Distribution parameters of guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in Central Argentina: Archaeological and paleoenvironmental implications

Share Embed


Descripción

Journal of Archaeological Science 38 (2011) 1405e1416

Contents lists available at ScienceDirect

Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas

Distribution parameters of guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in Central Argentina: Archaeological and paleoenvironmental implications G.G. Politis a, L. Prates b, *, M.L. Merino c, M.F. Tognelli d, e a

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and INCUAPA, Facultad de Ciencias Sociales de la Universidad Nacional del Centro de la provincia de Buenos Aires, Del Valle 5737, 7400 Olavarría, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and División de Arqueología, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina c Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata 1900, Argentina d IUCN-CI Biodiversity Assessment Unit, Conservation International, 2011 Crystal Dr., Suite 500, Arlington, VA 22202, USA e Instituto Argentino de Investigaciones de Zonas Áridas, CONICET CCT-Mendoza, C.C. 507, C.P. 5500, Mendoza, Argentina b

a r t i c l e i n f o

a b s t r a c t

Article history: Received 14 September 2010 Received in revised form 24 January 2011 Accepted 24 January 2011

In this paper we use non-ambiguous collections and sightings data from the 18th century to generate potential distribution models of three species of South American ungulates. These ungulates (Lama guanicoe -guanaco-; Ozotoceras bezoarticus -pampas deer- and Blastoceros dichotomus -marsh deer-) have different and specific environmental requirements. Through MaxEnt software, twenty-two environmental variables that characterize the distribution area of each species are defined. Once the models are generated, they are compared with the faunal associations found at Late Holocene archaelogical sites in order to infer paleoenvironmental conditions. We also discuss the role played by humans in the faunal associations which are "anomalous" or inconsistent with those models, like the spatial overlap of guanaco and marsh deer. Ó 2011 Elsevier Ltd. All rights reserved.

Keywords: Species distribution models South American ungulates Archaeology Paleoclimate

1. Introduction Hunter-gatherers depend upon the natural distribution of resources in their environment (Kelly, 1995). The type of animals and the densities at which they occurred were crucial factors that hunter-gatherers took into account when they decided which species to hunt and which not (Earle, 1980). In addition, current theoretical approaches (e.g. evolutionary ecology) have proposed that the structure of the resources plays a central role in shaping the behavior of hunter-gatherers (Bettinger, 1991). However, few attempts have been made in order to determine the distribution of past resources, their properties (density, seasonal availability, etc) and how they are related to each other. This study is an attempt to better determine the parameters of distribution of some of the more relevant species in the diet of past hunter-gatherers of the Pampas and Northern Patagonia.

* Corresponding author. E-mail addresses: [email protected] (G.G. Politis), [email protected]. edu.ar (L. Prates), [email protected] (M.L. Merino), mtognelli@ conservation.org (M.F. Tognelli). 0305-4403/$ e see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.jas.2011.01.013

In central Argentina (between 30 and 42 S), hunter-gatherers had several species of ungulates, mainly Lama guanicoe (guanaco), Ozotoceros bezoarticus (pampas deer) and Blastocerus dichotomus (marsh deer) among the most important components of their subsistence. The guanaco was the base of the subsistence in Patagonia from the Late Pleistocene until the 19th century (Miotti, 1998; Miotti and Salemme, 1999; Mengoni Goñalons, 1999). In the Pampas, it also played a central role in the human diet until the Late Holocene (Politis and Salemme, 1991; Martínez and Gutierrez, 2004) when it suffered a retraction toward the west, probably as a result of the environmental changes produced by Medieval Thermal Maximum between ca. AD 800e1200 (Politis and Pedrotta, 2006; cf. Loponte, 2008). In this same region, the pampas deer was a secondary resource, although it played a greater role in the northeastern portion (Martínez and Gutierrez, 2004; González, 2005; Politis and Leon, in press). The marsh deer probably only had an important role in the subsistence in the Lower Paraná River, and a complementary role in the basins of La Plata River (Acosta, 2005; Politis and Leon, in press; Bonomo et al., in press). The distribution of most species is usually known from the localities where they were sampled but, if we plot these points in a map, the resulting distribution will most likely be incomplete

1406

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

because it is improbable that every possible area where the species occurs has been surveyed. Also, the alteration of the environment by agro-pastoralist activities in the last centuries generated local extinctions, sometimes before the species were recorded. In the absence of a complete inventory of where species occur, species distribution models (SDMs) have become a powerful tool to produce maps of the potential distribution. These models enable the characterization of the spatial distribution of suitable conditions for species, and have recently been applied to address issues in ecology, biogeography, evolution, conservation biology, invasive species, and the effect of climate change on species distributions (Franklin, 2009 and references therein). SDMs examine the associations between general environmental characteristics and the locality records where a species has been collected or sighted (Guisan and Thuiller, 2005). In this study, we present a comparative analysis of current and archaelogical records of guanaco, pampas deer and marsh deer, and discuss their archaelogical and paleoenvironmental implications. Using unambiguous sightings data of these species made during the last 250 years and museum bone collections, we generated species distribution models to infer the potential distribution area of each species. In addition, we analyzed the relative contribution of each environmental variable to the model. The use of this information as proxy environmental data allowed us: a) to infer the paleoclimatic conditions of the area during part of the Late Holocene (ca. 3500e500 yrs. BP), b) discuss the implications of the presence, absence and/or overlap of two or more of the nonsympatric species in the archaeological sites, and c) propose alternative explications of some anomalies in the archaelogical record that do not conform to models of potential distribution. The models generated in this study, therefore, allow a better understanding not only of the paleoclimate, but also of the economic decisions of the pre-hispanic pampean hunter-gatherers. 2. Materials and methods 2.1. Data We compiled point locality data from observations and collections made since the mid-eighteenth century. All records were assigned geographic coordinates using national and international gazetteers. In total, we obtained 287 records (72 locations for guanaco, 137 for pampas deer and 78 for marsh deer). To build the database, we considered the unambiguous data of the species presence obtained from the materials deposited in the major collections from Argentina (Museo Argentino de Ciencias Naturales de Buenos Aires and Museo de La Plata), and the sightings made by chroniclers, travelers, militaries, and naturalists from the 18th century to the present. We used 115 archaeological specimens reliably dated to between 3700 and 400 years BP to estimate the distributions of species during the Late Holocene (see Fig. 1, Table 1). We used 21 climatic variables and altitude as predictors. Nineteen bioclimatic variables (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, maximum temperature of warmest month, minimum temperature of coldest month, temperature annual range, mean temperature of wettest quarter, mean temperature of driest quarter, mean temperature of warmest quarter, mean temperature of coldest quarter, annual precipitation, precipitation of wettest month, precipitation of driest month, precipitation seasonality, precipitation of wettest quarter, precipitation of driest quarter, precipitation of warmest quarter, precipitation of coldest quarter) and altitude were obtained from the WorldClim database (Hijmans et al., 2005; www.worldclim.org), and 2 variables (relative humidity and frost day frequency), were

extracted from the Climate Research Unit (New et al., 2002; http:// www.cru.uea.ac.uk/cru/data/hrg/). All climatic variables were at a spatial resolution of 2.5 arc-min (Hijmans et al., 2005) or, in the case of the variables obtained from the Climate Research Unit, they were resampled to match that resolution. 2.2. Species distribution models Species distribution models were run using MaxEnt software (Phillips et al., 2006). We selected MaxEnt because, in a recent comprehensive model comparison study, it was ranked among the most effective methods for species distribution modeling with presence-only data (Elith et al., 2006). The MaxEnt model attempts to minimize the relative entropy (a measure of dispersedness) between the probability density estimated from the presence data and the probability density estimated from the landscape, both defined in the environmental or covariate space (Elith et al., 2011). The MaxEnt algorithm was run using the default parameters including a maximum of 500 iterations with a convergence threshold of 0.00001, and 10,000 randomly generated background localities. We used the logistic output which provides an estimate between 0 and 1 of probability of presence of the modeled species. Species locality data were first filtered so that there was only one record per pixel. For each species, we ran 10 replicate models, randomly splitting the data into 75% of the points to generate the models and the remaining 25% to test them. For each of the model runs we used the testing points to calculate the area under the curve (AUC) of the receiver operating characteristic (ROC) plot. The AUC reflects the proportion of both correctly and incorrectly classified predictions over a range of probability thresholds (Pearce and Ferrier, 2000) and is positively correlated with the predictive ability of the model (Manel et al., 2001). Values for AUC > 0.5 indicate a better-than-random prediction, and models with AUC values > 0.75 are considered to have useful discriminatory power. Because the average test AUC of the replicate runs for all three species was > 0.75, we ran one model for each species with all their locality records, and those were the ones used in all subsequent analysis. To calculate the overlap between the distributions of the species, we converted the probability maps to binary, presence/ absence maps using the 10th percentile training presence threshold criterion. This threshold excludes the 10% most extreme presence observations, as they may represent recording errors, ephemeral populations, migrants, or the presence of unusual microclimatic conditions within a pixel (Morueta-Holme et al., 2010). 3. Characterization of the species 3.1. Guanaco (Lama guanicoe) The guanaco is the largest terrestrial wild mammal in southern South America, which weighs between 85 and 120 kg for different regions (see review in González et al., 2006; Barberena et al., 2009). It was the most widely distributed ungulate in the south of the continent since the Pleistocene until the introduction of aloctone cattle. Raedeke (1979) estimated a population between 30 and 50 million animals at the time European people arrived in America. Although populations of guanaco are continuously declining, it is still the largest and more widely distributed camelid on the continent. The guanaco covers all spectrums of aridity; reaching only humid areas of more than 750 mm of annual rainfall (in Tierra del Fuego; this area is considered humid due to low evapotranspiration) at altitudes from 0 to 800 masl in the south and from 150 to 4500 masl in the north. They strongly prefer open spaces (grasslands and low and middle shrublands) and only exceptionally occupy forests, e.g. the ‘caldenar’ in the dry Pampas and the cold

