Formulario de Cálculo Diferencial e Integral

August 20, 2017 | Autor: Luis Ds | Categoría: Identidades, Fórmulas, Logaritmos, Derivadas, Exponentes, Tablas, Integrales, Tablas, Integrales
Share Embed


Descripción

FORMULARIO DE CÁLCULO DIFERENCIAL VER.3.6 E INTEGRAL Jesús Rubí Miranda ([email protected]) http://mx.geocities.com/estadisticapapers/ http://mx.geocities.com/dicalculus/ VALOR ABSOLUTO  a si a ≥ 0 a =  −a si a < 0 a = −a

n

= ∏ ak

k

k =1

n

n

∑a k =1

≤ ∑ ak

k

k =1

EXPONENTES a ⋅a = a p

q

( a ⋅ b)

k =1

0 12

0 1 3 2 1 3

30

1

n

k =1

k =1

n

n

n

∑ ar

k −1

k =1

n (a + l ) 2 n 1− r a − rl =a = 1− r 1− r

n

1

∑ k = 2 (n

q

ap/q = ap

k =1

LOGARITMOS

n

log a MN = log a M + log a N M = log a M − log a N N log a N r = r log a N log a

logb N ln N = logb a ln a

2

ALGUNOS PRODUCTOS a ⋅ ( c + d ) = ac + ad

(a + b) ⋅ ( a − b) = a − b 2 ( a + b ) ⋅ ( a + b ) = ( a + b ) = a 2 + 2ab + b 2 2 − ⋅ − = − a b a b a b ( )( ) ( ) = a 2 − 2ab + b 2 ( x + b ) ⋅ ( x + d ) = x 2 + ( b + d ) x + bd ( ax + b ) ⋅ ( cx + d ) = acx 2 + ( ad + bc ) x + bd ( a + b ) ⋅ ( c + d ) = ac + ad + bc + bd 3 ( a + b ) = a3 + 3a 2 b + 3ab 2 + b3 3 ( a − b ) = a 3 − 3a 2 b + 3ab 2 − b3 2 ( a + b + c ) = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc 2

( a − b ) ⋅ ( a 2 + ab + b 2 ) = a 3 − b3 ( a − b ) ⋅ ( a3 + a 2 b + ab2 + b3 ) = a 4 − b 4 ( a − b ) ⋅ ( a 4 + a 3b + a 2 b 2 + ab3 + b 4 ) = a 5 − b5  n  ( a − b ) ⋅  ∑ a n −k b k −1  = a n − b n ∀n ∈  k =1 

0



y = ∠ cos x y = ∠ tg x

y∈ − 1 x

∞ 3

sec

csc

1



2

3

2

2

0



1

cos ( −θ ) = cos θ sen (θ + 2π ) = sen θ cos (θ + 2π ) = cosθ tg (θ + 2π ) = tg θ sen (θ + π ) = − sen θ cos (θ + π ) = − cosθ tg (θ + π ) = tg θ sen (θ + nπ ) = ( −1) sen θ n

cos (θ + nπ ) = ( −1) cos θ tg (θ + nπ ) = tg θ

0.5

-0.5

cos ( nπ ) = ( −1)

-1

-2 -8

-6

-4

-2

0

2

4

6

8

Gráfica 2. Las funciones trigonométricas csc x ,

n

sec x , ctg x :

k =1

n n! , k≤n  =  k  ( n − k )! k ! n n   n ( x + y ) = ∑   x n−k y k k =0  k  n

2.5 2 1.5

CONSTANTES π = 3.14159265359… e = 2.71828182846… TRIGONOMETRÍA CO sen θ = HIP CA cosθ = HIP sen θ CO tg θ = = cos θ CA

0

nk k

x

-0.5 -1

sen (α ± β ) = sen α cos β ± cos α sen β

-1.5 csc x sec x ctg x

-2 -2.5 -8

1 sen θ 1 secθ = cos θ 1 ctg θ = tg θ cscθ =

-6

-4

-2

0

2

4

6

8

Gráfica 3. Las funciones trigonométricas inversas arcsen x , arccos x , arctg x : 4

3

2

1

0

-1

-2 -3

n  2n + 1  sen  π  = ( −1)  2   2n + 1  cos  π=0  2   2n + 1  tg  π=∞  2 

π  sen θ = cos  θ −  2  π  cos θ = sen θ +  2 

1 0.5

n! =∑ x1n1 ⋅ x2n2 n1 !n2 ! nk !

