Elastic properties of microporous cemented grainstones

June 14, 2017 | Autor: Arnaud Gallois | Categoría: Geophysics
Share Embed


Descripción

GEOPHYSICS. VOL. 76, NO. 6 (NOVEMBER-DECEMBER 2011); P. E211–E226, 16 FIGS., 2 TABLES. 10.1190/GEO2011-0047.1

Elastic properties of microporous cemented grainstones

François Fournier1, Philippe Leonide2, Kévin Biscarrat1, Arnaud Gallois1, Jean Borgomano1, and Anneleen Foubert3

cemented grainstones are elastically equivalent to a homogeneous calcitic host with spherical calcitic inclusions comprising spheroidal pores. The best fit is obtained when porous spheres are modelled using the differential effective medium (DEM) approach and the whole composite using the self-consistent (SC) method (DEM-SC model). At lower porosity values ( :

5μc ðK c þ μc Þ 3

¼ μm þ

ð1−f m Þ 2f ðK þ2μ Þ ðμc −μm Þ−1 þ m m 4 m

;

(A-2)

5μm ðK m þ μm Þ 3

where K HS− and K HSþ , respectively, are lower and upper HS bounds for bulk modulus; μHS− and μHSþ , respectively, are lower and upper HS bounds for shear modulus; K c and μc , respectively, are bulk and shear moduli for pure calcite; K m , μm , respectively, are bulk and shear moduli for microporous micritic grains; and f m is the micritic grain volume fraction.

APPENDIX B DEM THEORY The DEM theory models the effective elastic moduli of twophase composites by adding infinitesimal quantities of inclusions to the host phase (Cleary et al., 1980; Norris, 1985; Zimmerman, 1991). In this theory, the effective bulk and shear moduli of the composite, K  ðyÞ and μ ðyÞ, respectively, are governed by a coupled system of ordinary differential equations (Mavko et al., 1998)

Microporous grainstone petrophysics

d  ½K ðyÞ ¼ PðK 2 − K  ÞðyÞ dy d ð1 − yÞ ½μ ðyÞ ¼ Qðμ2 − μ ÞðyÞ; dy

(

ð1 − yÞ

and Q ¼ 1∕5ðT ijij − 1∕3 Tiijj Þ;

(B-1)

(B-2)

where the tensor Tijkl relates the uniform far-field strain to the strain within the ellipsoidal inclusion. Tijkl are functions of the inclusion aspect ratio α and of the bulk and shear moduli of the initial host, K 1 and μ1 , respectively, and of the inclusions, K 2 and μ2 , respectively (Mavko et al., 1998). For spherical inclusions, P and Q are given by (Berryman, 1995)



K c þ 43 μc K m þ 43 μc

(B-3)

and



K c þ ξc ; K m þ ξc

with ξc ¼

μc ð9K c þ 8μc Þ 6 ðK c þ 2μc Þ

i Pn þð1−ΦÞK h Pn K nþ1 ¼ ΦKΦP i þð1−ΦÞPh i

(B-4)

APPENDIX C SELF-CONSISTENT APPROXIMATION The SC approximation (Budiansky, 1965; Wu, 1966) allows us to predict the elastic moduli of a composite materials with inclusions. In this approach, the interaction of the inclusions is approximated by replacing the background medium with an as-yet-unknown effective medium and each constituent is treated symmetrically. The SC formulas for bulk K and shear μ moduli of a 2C rock (one host phase, one inclusion phase) are

f i ðK i − KÞPi þ ð1 − f i ÞðK h − KÞPh ¼ 0

(C-1)

f i ðμi − μÞQi þ ð1 − f i Þðμh − μÞQh ¼ 0;

(C-2)

where K h and μh , respectively, are bulk and shear moduli of the host material; K i and μi , respectively, are bulk and shear moduli of the inclusion; f i : volume fraction of the inclusion; and P, Q are geometrical factors where the superscript i (respectively, h) indicates that the factor is for the material of elastic moduli K i and μi (respectively, K h and μh ) in a background medium of elastic moduli K and m.The equations C-1 and C-2 are solved iteratively as follows:

n

h

n

i Qn þð1−ΦÞμh Qn μnþ1 ¼ ΦμΦQ i þð1−ΦÞQh i

with initial conditions K  ð0Þ ¼ K 1 and μ ð0Þ ¼ μ1 ; where K 1 , μ1 ¼ bulk and shear moduli of the initial host material; respectively; K2, μ2 ¼ bulk and shear moduli of the inclusion; respectively; y ¼ concentration of the inclusions. The coefficients P and Q depend upon the shape of the inclusion and upon the elastic moduli of the host and inclusion phases. For ellipsoidal inclusions of a given aspect ratio α, P and Q are given by (Wu, 1966)