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

1407

Fig. 1. Late Holocene Archaeological sites included in this study. References: 1) Cerro Aguará, 2) Barrancas del Paranacito, 3) Paraná Miní, 4) La Lechuza, 5) Arroyo Arenal 1, 6) Ongamira, 7) C.Pun 39, 8) Las Chacras 2, 9) Cueva de los Indios, 10) Puesto La Esquina 1, 11) Los Algarrobos 1, 12) Cruz Chiquita 3, 13) Arroyo Tala Cañada 1, 14) Río Yuspe 14, 15) El Fantasío, 16) Río Yuspe 11, 17) Abrigo Los Chelcos, 18) Potrero de Garay, 19) Intihuasi, 20) Bajada Guereño, 21) Isla de las Lechiguanas, 22) Cañada Honda, 23) Cerro el Durazno, 24) Cerro Tapera Vázquez, 25) Cerro de la Matanza, 26) Cerro Lutz, 27) Río Luján, 28) Brazo Largo, 29) Brazo Largo Túmulo 1, 30) Paraná Guazú Túmulo 1, 31) Paraná Guazú Túmulo 2, 32) Los Tigres, 33) Túmulo de Campana, 34) Cañada Rocha, 35) Otamendi, 36) Las Vizcacheras, 37) Anahí, 38) Aeródromo Escobar, 39) Garín, 40) Punta Canal, 41) Sarandí Túmulo A, 42) La Bellaca 1, 43) La Bellaca 2, 44) La Bellaca 3, 45) Guazunambí, 46) Arroyo Sarandí, 47) Arroyo Fredes, 48) La Higuera, 49) La Norma, 50) La Maza 1, 51) Las Marías, 52) San Clemente II, 53) San Clemente III, 54) San Clemente VI, 55) Laguna Salalé, 56) Hunter, 57) Meguay, 58) La Guillerma 1, 59) La Guillerma 5, 60) La Salada, 61) La Loma, 62) San Lorenzo, 63) La Colorada, 64) Calera, 65) Pessi, 66) La Raquel 2, 67) Laguna Sotelo, 68) Laguna de la Ruta, 69) Laguna del Fondo, 70) Manantial Naicó, 71) Laguna Paisani, 72) Gascón 1, 73) Tres Reyes 1, 74) La Toma, 75) Fortín Necochea, 76) Cortaderas, 77) Zanjón Seco 2, 78) Zanjón Seco 3, 79) Paso Otero 3, 80) Paso Otero 1; 81) La Liebre, 82) Lobería 1, 83) Cueva Tixi, 84) El Abra, 85) Nutria Mansa 1, 86) El Guanaco, 87) Quequén Salado 1, 88) Quequén Salado 2, 89) Puente de Fierro, 90) San Martín 1, 91) Tapera Moreira, 92) Casa de Piedra 1, 93) Alero Puesto Carrasco, 94) Don Aldo, 95) Loma Ruiz, 96) La Petrona, 97) La Primavera, 98) San Antonio 1, 99) San Antonio 2, 100) El Tigre, 101) Pomona, 102) Negro Muerto, 103) Ojo de Agua, 104) Salitral de La Victoria, 105) Sitio Conesa, 106) Loma de Los Muertos, 107) Angostura 1, 108) San Blas, 109) La Serranita (sitio D), 110) Conchero el Lobito, 111) Conchero el Piche 1, 112) Conchero Las Olas 1, 113) Conchero Las Olas 2, 114) Saco Viejo, 115) Lomas del Veinte.

forests in Tierra del Fuego. In the Chaco forests region it only inhabits open spaces. The distribution area of the guanaco in historical times covered much of the “Andino Patagónico” and “Chaqueño” biogeographic Domains and the southern portion of the “Subantárctico” Domain. The highest abundances of guanacos in Argentina are in Neuquén, Río Negro, Chubut, Santa Cruz, Tierra del Fuego and southern Mendoza provinces; there is moderate density in Catamarca, Tucumán, La Rioja, San Juan and north of

Mendoza. In Jujuy, Salta, Santiago del Estero, Córdoba, San Luis, Buenos Aires and La Pampa the populations are small and mostly relictual (Baigún et al., 2008:p. 25). 3.2. Pampas deer (Ozotoceros bezoarticus) The pampas deer is a typical cervid of the open areas south of the Amazon River Basin. It is a gregarious (no more than 10

1408

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

Table 1 Archaeological sites in central Argentina with records of L. guanicoe (L.g.), O. bezoarticus (O.b) and/or B. dichotomus (B.d.) assigned to the Late Holocene. #

Site

Lat. Long. L. g O. b. B. d. References (South) (West)

1 2

28 000 59 050 28 060 59 090

3 4 5 6

Cerro Aguará Barrancas del Paranacito Paraná Miní La Lechuza Arroyo Arenal 1 Ongamira

29 29 30 30

150 540 400 510

7 8 9 10 11 12

C.Pun 39 Las Chacras 2 Cueva de los Indios Puesto La Esquina 1 Los Algarrobos 1 Cruz Chiquita 3

31 31 31 31 31 31

030 040 080 090 110 210

13

Arroyo Tala Cañada 1 Río Yuspe 14 El Fantasío Río Yuspe 11 Abrigo Los Chelcos Potrero de Garay Intihuasi Bajada Guereño

31 250 64 58

14 15 16 17 18 19 20 21 22 23 24 25 26

Isla de las Lechiguanas Cañada Honda Cerro el Durazno Cerro Tapera Vázquez Cerro de la Matanza Cerro Lutz

31 31 31 31 31 32 32

250 270 310 460 450 430 590

X X

X X

Santiago, 2004 Pérez Jimeno, 2007

59 59 59 64

200 X? 550 X X 350 310 X X

X X

64 64 64 64 64 65

310 310 Xa 390 X 370 440 Xa 030

Cornero et al., 2007 Pérez Jimeno, 2007 Menghin and González, 1954 Medina, 2009 Medina, 2007 Pastor, 2007 Medina, 2009 Medina, 2007 Pastor and Berberián, 2007 Pastor, 2007

64 64 64 64 64 65 60

X X X X X X

510 Xa 370 500 540 Xa 320 580 X 370

X X X X X

33 370 59 410 

0



X

0

33 50 59 20 X 33 300 59 300 33 300 59 300 33 300 59 300 33 380 58 360 

0



X

X X X

X

X X

0

27

Río Luján

34 05 59 02 X

X

X

28 29

33 490 58 450 33 500 58 480

X

X X

34 10

58 370

X

X

34 00

58 330 X

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Brazo Largo Brazo Largo Túmulo 1 Paraná Guazú Túmulo 1 Paraná Guazú Túmulo 2 Los Tigres Túmulo de Campana Cañada Rocha Otamendi Las Vizcacheras Anahí Aeródromo Escobar Garín Punta Canal Sarandí Túmulo A La Bellaca 1 La Bellaca 2 La Bellaca 3 Guazunambí Arroyo Sarandí Arroyo Fredes La Higuera La Norma La Maza 1 Las Marías

34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 35

170 140 160 160 170 220 220 230 220 220 220 230 230 110 530 550 580 100

59 58 58 58 58 58 58 58 58 58 58 58 58 58 57 57 57 57

020 500 480 480 470 420 420 370 390 390 390 370 370 330 480 460 450 210

X

52 53 54 55 56 57

San Clemente II San Clemente III San Clemente VI Laguna Salalé Hunter Meguay

35 35 35 34 34 34

140 140 140 550 150 150

57 57 57 62 60 60

160 160 160 170 310 230

X

30 31 32 33

34 80 58 430 34 120 58 540

X X

X X X X X X

X X X

Pastor, 2007 Pastor, 2007 Pastor, 2007 Pastor, 2007 Pastor, 2007 González, 1960 Politis and Pedrotta, 2006 Martínez and Gutierrez, 2004 Salemme, 1987 Bonomo, pers. comm. Bonomo, pers. comm. Bonomo, pers. comm. Arrizurieta et al., 2010 Salemme and Tonni, 1983 Bonomo et al., 2009

