Provincia de Santa Cruz, Argentina. Reunión Anual de Comunicaciones de la APA. Ameghiniana 45 (4) Suplemento, 32R. Poiré, D.G. S.D. Matheos, N.D. Canessa, (2002) Petrología de las calizas algales del techo de la Formación El Quemado (Jurásico superior), Lago Argentino, provincia de Santa Cruz, Argentina. IX Reunión Argentina de Sedimentología, Resúmenes:122, Córdoba. Poiré, D.G., E.Morel, J.H. Maggi, (1999) Facies diamictíticas en la Formación Bahía de la Lancha (Paleozoico), Estancia La Lila, Lago San Martín, provincia de Santa Cruz, Argentina. XIV Congreso Geológico Argentino, Actas I:425-428, Salta. Poiré, D.G., J.R. Franzese, M. Muravchic, (2006) Calizas, margas y pelitas fétidas asociadas a las vulcanitas del Complejo El Quemado, Jurásico de Cuienca Austral, Argentina. IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, Resúmenes: 183, S.C. de Bariloche. Poiré, D.G., Franzese, J.R., Muravchik, M., (2007) Sedimentación carbonática asociada al vulcanismo jurásico del Complejo El Quemado, Cuenca Austral, Argentina. 3 Simposio Argentino del Jurásico, Resúmenes, Mendoza, Ameghiniana 44(4) Suplemente: 63-64R. Poiré, D.G., N. Canessa, A. Carloni, O. Ferrer (2002) La Formación Piedra Clavada en el área de Tres Lagos, provincia de Santa

Cruz, Argentina. XV Congreso Geológico Argentino, Actas I: 820-825. Poiré, D.G., A. Carloni, N.D. Canessa, O. Ferrer, (2002) Sedimentología de la Formación Piedra Clavada (Cretácico) en el área de Tres Lagos, provincia de Santa Cruz, Argentina. IX Reunión Argentina de Sedimentología, Resúmenes: 36, Córdoba. Poiré, D.G., J.R. Franzese, L.A. Spalletti, S.D. Matheos, (2007) Estratigrafía de las rocas reservorios de la Cuenca Austral en el sector cordillerano, provincia de Santa Cruz, Argentina. Guía de Campo, 112 pp. (inédito). Poiré, D. G.; Zamuner, A. B.; Iglesias, A.; Varela, A. N., Larriestra, F., (2004a) Palaeoenvironmental conditions related with the taphoflora from the Piedra Clavada and Mata Amarilla formations (Cretaceous), Tres Lagos, Southern Patagonia, Argentina. Abstracts 7th International Organization of Paleobotany Conference: 88-89. S.C. de Bariloche. Poiré, D. G.; Zamuner, A. B.; Goin, F.; Iglesias, A.; Canessa, N.; Larriestra, C. N.; Varela, A. N.; Calvo Marcillese, l., Larriestra, F., (2004b) Ambientes sedimentarios relacionados a las tafofloras de las formaciones Piedra Clavada y Mata Amarilla (Cretácico), Tres Lagos, Cuenca Austral, Argentina. Resúmenes 10º Reunión Argentina de Sedimentología: 140-141. San Luis. Ramos, V. A. (1982) Geología de la región del Lago Cardiel, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 37(1): 23-49. Buenos Aires. Riccardi, A. C., (1971) Estratigrafía en el oriente de la Bahía de la Lancha, lago San Martín, Santa Cruz, Argentina. Revista del Museo de La Plata, nueva serie, sección Geología 7: 245-318. La Plata. Riccardi, A. C., (2002) Invertebrados del Cretá-cico Superior. In: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 461-479. El Calafate.