n

tg ( nπ ) = 0

sen x cos x tg x

-1.5

arc sen x arc cos x arc tg x -2

-1

0

1

2

3

tg α + tg β ctg α + ctg β

e x − e− x 2 e x + e− x cosh x = 2 senh x e x − e − x tgh x = = cosh x e x + e− x 1 e x + e− x = ctgh x = tgh x e x − e − x 1 2 = sech x = cosh x e x + e − x 1 2 csch x = = senh x e x − e − x senh x =

senh :

sen ( nπ ) = 0

0

1 sen (α − β ) + sen (α + β )  2 1 sen α ⋅ sen β = cos (α − β ) − cos (α + β )  2 1 cos α ⋅ cos β = cos (α − β ) + cos (α + β )  2

FUNCIONES HIPERBÓLICAS

tg ( −θ ) = − tg θ

y ∈ 0, π

sen (α ± β ) cos α ⋅ cos β

sen α ⋅ cos β =

tg α ⋅ tg β =

n

n! = ∏ k

π radianes=180

2

sen ( −θ ) = − sen θ

π π , 2 2

5

IDENTIDADES TRIGONOMÉTRICAS sen θ + cos 2 θ = 1 tg 2 θ + 1 = sec 2 θ

1

+ ( 2n − 1) = n 2

+ xk )

0

1 + ctg 2 θ = csc2 θ

1.5

=

( x1 + x2 +

tg α ± tg β = arc ctg x arc sec x arc csc x

-2 -5

3

2

+ n)

1 1 (α + β ) ⋅ cos (α − β ) 2 2 1 1 sen α − sen β = 2sen (α − β ) ⋅ cos (α + β ) 2 2 1 1 cos α + cos β = 2 cos (α + β ) ⋅ cos (α − β ) 2 2 1 1 cos α − cos β = −2sen (α + β ) ⋅ sen (α − β ) 2 2 sen α + sen β = 2 sen

0

-1

2 2

2

1 1

3

k =1

1+ 3 + 5 +

log10 N = log N y log e N = ln N

2

1 ( 2n3 + 3n2 + n ) 6 n 1 k 3 = ( n 4 + 2n3 + n 2 ) ∑ 4 k =1 n 1 k 4 = ( 6n5 + 15n4 + 10n3 − n ) ∑ 30 k =1

∑k

log a N = x ⇒ a x = N

1 3

ctg

1 y = ∠ sec x = ∠ cos y ∈ [ 0, π ] x 1  π π y = ∠ csc x = ∠ sen y ∈ − ,  x  2 2 Gráfica 1. Las funciones trigonométricas: sen x , cos x , tg x :

=

p

2

12

y = ∠ ctg x = ∠ tg

− ak −1 ) = an − a0

k

tg

 π π y ∈ − ,   2 2 y ∈ [ 0, π ]

y = ∠ sen x

k =1

ap a   = p b b

2 1 1

∑  a + ( k − 1) d  = 2  2a + ( n − 1) d 

2

0

90

+ bk ) = ∑ ak + ∑ bk

k

= ap ⋅ bp

log a N =

1

cos

k =1

n

2

sen

k =1

n

∑(a

3

θ

3 2

= c ∑ ak

k

k =1

4

CA

45

n

∑ ca

∑(a

= a pq p

n

CO

θ

60

k =1

n

a = a p −q aq p q

HIP

n

∑ c = nc

k =1

p+q

p

(a )

par

Gráfica 4. Las funciones trigonométricas inversas arcctg x , arcsec x , arccsc x :

n

n

∏a

a+b ≤ a + b ó

impar

+ a n = ∑ ak

a1 + a2 +

a ≥0y a =0 ⇔ a=0

k =1

 n  k +1 ( a + b ) ⋅  ∑ ( −1) a n− k b k −1  = a n + b n ∀ n ∈  k =1   n  k +1 ( a + b ) ⋅  ∑ ( −1) a n− k b k −1  = a n − b n ∀ n ∈  k =1  SUMAS Y PRODUCTOS