X X X

X X

X X X X X X X

X X X X X

X X X X X X X X X X X X X X X

X X X X X X X X X X X X

Table 1 (continued ). #

Site

Lat. Long. L. g O. b. B. d. References (South) (West)

58 59 60 61 62 63

La Guillerma 1 La Guillerma 5 La Salada La Loma San Lorenzo La Colorada

35 35 36 36 29 36

380 380 390 560 580 370 X

X X X X X X

64

Calera

36 590 60 140 X

X

65 66 67

Pessi La Raquel 2 Laguna Sotelo

37 00 58 240 X 37 150 61 100 X 37 320 57 200 X

X X X

68 69 70 71 72 73

Laguna de la Ruta Laguna del Fondo Manantial Naicó Laguna Paisani Gascón 1 Tres Reyes 1

36 36 36 36 37 37

X X X X X X

X X X

74

La Toma

38 060 61 270 X

X

75

Fortín Necochea

38 000 61 250 X

X

76 77 78 79 80 81 82 83

Cortaderas Zanjón Seco 2 Zanjón Seco 3 Paso Otero 3 Paso Otero 1 La Liebre Lobería 1 Cueva Tixi

38 38 38 38 38 37 37 37

190 100 100 110 110 460 460 510

59 59 59 59 59 58 58 58

390 100 100 110 110 320 320 200

X X X X X X X X

X X

84 85 86 87 88 89 90 91 92 93

El Abra Nutria Mansa 1 El Guanaco Quequén Salado 1 Quequén Salado 2 Puente de Fierro San Martín 1 Tapera Moreira Casa de Piedra 1 Alero Puesto Carrasco Don Aldo Loma Ruiz La Petrona

37 38 38 38 38 38 38 38 38 36

540 240 410 490 490 520 320 330 110 070

57 58 59 60 60 61 62 65 67 69

590 150 390 320 320 280 320 330 110 380

X X X X X X X X X X

X X X X

45 390 63 560 X 39 130 62 380 X 39 300 62 500 X

X

La Primavera San Antonio 1 San Antonio 2 El Tigre Pomona Negro Muerto Ojo de Agua Salitral de La Victoria Sitio Conesa Loma de Los Muertos Angostura 1 San Blas La Serranita (sitio D) Conchero el Lobito Conchero el Piche 1 Conchero Las Olas 1 Conchero Las Olas 2

39 410 39 390 39 390 39 460 39 320 39 500 39 470 39 480

X X X X X X

94 95 96 Salemme, 1987 Loponte, 2007 Acosta, 2005 Loponte, 2007 Acosta, 2005 Loponte, 2007 Bonomo et al., 2009 Acosta, 2005

Loponte, 2007 Acosta, 2005 Mucciolo, 2007 Brunazzo, 1997 Brunazzo, 1999 Salemme et al., 1985 Paleo and Pérez Meroni, 2007 Paleo et al., 2002

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

Oliva et al., 2004 Loponte et al., 2010

112 113

500 500 10 220 510 290

310 310 560 550 70 560

57 57 57 56 56 58

64 64 64 64 63 60

050 020 200 250 120 340

62 140 62 090 62 090 62 220 65 330 65 170 65 160 64 550

X X X X X X X X

X X X X

X X X

X

40 100 64 110 X 40 270 62 100 40 320 62 180

X X X

40 430 62 150 X 40 430 62 150 X 40 430 62 150 X

González, 2005 Aldazabal, 2002 Politis and Pedrotta, 2006 Aldazabal and Cáceres, 1998 Kaufmann and Álvarez, 2007 Aldazabal, 2002 Eugenio et al., 2007 Eugenio and Aldazabal, 1987e1988 Curtoni, 2007

Oliva et al., 2007 Madrid and Barrientos, 2000 Madrid and Politis, 1991 Crivelli Montero et al., 1997 Massigoge, 2007 Politis et al., 2004 Politis, 1984 Martínez et al., 2001 Martínez, 1999 Pupio, 1996 Mazzanti et al., 2010 Mazzanti and Quintana, 2003 Quintana et al., 2003 Bonomo, 2005 Bayón et al., 2004a Bonomo, 2005 Madrid et al., 2002 Austral, 1994 Oliva et al., 1990 Berón, 2004 Gradín, 1984 Durán, 2000 Prates et al., 2006 Stoessel, 2007 Martínez and Figuerero Torres, 2000 Bayón et al., 2004b Martínez et al., 2010 Stoessel, 2007 This paper Prates, 2008

X

40 040 64 270 X 40 080 64 160 X

40 430 62 150 X

X X

Torres, 1922 Eugenio and Aldazabal, 2004

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416 Table 1 (continued ). #

Site

114 Saco Viejo 115 Lomas del Veinte a

Lat. Long. L. g O. b. B. d. References (South) (West) 28 100 62 10

X

X X

Casamiquela, 1975 Cione et al., 1979

Lama cf. L. guanicoe.

individuals per group) mammal, weighing between 30 and 40 kg, and it occupies places with availability of green grass. The distribution area until the mid-nineteenth century covered central and southeastern Brazil, southeastern Bolivia, Paraguay, Uruguay, and central and northeastern Argentina. Until the 19th century it was very abundant in Argentina (provinces of Formosa, Salta, Chaco, Santiago del Estero and north of Santa Fe and Cordoba, Corrientes, Entre Ríos, Buenos Aires, southern Santa Fe, Cordoba, La Pampa, San Luis, southern Mendoza and northern Río Negro). However, strong hunting and the reduction of the habitats due to agro-pastoralism during the 19th century led to a process of fragmentation and habitat alteration, resulting in a sharp reduction in its population. Currently, the distribution of the pampas deer in Argentina is restricted to four areas: Corrientes, northwest of Santa Fe (Bajos sub-meridionales), southeast of San Luis, and the costal area of Bahía Samborombón (Merino, 2003). 3.3. Marsh deer (Blastoceros dichotomus) The marsh deer is a large cervid, between 80 and 125 kg, which lives in floodplains (with a water depth no greater than 60 cm) with low vegetation (estuaries, reservoirs and marshes) in the southcentral region of South America where the average rainfall exceeds 1000 mm per year (Pinder and Grosse, 1991; Piovezan et al., 2010). It is distributed from the mid-west and southern Brazil, Paraguay, eastern Bolivia and a small portion of southeastern Perú to northern Argentina. In Argentina, this species was distributed along the Paraná, Paraguay and lower Uruguay basins, including the Iberá marshes and the delta of the Paraná River. It could be found in southern Misiones, east of Formosa, Chaco, Santa Fé, most of Corrientes, west and south of Entre Ríos and the northeast of Buenos Aires. Currently, due to hunting and habitat modification, the marsh deer is restricted to some localities in the provinces of Formosa, Chaco, Corrientes, Entre Ríos, Buenos Aires and possibly Santa Fe (Piovezan et al., 2010). 4. Results and discussion All three species had very high average test AUC values (guanaco ¼ 0.91; pampas deer ¼ 0.95, and marsh deer ¼ 0.99). Therefore, we ran one model for each species using all their locality records, and used the resulting maps in the analysis. The maps of present potential distribution (Fig. 2) partially coincide with the range maps for historical times developed for the same species by other authors (Cabrera and Yepes, 1960; Pujalte and Reca, 1985; Pinder and Grosse, 1991; Puig and Videla, 1995; González et al., 2006). However, our models reflect more in detail the range of spatial variation of each of the 22 parameters used by MaxEnt. The other contribution of our models is that they generate probabilities of occurrence (in contrast to range maps which assume presence across the entire area), which allows a more accurate estimation of the availability of resources for hunter-gatherers. Moreover, these maps show several differences with some of the previous maps. In the case of the guanaco, the most important discrepancy is the eastern limit of dispersion since some authors (e.g. Franklin et al., 1997) include all the Buenos Aires province territory in the