- 5159-

Daniel G. Poiré and Juan Franzese

Riccardi. A. C., Rolleri. E. O., (1980) Cordillera Patagónica Austral. In: Turner, J. C. M. (Ed.) Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias II: 1173- 1306. Córdoba. Riccardi, A. C.; Aguirre Urreta, M. B., Medina, F., (1987) Aconeceratidae (Ammonitina) from the Hauterivian-Albian of southern Patagonia. Palaeontographica 196, 105-185. Riggi, J. C., (1957) Resumen geológico de la zona de los lagos Pueyrredón y Posadas, provincia de Santa Cruz. Revista de la Asociación Geológica Argentina 12 (2): 6597. Buenos Aires. Rodríguez, J.F., Millar, M., (2005) Cuenca Austral. In: Chebli, G.; Cortiñas, J.; Spalletti, L.; Legarreta, L. and Vallejo, E. (Eds.) Frontera Exploratoria de la Argentina. 6º Congreso de Exploración y Desarrollo de Hidrocarburos: 307-323. Russo, A., Flores, M. A., (1972) Patagonia Austral Extraandina. In: Leanza, A.F. (Ed.) Geología Regional Argentina. Academia Nacional de Ciencias: 707-725. Córdoba. Russo, A.; Flores, M. A., Di Benedetto, H., (1980) Patagonia Austral Extraandina. En: Turner, J. C. M. (Ed.) Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias II: 1431-1462. Córdoba. Shultz, M.R., and Hubbard, S.M., (2005) Sedimentology, stratigraphic architecture, and ichnology of gravity-flow deposits partially ponded in a growth-fault-bounded slope mini-basin, Tres Pasos Formation, southern Chile. Journal of Sedimentary Research, 75, 440-453. Suárez, M., De la Cruz, R. (2000) Geología de la zona del lago General Carrera, Región de Aysen, Chile. 9º Congreso Geológico Chileno, Actas 2: 264-268. Puerto Varas. Sylwan, C.A.; Gutiérrez Pleimling, A., Millar, M. (1996) La Formación Piedra Clavada. Nuevo objetivo exploratorio en la Cuenca Austral, Argentina. 13º Congreso Geológico Argentino, Actas 1: 111-121. Buenos Aires.

Thomas, C. R., (1949) Geology and petroleum exploration in Magallanes Province, Chile. Bulletin of the American Association of Petroleum Geologists 33, 1553-1578. Turic M.; Amarado Flores, F.; Gómez Omil, R.; Pombo, R.; Sciutto, J.; Robles, D., Cáseres, A., (1987) Geología de las Cuencas petroleras de la Argentina. In: Schlumberger (Ed.) Evaluación de las Formaciones en la Argentina: 1-44. Buenos Aires. Vaamonde, C. and D.G. Poiré, (2006) Algas Dasycladáceas en las calizas del Complejo El Quemado, Cuenca Austral, Argentina. IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, Resúmenes: 233, S.C. de Bariloche. Argentina. Varela A.N., D.G. Poiré, (2008) Paleogeografía de la Formación Mata Amarilla, Cunca Austral, Patagonia, Argentina. XII Reunión Argenitna de Sedimentología, Abstract: 183. Buenos Aires. Varela, A.N., D.G. Poiré, S. Richiano, A. Zamuner, (2006) Los paleosuelos asociados al bosque petrificado de María Elena, Formación Mata Amarilla, Cuenca Austral, Patagonia, Argentina. IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, Resúmenes :235, S.C. de Bariloche. Varela, A.N., S. Richiano and D.G. Poiré, (2008) Análisis paleoambiental de la Formación Mata Amarilla a partir de su malacofauna, Cuenca Austral, Patagonia, Argentina. En M. Schuma. VII Congreso de Exploración y Desarrollo de Hidrocarburos, Trabajos técnicos: 300-306 (ISBN 9778-9879139-51-6). Zamuner, A., D.G. Poiré, Iglesias, A., F. Larriestra, A.N. Varela, (2004) Upper Cretaceous in situ petrified forest in Mata Amarilla Formation, Tres Lagos, Southern Patagonia, Argentina. VII International Organization of Paleobotany Conference, Abstracts 150, Bariloche. Zamuner, A., D.G. Poiré, Iglesias, A., F. Larriestra y A.N. Varela (2008) AlbianCenomanian flora changes in Southern

- 5260-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

Patagonia, Argentina. VIII International Organization of Paleobotany Conference, Terra Nostra Abstract 793,315-316, Alemania. Zamuner, A., P. Falaschi, M. Bamford, A. Iglesias, D. G. Poiré, A. Varela, F. Larriestra, (2006) Anatomía y paleoecología de dos bosques in situ de la zona de Tres Lagos, Formación Mata

Amarilla, Cretácico Superior, Patagonia, Argentina. 13º Simposio Argentino de Palobotánica y Palinología. Bahía Blanca. Zilli, N.; Padrazzini, M., Peroni, G., (2002) La Cuenca Austral. In: Haller, M. J. (Ed.) Geología y Recursos Naturales de Santa Cruz. Relatorio del 15º Congreso Geológico Argentino, 607-662. El Calafate.

- 5361-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

- 5462-

Daniel G. Poiré and Juan Franzese

NOTES:

- 5563-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

- 5664-

Daniel G. Poiré and Juan Franzese

- 5765-

Mesozoic Clastic Sequences from a Jurassic Rift to a Cretaceous Foreland Basin, Austral Basin

- 5866-

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.