a≤ a y −a≤ a

ab = a b ó

( a + b ) ⋅ ( a 2 − ab + b 2 ) = a3 + b3 ( a + b ) ⋅ ( a3 − a 2 b + ab 2 − b3 ) = a 4 − b 4 ( a + b ) ⋅ ( a 4 − a 3b + a 2 b 2 − ab3 + b 4 ) = a5 + b5 ( a + b ) ⋅ ( a5 − a 4 b + a3b 2 − a 2 b3 + ab4 − b5 ) = a 6 − b6

cos (α ± β ) = cos α cos β ∓ sen α sen β tg α ± tg β tg (α ± β ) = 1 ∓ tg α tg β sen 2θ = 2sen θ cosθ cos 2θ = cos 2 θ − sen 2 θ 2 tg θ tg 2θ = 1 − tg 2 θ 1 sen 2 θ = (1 − cos 2θ ) 2 1 cos 2 θ = (1 + cos 2θ ) 2 1 − cos 2θ tg 2 θ = 1 + cos 2θ

cosh : tgh : ctgh :

→ → [1, ∞ → −1,1 − {0} → −∞ , −1 ∪ 1, ∞

sech :

→ 0,1]

csch :

− {0} →

− {0}

Gráfica 5. Las funciones hiperbólicas senh x , cosh x , tgh x : 5 4 3 2 1 0 -1 -2 senh x cosh x tgh x

-3 -4 -5

0

5

FUNCS HIPERBÓLICAS INVERSAS

( (

) )

senh −1 x = ln x + x 2 + 1 , ∀x ∈ cosh −1 x = ln x ± x 2 − 1 , x ≥ 1 tgh −1 x =

1 1+ x  ln  , 2 1− x 

ctgh −1 x =

1  x +1 ln  , 2  x −1

x 1

 1 ± 1 − x2  , 0 < x ≤ 1 sech −1 x = ln    x   2  1 x +1  −1 , x ≠ 0 csch x = ln  + x x  

IDENTIDADES DE FUNCS HIP cosh 2 x − senh 2 x = 1 1 − tgh 2 x = sech 2 x ctgh 2 x − 1 = csch x senh ( − x ) = − senh x cosh ( − x ) = cosh x tgh ( − x ) = − tgh x senh ( x ± y ) = senh x cosh y ± cosh x senh y cosh ( x ± y ) = cosh x cosh y ± senh x senh y tgh x ± tgh y 1 ± tgh x tgh y senh 2 x = 2senh x cosh x tgh ( x ± y ) =

cosh 2 x = cosh 2 x + senh 2 x 2 tgh x tgh 2 x = 1 + tgh 2 x 1 ( cosh 2 x − 1) 2 1 cosh 2 x = ( cosh 2 x + 1) 2 cosh 2 x − 1 tgh 2 x = cosh 2 x + 1

senh 2 x =

senh 2 x cosh 2 x + 1 OTRAS tgh x =

ax + bx + c = 0 2

−b ± b 2 − 4ac 2a b 2 − 4ac = discriminante ⇒ x=

LÍMITES 1

lim (1 + x ) x = e = 2.71828... x→0

x

 1 lim 1 +  = e x →∞ x  sen x =1 lim x→0 x 1 − cos x lim =0 x→0 x ex − 1 lim =1 x→0 x x −1 lim =1 x →1 ln x DERIVADAS Dx f ( x ) =

f ( x + ∆x ) − f ( x ) df ∆y = lim = lim ∆x → 0 ∆x dx ∆x →0 ∆x

d (c) = 0 dx d ( cx ) = c dx d ( cx n ) = ncx n−1 dx d du dv dw (u ± v ± w ± ) = ± ± ± dx dx dx dx d du ( cu ) = c dx dx d dv du ( uv ) = u + v dx dx dx d dw dv du ( uvw) = uv + uw + vw dx dx dx dx d  u  v ( du dx ) − u ( dv dx ) =   dx  v  v2 d n n −1 du u = nu ( ) dx dx