1409

historical distribution of guanaco. In the case of pampas deer, the potential distribution area generated by us is wider in the south (Norpatagonia) and narrower in the north (Chaco) than that inferred by other authors (e.g. Jackson, 1987). With regards to marsh deer, our distribution model roughly coincide with other maps of geographic range but clearly show the highest probability of occurrence in areas such as the Esteros del Iberá and the Delta of the Paraná River where the habitat conditions are better for this species. The maps show that guanaco (Fig. 2a) and marsh deer (Fig. 2c) have no area of overlap, but are clearly separated by a strip of land of variable width, always greater than 100 km. Pampas deer has a distribution area that occupies this strip (Fig. 2b) and, at the same time, overlaps with those of the other two species, with the guanaco to the west and the marsh deer to the east. The area of overlap between guanaco and pampas deer in central Argentina, mainly in the south of the Pampas and northern Patagonia (Fig. 3), has the following environmental profile: average annual rainfall of 507 mm (with minimal and maximal precipitation of 263 and 839 mm); annual temperature between 11.5 and 16.5  C; and, relative humidity between 56.7 and 78.9% (for more details see Table 2). Except for some exceptional cases, the guanaco cannot inhabit areas of higher temperature and humidity, but the pampas deer can; and, unlike the guanaco, the pampas deer cannot live in cooler and drier areas. The distribution of the pampas deer overlaps with that of the marsh deer in northeastern Argentina and western Uruguay (basically in the basin of the Uruguay River) (Fig. 3). However, within the area of overlap, both species occupy different habitats: the marsh deer can be found in forest or grasslands and flooded substrate (up to a water depth of 60 cm), and the pampas deer can be found in open grasslands and drier substrate. This implies that both species are partially sympatric. The area of overlap of marsh deer and pampas deer has the following characteristics: average annual rainfall of 1281 mm (with minimal and maximal precipitation of 861 and 1689 mm); annual temperature between 15.65 and 22.56  C; and, relative humidity between 72 and 79% (for more detail see Table 2). Finally, the guanaco and marsh deer do not overlap in any potential area generated by the models, which implies that the species are most likely allopatric. The archaeological sites from which the information was collected for distribution maps of the Late Holocene have different faunal associations. These associations, if they are penecontemporaries, would be a result of the species being hunted within the range of daily foraging trips of the sites (>10 km, sensu Binford, 1980). However, in some cases, they may have come from greater distances as a result of logistical trips (< 10 km) or even longer distances. The latter is more likely to have occurred in cases of transport of certain bones or anatomical parts, as has been proposed based on multiple evidence for the Late Holocene in the Pampas (González, 2005; Loponte, 2008; Bonomo et al., in press). Pampas deer is recurrently associated with guanaco in archaeological sites from the Late Holocene (Fig. 4). However, much of the area of archaeological overlap does not match the inferred potential overlap area for current climatic conditions. In other words, if guanacos and pampas deer were hunted in the vicinity of these sites, climatic conditions must have necessarily been different from today, to allow both species to inhabit there simultaneously. These conditions might have been more similar to the current parameters for the area of potential overlap (see Table 2). This implies that, at the time of the occupation of the sites in which deer and guanacos were associated (basically in the Tandilia, Interserrana, and Pampa Ondulada areas of the Pampean region), the conditions might have been drier and cooler than current conditions, which vary today between: average annual rainfall ¼ 800e1100 mm; mean annual temperature ¼ 14 C; average January

1410

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

Fig. 2. Modern potential distribution in Argentina of L. guanicoe (a), O. bezoarticus (b) and B. dichotomus (c) generated by the MaxEnt software and expressed as probabilities (see color-coded legend).

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

1411

Fig. 3. Modern potential distribution overlap in Argentina of L. guanicoe and O. bezoarticus (gray); and O. bezoarticus and B. dichotomus (black).

temperature ¼ 18e22  C; average July temperature ¼ 8e6  C and relative humidity ¼ 65e70%. These results agree with previous research made by Tonni et al. (1999) who, on the basis of paleontological associations, propose a temperate and semi-arid environment for much of the Late Holocene in the eastern Pampas (see also Iriondo, 1999; Tonni, 2009). It also supports the conclusions of Quattrochio and Borromei (1998) who, based on palinological studies, proposed that the humid grassland steppes of the Middle Holocene were replaced ca. 2830  90 14C yrs BP by psammophilous herbaceous steppes of drier environments. However, during the Late Holocene some warm/humid events also took place, such as the one that produced the geosol Puesto Berrondo (Tonni et al., 2001). Nevertheless, these events seem to have been shorter than the arid ones.

The association of guanaco and pampas deer in the Late Holocene sites located outside the current area of overlap of both species (Fig. 4) indicates that the most dense human occupation occurred when climatic conditions were drier and cooler than today. This hypothesis is also supported by the presence in some of the sites of faunal remains from other species, such as the Patagonian hare (Dolichotis patagonum), the small armadillopiche- (Zaedyus pichiy) and the southern three banded armadillo (Tolypeutes matacus) (see Martínez and Gutierrez, 2004). These species are adapted to arid regions and are associated to the current Patagónico and Central zoogeographic domains (sensu Ringuelet, 1961). The recent finding of southern three banded armadillo remains associated with guanaco, pampas deer, and piche in the Hunter site in the Pampa Ondulada area (Loponte et al., 2010) is also

Table 2 Environmental variables of the modern potential distribution overlap of L. guanicoe/O. bezoarticus, and O. bezoarticus/B. dichotomus. Environmental variables

Annual temperature ( C) Diurnal range ( C) Isothermality Temperature seasonality (SD  100) Maximum temperature of warmest month ( C) Minimum temperature of coldest month ( C) Temperature annual range ( C) Temperature of wettest quarter ( C) Temperature of driest quarter ( C) Temperature of warmest quarter ( C) Temperature of coldest quarter ( C) Annual precipitation (mm) Precipitation of wettest month (mm) Precipitation of driest month (mm) Precipitation seasonality (CV) Precipitation of wettest quarter (mm) Precipitation of driest quarter (mm) Precipitation of warmest quarter (mm) Precipitation of coldest quarter (mm) Frost day frequency (# days) Relative humidity (%) Altitude (m)

L. guanicoe  O. bezoarticus

O. bezoarticus  B. dichotomus

Mean

Minimum

Maximum

Mean

Minimum

Maximum

14.86 14.07 47.52 571.66 31.12 1.55 29.57 19.27 8.06 21.94 7.97 507.26 67.76 17.72 36.57 169.59 67.62 149.94 67.67 5.18 64.23 154.55

11.56 10.72 40.97 480.60 26.50 2.50 24.50 14.13 5.23 18.35 5.23 263.00 31.00 5.00 20.32 75.00 23.00 61.00 23.00 2.78 56.79 1.00

16.55 17.08 52.70 620.59 33.30 3.50 32.50 23.78 19.02 23.78 9.55 839.00 114.00 38.00 67.17 320.00 140.00 307.00 140.00 7.89 78.97 1008.00

20.08 11.66 49.31 436.32 32.66 8.97 23.69 22.77 14.89 25.50 14.83 1281.72 145.65 61.09 24.89 389.80 216.91 339.90 217.25 0.48 73.46 49.62

15.65 9.33 42.11 389.88 28.30 4.40 22.00 19.02 9.80 21.60 9.80 861.00 88.00 35.00 13.79 242.00 121.00 226.00 121.00 0.01 72.43 1.00

22.56 12.48 53.74 496.46 34.80 12.00 26.40 24.90 17.60 27.60 17.60 1689.00 178.00 96.00 41.59 480.00 337.00 438.00 337.00 1.92 79.00 112.00

1412

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

Fig. 4. Archaeological overlap in Late Holocene sites in Argentina of L. guanicoe and O. bezoarticus (in shaded is shown the modern potential distribution overlap of both species), and anomalous archaeological records of L. Guanicoe, O. bezoarticus and B. dichotomus.

in agreement with this model and indicates that the entire Pampas region experienced drier conditions during most of the Late Holocene. Pampas deer also appears recurrently associated with marsh deer in the sites of northern Pampas and the Parana and Uruguay river valleys. In this case, the overlap coincides with that generated by the current potential distribution model (Fig. 3). This implies that if there were environmental changes between the late Holocene and present, they were not sufficient to change the area of overlap of both species. Pampas deer and marsh deer are partially sympatric and could be hunted from one same locus when the foraging radius included the habitats of both species. Most of the Late Holocene sites located at the borders of the floodplain of Río de la Plata and Paraná River follow this pattern (see Politis and Pedrotta, 2006). There is an extraordinary, and little known, description about the indigenous communal hunting of deer in the Lower Paraná ca. 1528 at the very beginning of the Spanish

conquest (Barlow, 1932 [1540e1541]). In this account it is shown how the Indians of the Parana delta drove into the river deer from distant locations, which would include different habitats. Another aspect of the faunal association of Late Holocene archaeological sites to be discussed is the presence of some isolated records of guanaco, pampas deer and marsh deer outside the current potential distribution areas (Fig. 4). These apparently anomalous data are difficult to explain by changes in climatic conditions and/or by discontinuous distribution. For pampas deer, the case is the record of a phalange in Alero Puesto Carrasco site, located near the Barrancas River, south of Mendoza (Neme and Gil, 2008). This could be explained by human transport of the bone outside the distribution area of the species, possibly by being attached to the skin. It could also be possible that isolated populations of pampas deer have ascended the Colorado River basin taking advantage of the favorable conditions inside the valley. With the available data, it is not possible to determine which of the two