P ¼ 1∕3 Tiijj

E225

n

h

(C-3)

n

REFERENCES Ahr, W. M., 1989, Early diagenetic microporosity in the cotton valley limestone of east Texas: Sedimentary Geology, 63, 275–292, doi: 10.1016/ 0037-0738(89)90136-X. Anselmetti, F. S., and G. P. Eberli, 1993, Controls on sonic velocity in carbonates: Pure and Applied Geophysics, 141, 287–323, doi: 10.1007/ BF00998333. Assefa, S., C. McCann, and J. Sothcott, 2003, Velocities of compressional and shear waves in limestones: Geophysical prospecting, 51, 1–13, doi: 10.1046/j.1365-2478.2003.00349.x. Baechle, G. T., A. Colpaert, G. P. Eberli, and R. J. Weger, 2008, Effects of microporosity on sonic velocity in carbonate rocks: The Leading Edge, 27, 1012–1018, doi: 10.1190/1.2967554. Baronnet, A., 1982, Ostwald ripening in solution — The case of calcite and mica: Estudios Geologicos, 38, 185–198. Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions: Journal of the Acoustical Society of America, 68, 1809–1831, doi: 10.1121/1.385172. Berryman, J. G., 1995, Mixture theories for rock properties, in T. J. Ahrens, ed., Handbook of physical constants: AGU, 205–228. Budd, D. A., 1989, Micro-rhombic calcite and microporosity in limestones: A geochemical study of the lower cretaceous thamama group, U.A.E.: Sedimentary Geology, 63, no. 3–4, 293–311, doi: 10.1016/0037-0738 (89)90137-1. Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: Journal of the Mechanics and Physics of Solids, 13, 223–227, doi: 10.1016/0022-5096(65)90011-6. Cantrell, D. L., and R. M. Hagerty, 1999, Microporosity in Arab formation carbonates, Saudi Arabia: GeoArabia, 4, no. 2, 129–154. Clark, V. A., B. R. Tittman, and T. W. Spencer, 1980, Effects of volatiles on attenuation and velocity in sedimentary rocks: Journal of Geophysical Research, 85, 5190–5198, doi: 10.1029/JB085iB10p05190. Cleary, M. P., I. W. Chen, and S. M. Lee, 1980, Self-consistent techniques for heterogeneous media: Journal of the Engineering Mechanics Division, American Society of Civil Engineers, 106, 861–887. Duffaut, A., and M. Landrø, 2007, V P ∕V S ratio versus differential stress and rock consolidation — A comparison between rock models and time-lapse AVO data: Geophysics, 72, no. 5, C81–C94, doi: 10.1190/1.2752175. Eberli, G. P., B. Baechle, F. Anselmetti, and M. Incze, 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge, 22, 654–660, doi: 10.1190/1.1599691. Fournier, F., and J. Borgomano, 2009, Critical porosity and elastic properties of microporous mixed carbonate-siliciclastic rocks: Geophysics, 74, no. 2, 93–109, doi: 10.1190/1.3043727. Gardner, G. H. F., L. W. Gardner, and R. W. Gregory, 1974, Formation velocity and density: The diagnostic basis for stratigraphic traps: Geophysics, 39, 770–780, doi: 10.1190/1.1440465. Grammer, G. M., P. M. Harris, and G. P. Eberli, 2004, Integration of outcrop and modern analogs in reservoir modeling: Overview with examples from the Bahamas, in G. M. Grammer, P. M. Harris, and G. P. Eberli, eds., Integration of Outcrop and Modern Analogs in Reservoir Modeling: AAPG Memoir, 80, 1–22. Hashin, Z., and S. Shtrikman, 1963, A variational approach to the elastic behaviour of multiphase materials: Journal of the Mechanics and Physics of Solids, 11, 127–140, doi: 10.1016/0022-5096(63)90060-7. Kachanov, M., 1999, Solids with cracks and non-spherical pores: Proper parameters of defect density and effective elastic properties: International Journal of Fracture, 97, 1–32, doi: 10.1023/A:1018345702490. Kachanov, M., and I. Sevostianov, 2005, On quantitative characterization of microstuctures and effective properties: International Journal of Solids and Structures, 42, 309–336, doi: 10.1016/j.ijsolstr.2004.06.016. Kaldi, J., 1989, Diagenetic microporosity (chalky porosity), Middle Devonian Kee Scarp Reef Complex, Norman Wells, Northwest Territories, Canada: Sedimentary Geology, 63, 241–252, doi: 10.1016/0037-0738 (89)90134-6. Kenter, J. A. M., and M. Ivanov, 1995, Parameters controlling acoustic properties of carbonate and volcaniclastic sediments at sites 866 and 869, in E. L. Winterer, W. W. Sager, J. V. Firth, and J. M. Sinton, eds., Proceedings of the ocean drilling program, scientific results, ocean drilling program, 143, 287–303. Kirkham, A., M. Bin Juma, T. A. M. McKean, A. F. Palmer, M. J. Smith, A. H. Thomas, and B. N. Twombley, 1996, Fluid saturation prediction in the “transition zone” carbonate reservoir, Abu Dhabi: GeoArabia, 1, 551–566.