dF dF du (Regla de la Cadena) = ⋅ dx du dx du 1 = dx dx du dF dF du = dx dx du  x = f1 ( t ) dy dy dt f 2′ ( t ) = = donde  dx dx dt f1′( t )  y = f 2 ( t ) DERIVADA DE FUNCS LOG & EXP du dx 1 du d = ⋅ ( ln u ) = dx u u dx d log e du ⋅ ( log u ) = dx u dx log e du d ( log a u ) = a ⋅ a > 0, a ≠ 1 dx u dx d u du e ) = eu ⋅ ( dx dx d u du a ) = a u ln a ⋅ ( dx dx d v du dv + ln u ⋅ u v ⋅ u ) = vu v −1 ( dx dx dx DERIVADA DE FUNCIONES TRIGO d du ( sen u ) = cos u dx dx d du ( cos u ) = − sen u dx dx d du ( tg u ) = sec2 u dx dx d du ( ctg u ) = − csc2 u dx dx d du ( sec u ) = sec u tg u dx dx d du ( csc u ) = − csc u ctg u dx dx d du ( vers u ) = sen u dx dx DERIV DE FUNCS TRIGO INVER 1 d du ⋅ ( ∠ sen u ) = dx 1 − u 2 dx 1 d du ⋅ ( ∠ cos u ) = − dx 1 − u 2 dx 1 d du ⋅ ( ∠ tg u ) = dx 1 + u 2 dx 1 d du ⋅ ( ∠ ctg u ) = − dx 1 + u 2 dx 1 d du + si u > 1 ⋅  ( ∠ sec u ) = ± dx u u 2 − 1 dx − si u < −1 1 d du  − si u > 1 ⋅  ( ∠ csc u ) = ∓ dx u u 2 − 1 dx  + si u < −1 du 1 d ⋅ ( ∠ vers u ) = dx 2u − u 2 dx

DERIVADA DE FUNCS HIPERBÓLICAS d du senh u = cosh u dx dx d du cosh u = senh u dx dx d du tgh u = sech 2 u dx dx d du ctgh u = − csch 2 u dx dx d du sech u = − sech u tgh u dx dx d du csch u = − csch u ctgh u dx dx DERIVADA DE FUNCS HIP INV d 1 du senh −1 u = ⋅ dx 1 + u 2 dx -1 + d ±1 du  si cosh u > 0 cosh −1 u = ⋅ , u >1  -1 dx u 2 − 1 dx − si cosh u < 0 d 1 du ⋅ , u 1 ctgh −1 u = dx 1 − u 2 dx −1 ∓1 d du − si sech u > 0, u ∈ 0,1 ⋅  sech −1 u = −1 dx u 1 − u 2 dx + si sech u < 0, u ∈ 0,1 d 1 du csch −1 u = − ⋅ , u≠0 dx u 1 + u 2 dx

INTEGRALES DEFINIDAS, PROPIEDADES

∫ ∫ ∫ ∫ ∫

b

a b

a

{ f ( x ) ± g ( x )} dx = ∫ f ( x ) dx ± ∫ g ( x ) dx b

b

a

a

b

cf ( x ) dx = c ⋅ ∫ f ( x ) dx

b

a b

a a

a

c∈

a

c

b

f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx a

c

a

f ( x ) dx = − ∫ f ( x ) dx b

f ( x ) dx = 0 b

m ⋅ ( b − a ) ≤ ∫ f ( x ) dx ≤ M ⋅ ( b − a ) a

⇔ m ≤ f ( x ) ≤ M ∀x ∈ [ a, b ] , m, M ∈

b

b

a

a

∫ f ( x ) dx ≤ ∫ g ( x ) dx

⇔ f ( x ) ≤ g ( x ) ∀x ∈ [ a , b ] b

b

a

a

∫ f ( x ) dx ≤ ∫ f ( x ) dx si a < b INTEGRALES

∫ adx =ax ∫ af ( x ) dx = a ∫ f ( x ) dx ∫ ( u ± v ± w ± ) dx = ∫ udx ± ∫ vdx ± ∫ wdx ± ∫ udv = uv − ∫ vdu ( Integración por partes ) ∫u

n

du =

u n +1 n ≠ −1 n +1

du ∫ u = ln u

INTEGRALES DE FUNCS LOG & EXP

∫ e du = e u

u

a u a > 0

∫ a du = ln a a ≠ 1 u

au 

−1

1 

∫ ua du = ln a ⋅  u − ln a  u

1 = ln tgh u 2

∫ ue du = e ( u − 1) ∫ ln udu =u ln u − u = u ( ln u − 1) u

∫ tgh udu = ln cosh u ∫ ctgh udu = ln senh u ∫ sech udu = ∠ tg ( senh u ) ∫ csch udu = − ctgh ( cosh u )

u

INTREGRALES DE FRAC

1 u ∫ log a udu =ln a ( u ln u − u ) = ln a ( ln u − 1) u2 ∫ u log a udu = 4 ⋅ ( 2 log a u − 1) u2 ∫ u ln udu = 4 ( 2 ln u − 1) INTEGRALES DE FUNCS TRIGO