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

scenarios is most likely. In the case of marsh deer, the only records outside the area of potential distribution are those of the depression of the Salado (La Guillerma sites 1 and 5; González, 2005). This could be because the species occupied this sector in the recent past which is near the potential area of occurrence under current climatic conditions, or because it was carried by humans as a result of logistical or residential mobility. Based on the distribution model generated, and, unlike the cases discussed above, it is difficult to explain by environmental variation the spatial overlap of the guanaco and marsh deer that is observed in some archaeological sites along the de La Plata and Paraná Rivers. That is why the guanaco and marsh deer are allopatric species that have different climatic requirements (see Figure 2 and Table 2). The climatic parameters of both species are incompatible for coexisting in the same area, even occupying different habitats (as in the case of the pampas deer and marsh deer). Even assuming a displacement of the climatic conditions suitable for guanaco toward the east, reaching the banks of the Rio de la Plata and the Parana Delta, this would have necessarily caused the retraction of the marsh deer to more suitable climatic conditions (warmer and wetter) for this species. This then would have prevented the overlapping of the distribution area of both species. Therefore, the archaeological association of guanaco (or other South American camelid) and marsh deer remains could only be explained by appealing to human intervention. The guanaco bones that appear on the sites in the Paraná-Plata rivers are scarce and always represent an extremely low proportion of the faunal assemblages. As it is shown in Table 3, they represent 0.04% of the total taxonomically determined remains of these sites, and 3.9% if only the ungulate remains are considered (see Politis and Leon, in press). The low frequency of guanaco bones and their anatomical assignation to very specific skeletal parts, such as metapodium and phalanges (Salemme, 1987; Miotti and Tonni, 1991; Escudero and Feulliet, 2002; Loponte et al., 2004; Paleo and Pérez Meroni, 2004) have been interpreted mainly as a product of hide transport from other areas (see discussion in Politis and Pedrotta, 2006). However, other carrying mechanisms without the hide (e.g. specific bones for tools) might have been the cause. It is important to mention that, until recent times in Patagonia, during the indigenous practices of guanaco skinning, it was common practice to keep the metapodium and basipodium elements attached to the skin to be able to tie it to the supporting poles of the tents (“toldos”) (Aguerre, 2000; Politis, 2005).

1413

Another explication, at least for some of the “anomalous” records of camelid on the banks of the Lower Paraná-Plata rivers, is that they do not correspond to guanaco but to domestic species of andean origin, probably llamas (Lama glama), whose presence has been recorded in historical times in the Paraná River. Indeed, the chronicles of the expedition of the Venetian explorer Sebastian Caboto, between 1527 and 1530, are clear at indicating that the ovejas de la tierra (sheeps of the earth) or ovejas del Perú (sheeps of Peru) on the banks of the Paraná River, or in the neighboring plains (Ramírez 1528 in Madero, 1902; Caboto 1530 in Medina, 1908; Fernández de Oviedo y Valdés, 1851e1855 [1546e1547]), were in fact domestic camelids (Medina, 1908: 182; Zapata Gollán, 1944: 43e47; Areces et al., 1999; Politis and Pedrotta, 2006). These animals could have been brought from areas where there were patoralist groups of camelids such as the “Sierras Centrales” (mountains and surroundings plains of Cordoba), the Meridional Andes, and the interfluvial plains of the Salado and Dulce rivers in the east of Santiago del Estero province. Other elements from these areas, such as metal, stones and animal symbolic references also indicate an active exchange circuit in late pre-hispanic times between these areas and the lower and middle Paraná River (Rodríguez and Ceruti, 1999; Bonomo et al., in press). In fact, it was from the Sancti Spiritus Fort (32 260 310 S and 60 480 200 W), on the western bank of the Paraná River, that two or three llamas were sent to the king of Spain in July 1528 on the ship Santa Maria del Espinal (Politis and Pedrotta, 2006). An additional fact which could support the presence of domestic camelids in the Plata Basin is that the isotopic signature of a guanaco bone from a site in this region (San Clemente IV) is different to that obtained from other samples of the Pampas (Barberena et al., 2009). The latter presented d13C col. between 18.5 and 25.3 (average 20.7, n ¼ 25), whereas the sample from San Clemente IV site presented 16.4 (Barberena et al., 2009). This value is also different from those obtained for the pampas deer (d13C col ¼ 18.8) and marsh deer (d13C col ¼ 20.3) from the same area and similar chronology (Acosta and Loponte, 2002/ 2004). The high value of d13C col for the San Clemente camelid suggests a markedly different diet for the rest of guanacos in the Pampas Holocene, as it would be expected in the case of a domestic camelid from another region. However, this potential evidence should be taken with caution until more isotopic studies are performed for this area.

Table 3 (Taken and modified from Politis and Leon, in press). Taxonomic abundance (NISP) in Lower Parana and Río de La Plata sites. Río de la Plata sites Taxa Myocastor coypus Cavia aperea Ozotoceros bezoarticus Blastocerus dichotomus Cervidae Lama guanicoe Camelidae Rhea americana Pogonias cromis Siluriformes Characiformes Peces Mammalia Others Total

Lower Delta of the Paraná River sites

S2

S3

S4

S6

L

7 6 23 25 0 6 0 0 28 8 0 0 6 45 154

X X X X 0 X 0 0 X X 0 0 0 X e

X 0 X X 0 0 0 X 0 0 0 0 0 X e

25 22 293 0 0 8 0 0 259 X 0 525 1036 85 2253

X X X X 0 X 0 X X X 0 590 0 X 590

LM X X X X 0 0 0 0 X X 0 X 0 X e

LN

LH

A

G

AG

AS

LV

TC

LB 1

LB 2

BG

LG

RL

Total

79 441 14 4 9 14 0 38 116 443 15 3017 893 1117 6200

X X X X 0 X 0 0 0 X X X 0 X e

501 232 139 191 8 2 0 3 0 2595 53 5747 1476 149 11096

891 19 153 157 16 1 0 1 0 984 21 783 374 52 3452

143 233 32 9 0 13 0 1 0 0 0 1120 246 22 1819

517 231 15 8 0 3 0 0 0 0 0 4658 230 7 5669

50 1141 7 2 0 1 0 1 0 0 0 573 12 0 1787

55 11 2 22 0 X 0 0 0 0 0 591 246 3 930

163 4 16 6 0 0 0 0 0 0 0 1690 264 0 2143

1308 2136 73 75 6 1 0 0 0 6431 942 18790 388 91 30241

4 0 0 0 9 0 1 0 0 31 0 241 204 47 537

1103 193 0 0 22 0 0 0 0 154 0 77 896 268 2713

418 11 10 33 29 2 0 1 0 X 0 0 0 72 576

5264 4680 777 532 99 51 1 45 403 10646 1031 38402 6271 1958 70160

References: S2 ¼ San Clemente II; S3 ¼ San Clemente III; S4 ¼ San Clemente IV; S6 ¼ San Clemente VI; L ¼ Las Marías; LM ¼ La Maza I; LN ¼ La Norma; LH ¼ La Higuera; A ¼ Anahí; G ¼ Garín; AG ¼ Arroyo Guazunambí; AS ¼ Arroyo Sarandi; LV ¼ Las Vizcacheras; TC ¼ Túmulo de Campana; LB1 ¼ La Bellaca 1; LB2 ¼ La Bellaca 2; BG ¼ Bajada Guereño; LG ¼ Laguna Grande; RL ¼ Río Luján; X ¼ not cuatified.

1414

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

5. Conclusions The use of archaelogical faunal associations as proxy environmental data, combined with distribution maps generated with MAxEnt allowed us to infer the scope of some climate changes in the region during the Late Holocene and to discuss their implications in the interpretation of hunter-gatherers behavior. We suggest that in those areas where guanaco and pampas deer are associated in the archaeological record (mainly Tandilia, Interserrana and Pampa Ondulada areas of the Pampean), climate parameters were different from today and were similar to those that characterize the overlap area generated by the potential distribution model. This implies a predominance of more arid and cooler conditions than at present, similar to those currently prevailing in the north of Patagonia. These conditions may have remained for much of the Late Holocene, interrupted by humid/warmer shorter events, probably until the Medieval Warm Period. Indigenous populations living under these environmental conditions may have had available preys, such as guanaco and pampas deer in fairly good densities. Subsistence strategies probably revolved around these two main species, as zooarchaeological studies show that they were a central component in the diet of indigenous people. When the climate changed toward more humid/warm conditions, similar to current times, guanaco reduced its geographical range and occupied the area depicted in Fig. 2 (generated by the MaxEnt algorithm). The indigenous population then lost one of the most important prey: the guanaco, while pampas deer was still present in comparative high densities in most areas of the Pampean region until historical times (especially in the south and in the east, see Fig. 2). At some point during the Late Holocene, marsh deer became also an important component of the hunter-gatherers’ diet, in particular for the indigenous groups of the floodplain of the middle and lower Paraná and Uruguay rivers. It is probably then that the climatic changes that caused the shift in the geographic range of guanaco westward may have favored the southward expansion of the marsh deer’s range following the two main rivers until it reached the Paraná Delta and the banks of the Rio de La Plata. The map generated by the model shows high probability of occurrence of marsh deer in the Delta del Parana, an area where this species was one of the main preys (see Table 3) between ca. 1000 and 500 yrs BP. Unfortunately, there is not enough detailed data (especially in terms of chronology) to contrast this hypothesis and, therefore, it remains speculative. The presence of isolated guanaco bones outside the potential range could be explained by two alternative hypotheses. The first one is that the bones were transported by humans, as a result of extraregional trade and/or extended circuits of mobility. The second one is that bones do not correspond to guanaco but to a domestic form of camelids, and that their presence on the banks of the Paraná-Plata rivers at the end of Late Holocene is also a consequence of human action. In any case, the written documents from the XVI Century (see discussion in Politis and Pedrotta, 2006) do not support the hypothesis that guanaco inhabited the east of the Pampean region (e.g. the Pampa Ondulada) in historical times neither that this species was the main hunting prey of the Querandí Indians who inhabited this region as it has been proposed (Loponte et al., 2004). While there has been no definitive answer to this problem, the generation of models by the systematic use of faunal associations as a proxy for environmental data proves to be a very useful tool. By using these modeling techniques, we could learn more about changes in climatic conditions, and the movement of people, goods, and animals during the late Holocene of Central Argentina. Acknowledgments We thank Catriel Leon, Mariano Bonomo and Matías Medina for their usefull coments. We also would like to acknowledge Gustavo

Martínez, Diana Mazzanti, Diego Rivero, Sebastián Pastor, Adolfo Gil, and Clara Scabuzzo for providing helpful data on archaeological records of species considered in this paper. CONICET and ANPCyT provided financial support of research.