E226

Fournier et al.

Lambert, L., C. Durlet, J. P. Loreau, and G. Marnier, 2006, Burial dissolution of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys for recognition and timing: Marine and Petroleum Geology, 23, 79–92, doi: 10.1016/j.marpetgeo.2005.04.003. Loreau, J. P., 1972, Pétrographie des calcaires fins au microscope électronique à balayage introduction à une classification des “micrites”: Comptes Rendus de l’Académie des Sciences, Paris, 274, 810–813. Masse, J. P., 1976, Les calcaires urgoniens de Provence: Ph.D. thesis, Aix-Marseille University. Masse, J. P., 1993, Valanginian to early Aptian carbonate platforms from Provence (S.E. France), in A. Simo, R. W. Scott, and J. P. Masse, eds., Cretaceous carbonate platforms: AAPG Memoir, 56, 363–374. Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The rock physics handbook: Tool for seismic analysis in porous media: Cambridge University Press. Mavko, G., T. Mukerji, and N. Godfrey, 1995, Predicting stress-induced velocity anisotropy in rocks: Geophysics, 60, 1081–1087, doi: 10.1190/ 1.1443836. Moore, C. H., 1989, Carbonate diagenesis and porosity: Elsevier, Developments in Sedimentology, 46. Morse, J. W., and W. H. Casey, 1988, Ostwald processes and mineral paragenesis in sediments: American Journal of Science, 288, 537–560, doi: 10.2475/ajs.288.6.537. Morse, J. W., and F. T. Mackenzie, 1990, Geochemistry of sedimentary carbonates: Elsevier, Developments in Sedimentology, 48. Moshier, S. O., 1989, Development of microporosity in a micritic limestone reservoir, Lower Cretaceous, Middle East: Sedimentary Geology, 63, 217–240, doi: 10.1016/0037-0738(89)90133-4. Norris, A. N., 1985, A differential scheme for the effective moduli of composites: Mechanics of Materials, 4, 1–16, doi: 10.1016/0167-6636(85) 90002-X. Rafavich, F., C. H. S. C. Kendall, and T. P. Todd, 1984, The relationship between acoustic properties and the petrographic character of carbonate rocks: Geophysics, 49, 1622–1636, doi: 10.1190/1.1441570. Richard, J., J. P. Sizun, and L. Machhour, 2007, Development and compartmentalization of chalky carbonate reservoirs: The Urgonian Jura-Bas Dauphiné platform model (Génissiat, southeastern France): Sedimentary Geology, 198, 195–207, doi: 10.1016/j.sedgeo.2006.12.003. Røgen, B., I. L. Fabricius, P. Japsen, C. Høier, G. Mavko, and J. M. Pedersen, 2005, Ultrasonic velocities of North Sea chalk samples — Influence of porosity, fluid content and texture: Geophysical Prospecting, 53, 481–496, doi: 10.1111/gpr.2005.53.issue-4. Ruiz, F., and J. Dvorkin, 2009, Sediment with porous grains: Rock-physics model and application to marine carbonate and opal: Geophysics, 74, no. 1, E1–E15, doi: 10.1190/1.3033212. Ruiz, F., and J. Dvorkin, 2010, Predicting elasticity in nonclastic rocks with differential effective medium model: Geophysics, 75, no. 1, E41–E53, doi: 10.1190/1.3267854. Saller, A. H., and C. H. Moore, 1989, Meteoric diagenesis, marine diagenesis, and microporosity in Pleistocene and Oligocene limestones, Enewetak Atoll, Marshall Islands: Sedimentary Geology, 63, 253–272, doi: 10.1016/0037-0738(89)90135-8.

