Entalpia quimica industrial

June 13, 2017 | Autor: Rodolfo Inclan | Categoría: Investigación
Share Embed


Descripción


Entalpía

Es una magnitud termodinámica, simbolizada con la letra H mayúscula, cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, es decir, la cantidad de energía que un sistema puede intercambiar con su entorno.
En la historia de la termodinámica se han utilizado distintos términos para denotar lo que hoy conocemos como entalpía de un sistema. Originalmente se pensó que la palabra «entalpía» fue creada por Émile Clapeyron y Rudolf Clausius a través de la publicación de la relación de Clausius-Clapeyron en The Mollier Steam Tables and Diagrams de 1827, pero el primero que definió y utilizó término entalpía fue el holandés Heike Kamerlingh Onnes, a principios del siglo XX.
En palabras más concretas, es una función de estado de la termodinámica donde la variación permite expresar la cantidad de calor puesto en juego durante una transformación isobárica (es decir, a presión constante) en un sistema termodinámico (teniendo en cuenta que todo objeto conocido puede ser entendido como un sistema termodinámico), transformación en el curso de la cual se puede recibir o aportar energía (por ejemplo la utilizada para un trabajo mecánico). En este sentido la entalpía es numéricamente igual al calor intercambiado con el ambiente exterior al sistema en cuestión.
Usualmente la entalpía se mide, dentro del Sistema Internacional de Unidades, en joules.

La entalpía (simbolizada generalmente como H, también llamada contenido de calor, y calculada en Julios en el sistema internacional de unidades o también en kcal o, si no, dentro del sistema anglo: BTU), es una función de estado extensiva, que se define como la transformada de Legendre de la energía interna con respecto del volumen.
Derivación
El principio de estado establece que la ecuación fundamental de un sistema termodinámico puede expresarse, en su representación energética, como:

Donde S es la entropía, V el volumen y la composición química del sistema.
Para aquellos casos en los que se desee, sin perder información sobre el sistema, expresar la ecuación fundamental en términos de la entropía, la composición y la presión en vez del volumen, se aplica la siguiente transformada de Legendre a la ecuación fundamental:

y como

Es la presión del sistema, se define la entalpía como:


La variación de entalpía se define mediante la siguiente ecuación:

ΔH es la variación de entalpía.
Hfinal es la entalpía final del sistema. En una reacción química, Hfinal es la entalpía de los productos.
Hinicial es la entalpía inicial del sistema. En una reacción química, Hinicial es la entalpía de los reactivos.
La mayor utilidad de la entalpía se obtiene para analizar reacciones que incrementan el volumen del sistema cuando la presión se mantiene constante por contacto con el entorno, provocando que se realice un trabajo mecánico sobre el entorno y una pérdida de energía. E inversamente en reacciones que causan una reducción en el volumen debido a que el entorno realiza un trabajo sobre el sistema y se produce un incremento en la energía interna del sistema.
La entalpía de reacción es la energía asociada a una reacción, y viene dada por la suma de las entalpías de formación de los productos menos la de los reactivos según sus coeficientes estequiométricos (n), siendo las entalpías de formación de los elementos en su estado natural iguales a cero.






Joule-Thomson 

En Física, el efecto de Joule-Thomson o efecto Joule-Kelvin, es el proceso en el cual la temperatura de un sistema disminuye o aumenta al permitir que el sistema se expanda libremente manteniendo la entalpía constante.
Fue descrito por James Prescott Joule y William Thomson, el primer Barón Kelvin, quienes establecieron el efecto en 1852 modificando un experimento previo de Joule en el que un gas se expandía manteniendo constante su energía interna.
La relación entre temperatura, presión y volumen de un gas se puede describir de una forma sencilla gracias a las leyes de los gases. Cuando el volumen aumenta durante un proceso irreversible, las leyes de los gases no pueden determinar por si solas qué ocurre con la temperatura y presión del gas. En general, cuando un gas se expande adiabáticamente, la temperatura puede aumentar o disminuir, dependiendo de la presión y temperatura inicial. Para una presión constante (fijada previamente), un gas tendrá una temperatura de inversión de Joule-Thomson (Kelvin), sobre la cual al expandirse el gas causa un aumento de temperatura, y por debajo, la expansión del gas causa un enfriamiento. En la mayoría de los gases, a presión atmosférica esta temperatura es bastante alta, mucho mayor que la temperatura ambiental, y por ello la mayoría de los gases se enfrían al expandirse. El incremento de temperatura (ΔT) con respecto al incremento de presión (Δp) en un proceso de Joule-Thomson es el coeficiente de Joule-Thomson.

Esta expresión se puede encontrar también escrita de la siguiente forma:

El valor de depende del gas específico, tanto como la temperatura y la presión del gas antes de la expansión o compresión. Para gases reales esto será igual a cero en un mismo punto llamado punto de inversión y la temperatura de inversión Joule-Thomson es aquella donde el signo del coeficiente cambia.


Aplicación del efecto de Joule-Thomson.
Hemos visto que cuando un gas sufre una expansión a través de un obstáculo o estrangulamiento, a presiones y temperaturas adecuadas, se produce una disminución de su temperatura. Como se cumple que cuanto más baja es la
Temperatura, el término es de mayor valor absoluto y negativo el coeficiente de Joule-Thomson tendrá los valores positivos más altos, a temperatura bajas.
Como consecuencia de ello, el enfriamiento por efecto de Joule-Thomson será mas pronunciado a temperaturas bajas y presiones bajas.
Este comportamiento se aplica en la industria para licuar un gas, por ejemplo, el aire. Para ello primero se enfría el gas ya sea por contacto con otro más frío o por expansión adiabática, y luego se lo deja expandir a través de un estrangulamiento. La disminución de presión y el descenso de temperatura provocado por este efecto, produce la licuación del gas.







Bibliografía.
http://www.textoscientificos.com/fisica/efecto-joule-thomson
www.slideshare.net/dicoello/coeficiente-de-joule-y-thomson
quimica-explicada.blogspot.com/2010/12/la-entalpia.html
www.educared.org/wikiEducared/Entalpías_de_reacción.html

INSTITUTO POLITÉCNICO NACIONAL
UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y
CIENCIAS SOCIALES Y ADMINISTRATIVAS



Entalpia y coeficiente de Joule- Thompson



INCLÁN SOSA RODOLFO





Materia: Química Industrial
Secuencia: 2IV33
Profesor: Gómez Saavedra Nancy Suguey
Fecha: 06 de septiembre del 2012

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.