References Acosta, A., 2005. Zooarqueología de cazadores-recolectores del extremo nororiental de la provincia de Buenos Aires (humedal del río Paraná inferior, Región Pampeana, Argentina). Universidad Nacional de La Plata, La Plata, Ph.D thesis. Acosta, A., Loponte, D., 2002/2004. Presas y predadores: avances en la composición isotópica de la dieta de los grupos prehispánicos del sector centro-oriental de la Región Pampeana. Arqueología 12, 105e134. Aguerre, A.M., 2000. Las vidas de Pati en la toldería tehuelche del río Pinturas y el después. Universidad de Buenos Aires, Buenos Aires. Aldazabal, V., 2002. La ocupación humana en el sector centro oriental de la Pampa Deprimida, provincia de Buenos Aires. Facultad de Filosofía y Letras, Universidad de Buenos Aires, Buenos Aires, Ph.D. thesis. Aldazabal, V., Cáceres, L., 1998. Primeras observaciones en el sitio arqueológico La Colorada, Pdo. de Rauch. In: Actas del XII Congreso Nacional de Arqueología Argentina, vol. 3, pp. 95e102. Areces, N., de Bernardi, C., Tarragó, G., 1999. Blancos e indios en el corredor fluvial paranaense. In: Areces, N. (Ed.), Poder y sociedad. Santa Fe la Vieja, 1573e1660, N. Prohistoria - Manuel Suárez Editor. Escuela de Historia/UNR, Rosario, pp. 13e38. Arrizurieta, M.P., Mucciolo, L., Musali, J., 2010. Análisis arqueofaunístico preliminar del sitio Cerro Lutz. In: Berón, M., Luna, L., Bonomo, M., Montalvo, C., Aranda, C., Carrera Aizpitarte, M. (Eds.), Mamül Mapú: pasado y presente desde la arqueología pampeana. Editorial Libros del Espinillo, Ayacucho , pp. 261e276. Austral, A., 1994. Arqueología en el sudoeste de la provincia de Buenos Aires. In: Actas del XI Congreso Nacional de Arqueología Argentina, vol. II. Museo de Historia Natural de San Rafael, San Rafael, pp. 201e203. Baigún, R.J., Bolkovic, M.L., Aued, M.B., Li Puma, M.C., Scandalo, R.P., 2008. Manejo de fauna silvestre en la Argentina. Primer censo nacional de camélidos silvestres al norte del Río Colorado. Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires. Barberena, R., Zangrando, A.F., Gil, A., Martínez, G.A., Politis, G., Borreno, L.A., Neme, G., 2009. Guanaco (Lama guanicoe) isotopic ecology in southern South America: spatial and temporal tendencies, and archaeological implications. J. Archaeol. Sci. 36, 2666e2675. Barlow, R., 1932 [1540e1541]. A Brief Summe of Geographie. Hakluyt Society, London. Bayón, C., Flegenheimer, N., Zárate, M., Deschamps, C., 2004a. Y vendrán los arqueólogos en busca de un hueso".sitio El Guanaco, partido de San Cayetano. In: Martínez, G., Gutiérrez, M., Curtoni, R., Berón, M., Madrid, P. (Eds.), Aproximaciones arqueológicas pampeanas. Teorías, métodos y casos de aplicación contemporáneas. Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, pp. 247e258. Bayón, C., Martínez, G., Armentano, G., Scabuzzo, C., 2004b. Arqueología del Valle inferior del Río Colorado. Sitio La Primavera. Intersecc. Antropol. 5, 39e55. Berón, M.A., 2004. Dinámica poblacional y estrategias de subsistencia de poblaciones prehispánicas de la cuenca Atuel-Salado-Chadileuvú-Curacó, Provincia de La Pampa. Universidad de Buenos Aires, Ph.D. Thesis. Bettinger, R., 1991. Hunter-Gatherers: Archaeological and Evolutionary Theory. Plenum Press, New York. Binford, L., 1980. Willow smoke and dogs tails: hunter-gatherer settlements systems and archaeological site formation. Am. Antiq. 45 (1), 4e20. Bonomo, M., 2005. Costeando las llanuras. Arqueología del litoral marítimo pampeano. Sociedad Argentina de Antropología, Buenos Aires. Bonomo, M., Capdepont, I., Matarrese, A., 2009. Alcances en el estudio de colecciones. Los materiales arqueológicos del Delta del río Paraná depositados en el Museo de La Plata. Rev. Arq. Sudam. 5 (1), 68e101. Bonomo, M., Politis, G., Gianotti, C. Montículos, jerarquía social y horticultura en las sociedades indígenas del delta del río Paraná (Argentina). Lat. Am. Antiq., in press. Brunazzo, G., 1997. Ocupación prehispánica en el litoral platense meridional: el sitio La Higuera (partido de Berisso, provincia de Buenos Aires). In: Resúmenes de las III Jornadas de Investigación Científica de la Facultad de Ciencias Naturales y Museo, La Plata, p. 100. Brunazzo, G., 1999. Investigaciones arqueológicas en el sitio La Norma (Partido de Berisso, Provincia de Buenos Aires, Argentina). In: Actas del XII Congreso Nacional de Arqueología Argentina, vol. 3. Universidad Nacional de La Plata, La Plata, pp. 101e106. Cabrera, A., Yepes, J., 1960. Mamíferos Sud-Americanos, vol. 1e2. Ediar S.A. Editores, Buenos Aires. Casamiquela, R., 1975. Nota sobre la dispersión, en época histórica, de algunos mamíferos en el ámbito pampeano-patagónico. Relac. Soc. Argent. Antropol. 9, 111e117. Cione, A., Lorandi, A.M., Tonni, E.P., 1979. Patrón de subsistencia y adaptación ecológica en El Veinte (Santiago del Estero). Relac. Soc. Argent. Antropol. 13, 103e116. Cornero, S., Solomita, F., Curetti, P., 2007. Componente arqueofaunístico del sitio La Lechuza (provincia de Santa Fe). In: Actas del XIV Congreso Nacional de Arqueología Argentina, vol. 1. Imprenta Tucumán, Mar del Plata, pp. 167e171.