∫ sen udu = − cos u ∫ cos udu = sen u ∫ sec udu = tg u ∫ csc udu = − ctg u ∫ sec u tg udu = sec u ∫ csc u ctg udu = − csc u ∫ tg udu = − ln cos u = ln sec u ∫ ctg udu = ln sen u ∫ sec udu = ln sec u + tg u ∫ csc udu = ln csc u − ctg u

1 du u = ∠ tg a + a2 a 1 u = − ∠ ctg a a du 1 u−a ∫ u 2 − a 2 = 2a ln u + a du 1 a+u ∫ a 2 − u 2 = 2a ln a − u

∫u

2

du



= ∠ sen

a2 − u2

2

(

du



∫e

∫ u sen udu = sen u − u cos u

du

a2 ± u 2 du

u a

)

=

au

sen bu du =

au ∫ e cos bu du =

∫ u cos udu = cos u + u sen u

)

e au ( a sen bu − b cos bu ) a2 + b2 e au ( a cos bu + b sen bu ) a2 + b2

ALGUNAS SERIES

INTEGRALES DE FUNCS TRIGO INV

∫ ∠ sen udu = u∠ sen u + 1 − u ∫ ∠ cos udu = u∠ cos u − 1 − u ∫ ∠ tg udu = u∠ tg u − ln 1 + u ∫ ∠ ctg udu = u∠ ctg u + ln 1 + u ∫ ∠ sec udu = u∠ sec u − ln ( u + u 2

2

+

+

f ( n ) ( x0 )( x − x0 ) n!

f ( x ) = f ( 0) + f '( 0) x +

2

2

−1

= u∠ sec u − ∠ cosh u

∫ ∠ csc udu = u∠ csc u + ln ( u +

u2 − 1

= u∠ csc u + ∠ cosh u INTEGRALES DE FUNCS HIP

) )

f '' ( x0 )( x − x0 )

f ( x ) = f ( x0 ) + f ' ( x0 )( x − x0 ) +

2

2

< a2 )

(

udu = − ( ctg u + u )

2

2

1 u ln a a + a2 ± u 2 1 a ∫ u u 2 − a 2 = a ∠ cos u 1 u = ∠ sec a a u 2 a2 u 2 2 2 ∫ a − u du = 2 a − u + 2 ∠ sen a 2 u 2 a 2 2 2 2 2 ∫ u ± a du = 2 u ± a ± 2 ln u + u ± a MAS INTEGRALES

udu =

∫ senh udu = cosh u ∫ cosh udu = senh u ∫ sech udu = tgh u ∫ csch udu = − ctgh u ∫ sech u tgh udu = − sech u ∫ csch u ctgh udu = − csch u

(u

= ln u + u 2 ± a 2

u 2 ± a2

∫u

u 1 − sen 2u 2 4 u 1 2 ∫ cos udu = 2 + 4 sen 2u 2 ∫ tg udu = tg u − u

∫ ctg

> a2 )

u a

= −∠ cos

2

2

2

INTEGRALES CON

2

∫ sen

(u

+

+

f

( n)

( 0) x

2!

n

f '' ( 0 ) x

: Taylor 2

2!

n

: Maclaurin

n! x 2 x3 xn + + + + 2! 3! n! 3 5 7 x x x x 2 n −1 n −1 sen x = x − + − + + ( −1) 3! 5! 7! ( 2n − 1)! ex = 1 + x +

cos x = 1 −

x2 x4 x6 + − + 2! 4! 6!

+ ( −1)

n −1

x 2n−2

( 2n − 2 ) !

n x 2 x3 x 4 n −1 x + − + + ( −1) 2 3 4 n 2 n −1 x3 x5 x7 n −1 x ∠ tg x = x − + − + + ( −1) 3 5 7 2n − 1

ln (1 + x ) = x −

2

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.