Samankassou, E., J. Tresch, and A. Strasser, 2005, Origin of peloids in Early Cretaceous deposits, Dorset, South England: Facies, 51, 264–273, doi: 10.1007/s10347-005-0002-8. Smith, T. M., C. M. Sayers, and C. H. Sondergeld, 2009, Rock properties in low-porosity/low permeability sandstones: The Leading Edge, 28, 48–59, doi: 10.1190/1.3064146. Tsukrov, I., and M. Kachanov, 1993, Solids with holes of irregular shapes: Effective moduli and anisotropy: International Journal of Fracture, 64, R9–R12, doi: 10.1007/BF00019630. Tucker, M. E., and R. G. C. Bathurst, 1990, Carbonate diagenesis, Reprint Series 1 of the IAS: Blackwell Scientific Publications. Tucker, M. E., and V. P. Wright, 1990, Carbonate Sedimentology: Blackwell Scientific Publications. van der Plas, J., and A. C. Tobi, 1965, A chart for judging the reliability of point counting results: American Journal of Science, 263, 87–90, doi: 10.2475/ajs.263.1.87. Vernik, L., 1994, Predicting lithology and transport properties from acoustic velocities based on petrophysical classification of siliciclastics: Geophysics, 59, 420–427, doi: 10.1190/1.1443604. Vernik, L., 1997, Prediction porosity from acoustic velocities in siliciclastics: A new look: Geophysics, 62, 118–128, doi: 10.1190/1.1444111. Volery, C., E. Davaud, C. Durlet, B. Clavel, J. Charollais, and B. Caline, 2010b, Microporous and tight limestones in the Urgonian Formation (late Hauterivian to early Aptian) of the French Jura Mountains: Focus on the factors controlling the formation of microporous facies: Sedimentary Geology, 230, no. 1–2, 21–34, doi: 10.1016/j.sedgeo.2010 .06.017. Volery, C., E. Davaud, A. Foubert, and B. Caline, 2009, Shallow-marine microporous carbonate reservoir rocks in the Middle East: relationship with seawater Mg/Ca ratio and eustatic sea level: Journal of Petroleum Geology, 32, 313–325, doi: 10.1111/jpg.2009.32.issue-4. Volery, C., E. Davaud, A. Foubert, and B. Caline, 2010a, Lacustrine microporous micrites of the Madrid Basin (Late Miocene, Spain) as analogues for shallow-marine carbonates of the Mishrif reservoir Formation (Cenomanian to Early Turoniam, Middle East): Facies, 56, 385–397. Wang, Z., 1997, Seismic properties of carbonate rocks, in I. Palaz, and K. J. Marfurt eds., Carbonate seismology: Geophysical Developments, 6, 29–52. Wilkens, R., G. Simmons, and L. Caruso, 1984, The ratio V P ∕V S as a discriminant of composition for siliceous limestones: Geophysics, 49, 1850–1860, doi: 10.1190/1.1441598. Wilson, J. L., 1975, Carbonate facies in geologic history: Springer-Verlag. Wilson, J. L., 1980, Limestone and dolomite reservoirs, in G. D. Hobson, ed.: Petroleum Geology: Applied Science Publisher Ltd, 2, 1–51. Witt, W., and H. Gokdag, 1994, Orbitolinid biostratigraphy of the Shuaiba Formation (Aptian), Oman. Implications for reservoir development, in M. D. Simmons, ed., Micropalaeontology and hydrocarbon exploration in the Middle East: Chapman & Hall, 221–234. Wu, T. T., 1966, The effect of inclusion shape on elastic moduli of a twophase material: International Journal of Solids and Structures, 2, 1–18. Zimmerman, R. W., 1991, Compressibility of sandstones: Elsevier.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.