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416 Crivelli Montero, E., Eugenio, E., Pardiñas, U., Silveira, M., 1997. Archaeological investigation in the plains of the province of Buenos Aires, Llanura Interserrana bonaerense. Quat. South Am. Antart. Penins. 10, 167e209. Curtoni, R., 2007. Arqueología y paisaje en el área centro-este de la provincia de La Pampa. Universidad Nacional de La Plata, La Plata, Ph.D thesis. Durán, V.A., 2000. Poblaciones indígenas de Malarguë: su arqueología e historia. CEIDER, Mendoza. Earle, T., 1980. A model of subsistence change. In: Earle, T., Christenson, A. (Eds.), Modeling Change in Prehistoric Subsistence Economies. Academic Press, New York, pp. 1e29. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography 29 (2), 129e151. Elith, J., Phillips, S.P., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43e57. Escudero, S., Feulliet, M.R., 2002. El registro arqueofaunístico del sitio Bajada Guereño (Prov. de Santa Fe). Implicancias en el aprovechamiento de vertebrados (Paper presented at XXII Encuentro de Geohistoria Regional del Nordeste. Resistencia). Eugenio, E., Aldazabal, V., 1987e1988. El sitio arqueológico Laguna Sotelo, partido de Mar Chiquita, provincia de Buenos Aires. Paleoetnologica 4, 79e86. Eugenio, E., Aldazabal, V., 2004. Los cazadores-recolectores del litoral marítimo del área de bahía San Blas, provincia de Buenos Aires. In: Civalero, M.T., Fernández, P., Guráieb, G. (Eds.), Contra viento y marea. Arqueología de Patagonia. INAPL-SAA, Buenos Aires, pp. 687e700. Eugenio, E., Aldazabal, V., Silveira, M., 2007. Yacimiento arqueológico La Raquel, sitio 2-Partido de Gral. Lamadrid, Buenos Aires. Actas del XIV Congreso Nacional de Arqueología Argentina vol. 1 Imprenta Tucumán, Mar del Plata 239e250. Fernández de Oviedo y Valdés, G., 1851e1855 [1546e1547]. Historia general y natural de las Indias, Islas y Tierra Firme del Mar Océano, Libro XXIII Guarania, Asunción del Paraguay. Franklin, J., 2009. Mapping Species Distributions. Spatial Inference and Prediction. Cambridge University Press, Cambridge. Franklin, W.L., Bas, F., Bonacic, C., Cunazza, C., Soto, N., 1997. Striving to manage Patagonia guanaco for sustained use in the grazing agroecosystems of Southern Chile. Wildl. Soc. Bull. 25, 65e73. González, A.R., 1960. La estratigrafía de la gruta de Intihuasi (Prov. de San Luis, R.A.) y sus relaciones con otros sitios precerámicos de Sudamérica. Rev. Instit. Antropol. 1, 5e296. González, M.I., 2005. Arqueología de alfareros, cazadores y pescadores pampeanos. Sociedad Argentina de Antropología, Buenos Aires. González, B.A., Palma, R.E., Zapata, B., Marín, J.C., 2006. Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mamm. Rev. 36 (2), 157e178. Gradín, C., 1984. Investigaciones arqueológicas en Casa de Piedra. Dirección General de Cultura de La Pampa, Santa Rosa. Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993e1009. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965e1978. Iriondo, M., 1999. Climate changes in South American plains: records of a continente-scale oscillation. Quat. Int. 57/58, 93e112. Jackson, J., 1987. Ozotoceros bezoarticus. Mamm. Species 259, 1e5. Kaufmann, C.A., Álvarez, M.C., 2007. La arqueofauna del sitio Calera (Sierras Bayas, región pampeana): un abordaje a los aspectos rituales del descarte de huesos de animales. In: Bayón, C., Pupio, C.A., González, M.I., Flegenheimer, N., Frére, M. (Eds.), Arqueología en las Pampas I. Sociedad Argentina de Antropología, Buenos Aires, pp. 745e764. Kelly, R., 1995. The Foraging Spectrum. Smithsonian Institution Press, Washington DC. Loponte, D., 2007. La economía prehistórica del norte bonaerense. Arqueología del humedal del Paraná inferior, Bajíos Ribereños meridionales, Universidad Nacional de La Plata, La Plata, Ph.D thesis. Loponte, D., 2008. Arqueología del Humedal del Paraná Inferior (Bajíos Ribereños Meridionales). Asociación Amigos del Instituto Nacional de Antropología y Pensamiento Latinoamericano, Buenos Aires. Loponte, D., Acosta, A., Musali, J., 2004. Complejidad social: cazadores-recolectores y horticultores en la región pampeana. In: Martínez, G., Gutiérrez, M., Curtoni, R., Berón, M., Madrid, P. (Eds.), Aproximaciones contemporáneas a la arqueología pampeana. Perspectivas teóricas, metodológicas, analíticas y casos de estudio. UNCPBA, Olavarría, pp. 41e59. Loponte, D., Acosta, A., Tchilinguirián, P., 2010. Avances en la arqueología de la Pampa Ondulada: sitios Hunter y Meguay. In: Bárcena, J.R., Chiavazza, H. (Eds.), XVII Congreso Nacional del Arqueología Argentina, vol. 5. Universidad Nacional de Cuyo, Mendoza, pp. 1811e1816. Madero, E., 1902. Historia del Puerto de Buenos Aires. La Nación, Buenos Aires. Madrid, P., Barrientos, G., 2000. La estructura del registro arqueológico del sitio Laguna Tres Reyes 1 (Provincia de Buenos Aires): nuevos datos para la interpretación del poblamiento humano del Sudeste de la Región Pampeana a inicios del Holoceno tardío. Relac. Soc. Argent. Antropol. 25, 179e206.

1415

Madrid, P., Politis, G., 1991. Estudios paleoambientales en la región pampeana: un enfoque multidisciplinario del sitio La Toma. In: Actas del XI Congreso Nacional de Arqueología Chilena, vol. I. Sociedad Chilena de Arqueología, Santiago de Chile, pp. 131e152. Madrid, P., Politis, G., March, R., Bonomo, M., 2002. Arqueología microrregional en el Sudeste de la Región Pampeana: el Curso del río Quequén Salado. Relac. Soc. Argent. Antropol. 27, 327e355. Manel, S., Williams, H.C., Ormerod, S.J., 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38, 921e931. Martínez, G., 1999. Tecnología, subsistencia y asentamiento en el curso medio del Río Quequén Grande: Un enfoque arqueológico. Universidad Nacional de La Plata, La Plata, Ph.D thesis. Martínez, G., Figuerero Torres, M.J., 2000. Sitio arqueológico La Petrona (Partido de Villarino, provincia de Buenos Aires): Análisis de las modalidades de entierro en el área sur pampeana. Relac. Soc. Argent. Antropol. 25, 227e248. Martínez, G., Gutierrez, M., 2004. Tendencias en la explotación humana de la fauna durante el Pleistoceno final-Holoceno en la Región Pampeana (Argentina). BAR Int. Ser. 1298, 81e98. Martínez, G., Armentano, G., Stoessel, L., Martínez, G.A., Alcaráz, A.P., González, N., Santos, F., 2010. Resultados preliminares de la localidad arqueológica San Antonio (curso inferior del río Colorado, pdo. de Villarino, pcia. de Buenos Aires). In: Berón, M., Luna, L., Bonomo, M., Montalvo, C., Aranda, C., Carrera Aizpitarte, M. (Eds.), Mamül Mapú: pasado y presente desde la arqueología pampeana. Editorial Libros del Espinillo, Ayacucho, pp. 215e228. Martínez, G., Messineo, P., Piñeyro, M.E., Kaufmann, C., Barros, P., 2001. Análisis preliminar de la estructura faunística del sitio Paso Otero 3 (Pdo. de Necochea, Pcia. de Buenos Aires, Argentina). In: Arqueología uruguaya hacia el fin del milenio, vol. I. Asociación Uruguaya de Arqueología y Fundación Fontaina Minelli, Montevideo, pp. 505e520. Massigoge, A., 2007. Procesos de formación del registro arqueológico en el sitio Cortaderas (partido de San Cayetano, provincia de Buenos Aires). Intersecc. Antropol. 8, 197e214. Mazzanti, D., Colobig, M., Zucol, F.A., Martínez, G., Porto López, J., Brea, M., Passeggi, E., Soria, J.L., Quintana, C., Puente, V., 2010. Investigaciones arqueológicas en el Sitio 1 de la Localidad Lobería I. In: Berón, M., Luna, L., Bonomo, M., Montalvo, C., Aranda, C., Carrera Aizpitarte, M. (Eds.), Mamül Mapú: pasado y presente desde la arqueología pampeana. Editorial Libros del Espinillo, Ayacucho, pp. 99e114. Medina, J.T., 1908. El Veneciano Sebastián Caboto al Servicio de España. Universitaria, Santiago de Chile. Medina, M., 2007. Zooarqueología de los Sitios Agroalfareros C.Pun.39 y LCh2 (Punilla, Córdoba). In: Olmedo, E., Ribero, F. (Eds.), Publicación de las V y VI Jornadas de Investigadores en Arqueología y Etnohistoria del Centro-Oeste del País. Universidad Nacional de Río Cuarto, Río Cuarto, pp. 183e194. Medina, M., 2009. Tendencias en el consumo prehispánico tardío de recursos faunísticos: zooarqueología de C.Pun.39 y Puesto La Esquina 1 (Córdoba, Argentina). Archaeofauna Int. J. Archaeozool. 18, 119e136. Menghin, O., González, A., 1954. Excavaciones arqueológicas en el yacimiento de Ongamira, Córdoba (Rep. Argentina). Notas del Museo de La Plata 67, 213e267. Mengoni Goñalons, G.L., 1999. Cazadores de guanacos de la estepa patagónica. Sociedad Argentina de Antropología, Buenos Aires. Merino, M.L., 2003. Dieta y uso de hábitat del venado de las pampas, Ozotoceros bezoarticus celer, Cabrera 1943 (Mammalia e Cervidae) en la zona costera de Bahía Samborombón, Buenos Aires, Argentina. Implicancias para su conservación. Facultad Universidad Nacional de La Plata, La Plata, Ph.D thesis. Miotti, L., 1998. Zooarqueología de la meseta central y costa de Santa Cruz. Un enfoque de las estrategias adaptativas aborígenes y los paleoambientes. Museo Municipal de Historia Natural, San Rafael. Miotti, L., Tonni, E., 1991. Análisis faunístico preliminar del sitio El Ancla, Punta indio, Provincia de Buenos Aires. Bol. del Centro 2, 137e150. Miotti, L., Salemme, M., 1999. Biodiversity, taxonomic richness and specialistgeneralist during Late Pleistocene/Early Holocene times in Pampa and Patagonia (Argentina, Southern South America). Quat. Int. 53e54, 53e68. Morueta-Holme, N., Fløjgaard, C., Svenning, J.-C., 2010. Climate change risks and conservation implications for a threatened small-range mammal species. PLoS ONE 5 (4), e10360. doi:10.1371/journal.pone.0010360. Mucciolo, L., 2007. Explotación y procesamiento de ungulados en el sitio Arroyo Fredes. In: Bayón, C., Pupio, C.A., González, M.I., Flegenheimer, N., Frére, M. (Eds.), Arqueología en las Pampas I. Ediciones de la Sociedad Argentina de Antropología, Buenos Aires, pp. 591e611. Neme, G., Gil, A., 2008. Faunal exploitation and agricultural transitions in the South American agricultural limit. Int. J. Osteoarchaeol 18 (3), 293e306. New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1e25. Oliva, F., Algrain, M., Avila, J.D., Gallego, M., 2004. Arqueología de la Laguna Salalé (Provincia de Buenos Aires): una aproximación a partir del análisis de los materiales líticos. In: Gradín, C., Oliva, F. (Eds.), La región pampeana, su pasado arqueológico. Editorial Laborde, Rosario, pp. 337e387. Oliva, F., Gil, A., Roa, M., 1990. Recientes investigaciones en el sitio San Martín 1 (BU/ PU/5), partido de Puán, provincia de Buenos Aires. Shincal 3, 135e139. Oliva, F., L’Heureux, L., De Angelis, H., Parmigiani, V., Reyes, F., 2007. Poblaciones indígenas de momentos postcontacto en el borde occidental de la Pampa Húmeda: Gascón 1, un sitio singular de entierros humanos. In: Actas del XIV Congreso Nacional de Arqueología Argentina. Universidad Nacional de Rosario, Rosario, pp. 265e274.

1416

G.G. Politis et al. / Journal of Archaeological Science 38 (2011) 1405e1416

Paleo, M.C., Páez, M., Pérez Meroni, M., 2002. Condiciones ambientales y ocupación humana durante el Holoceno Tardío en el Litoral fluvial bonaerense. In: Mazzanti, D., Berón, M.A., Oliva, F.W. (Eds.), Del Mar a los Salitrales, Diez mil años de Historia Pampeana en el Umbral del Tercer Milenio. Universidad Nacional de Mar del Plata, Mar del Plata, pp. 365e376. Paleo, M.C., Pérez Meroni, M., 2004. Problemáticas vinculadas a las estrategias de subsistencia de la Localidad Arqueológica Barrio San Clemente. In: Gradín, C., Oliva, F. (Eds.), La Región Pampeana, su pasado arqueológico. Laborde Editor, Rosario, pp. 311e320. Paleo, M.C., Pérez Meroni, M., 2007. Primeros resultados del sitio Las Marías, partido de Magdalena, provincia de Buenos Aires. In: Actas del XIV Congreso Nacional de Arqueología Argentina, vol. 1. Imprenta Tucumán, Mar del Plata, pp. 275e283. Pastor, S., 2007. Arqueología del Valle de Salsacate y pampas de altura adyacentes (Sierras Centrales de Argentina). Una aproximación a los procesos sociales del período prehispánico tardío (900e1573 d.C.). Universidad Nacional de La Plata, La Plata, Ph.D thesis. Pastor, S., Berberián, E., 2007. Arqueología del sector central de las Sierras de Córdoba (Argentina). Hacia una definición de los procesos sociales del período prehispánico tardío (900e1573 d.C). Intersecc. Antropol. 8, 31e49. Pearce, J., Ferrier, S., 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225e245. Pérez Jimeno, L., 2007. Investigaciones arqueológicas en el sector septentrional de la llanura aluvial del Paraná, margen santafesina. La variabilidad del registro arqueológico. Universidad Nacional de La Plata, La Plata, Ph.D thesis. Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximun entropy modeling of species geographic distributions. Ecol. Model. 190, 231e259. Pinder, L., Grosse, A., 1991. Blastocerus dichotomus. Mamm. Species 380, 1e4. Piovezan, U., Tiepolo, L.M., Tomas, W.M., Barbanti Duarte, J.M., Varela, D., Marinho Filho, J.S., 2010. Marsh deer Blastocerus dichotomus (Illiger 1815). In: Barbanti Duarte, M., González, S. (Eds.), Neotropical Cervidology, Biology and Medicine of Latin American Deer. FUNEP/UICN, Jaboticabal, pp. 66e76. Politis, G., 1984. Arqueología del Área Interserrana Bonaerense. Universidad Nacional de La Plata, La Plata, Ph.D thesis. Politis, G., 2005. Prólogo. In: Arqueología de alfareros, cazadores y pescadores pampeanos, María Isabel González de Bonaveri (author). pp. 11e20. Sociedad Argentina de Antropología. Buenos Aires. Politis, G., Martínez, G., Bonomo, M., 2004. Revisión del sitio Zanjón Seco 2 (Área Interserrana Bonaerense) en base a nuevos datos y análisis. In: Gradín, C., Oliva, F. (Eds.), La región pampeana, su pasado arqueológico. Editorial Laborde, Rosario, pp. 73e88. Politis, G., Pedrotta, V., 2006. Recursos faunísticos y estrategias de subsistencia en el este de la región pampeana durante el Holoceno tardío: el caso del guanaco (Lama guanicoe). Relac. Soc. Argent. Antropol. 31, 301e336. Politis, G., Leon, C., Patrones adaptativos de los cazadores, recolectores, pescadores de la margen occidental del Paraná inferior. In: Cocco, G., Feuillet Terzaghi, M.R. (Ed.), Arqueología de cazadores recolectores en la cuenca del Plata. Centro de Estudios Hispanoamericanos, Santa Fe, in press. Politis, G., Salemme, M., 1991. Pre-Hispanic mammal exploitation and hunting strategies in the Eastern Pampa subregión of Argentina. In: Davis, L.B., Reeves, B.O.K. (Eds.), Hunter of the Recent Past, One Word Archaeology, vol. 15. Unwin Hyman, London, pp. 352e372. Prates, L., 2008. Los indígenas del río Negro. Un enfoque arqueológico. Sociedad Argentina de Antropología, Buenos Aires.

Prates, L., Martínez, G., Scabuzzo, C., 2006. Evidencias arqueológicas del Holoceno tardío final en el curso medio del río Colorado (Provincia de Río Negro): sitio Don Aldo 1. Cazadores-recolectores del Cono Sur 1, 163e177. Puig, S., Videla, F., 1995. Comportamiento y organización social del guanaco. In: Puig, S. (Ed.), Técnicas para el manejo del guanaco. UICN, Mendoza, pp. 97e118. Pujalte, J.C., Reca, A.R., 1985. Vicuñas y guanacos. Distribución y Ambientes. In: Cajal, J.L., Amaya, I. (Eds.), Estado actual de las investigaciones sobre camélidos en la República Argentina. Secretaría de Ciencia y Técnica. Programa Nacional de Recursos Naturales Renovables, Buenos Aires, pp. 25e49. Pupio, A., 1996. Resultados preliminares del sitio cantera-taller La Liebre. In: Actas de las Jornadas Chivilcoyanas en Ciencias Sociales y Naturales, Chivilcoy, pp. 191e194. Quattrochio, M.E., Borromei, M., 1998. Paleovegetational and paleoclimatic changes during the late Quaternary in Southwestern Buenos Aires and Southern Tierra del Fuego (Argentina). Palynology 22, 67e82. Quintana, C., Valverde, F., Albino, A., 2003. Registro de fauna del sitio Cueva El Abra, Tandilia Oriental, Provincia de Buenos Aires. In: Actas del XIII Congreso Nacional de Arqueología Argentina, vol. 3. Editorial Brujas, Córdoba, pp. 317e324. Raedeke K., 1979. Population dynamics and socioecology of the guanaco (Lama guanicoe) of Magallanes, Chile. College of Forest, Resources, University of Washington, Ph.D dissertation. Ringuelet, R., 1961. Rasgos fundamentales de la Zoogeografía de la Argentina. Physis 22 (63), 151e170. Rodríguez, J., Ceruti, C., 1999. Las Tierras Bajas del Nordeste y del Litoral Mesopotámico Nueva Historia de la Nación Argentina, Tomo 1. Academia Nacional de la Historia, Buenos Aires, pp.109e133. Salemme, M., 1987. Paleoetnozoología del sector bonaerense de la región pampeana, con especial atención a los mamíferos. Universidad Nacional de La Plata, La Plata, Ph.D thesis. Salemme, M., Tonni, E., 1983. Paleoetnozoología de un sitio arqueológico en la Pampa Ondulada: sitio Río Luján (partido de Campana, provincia de Buenos Aires). Relac. Soc. Argent. Antropol. 15, 77e90. Santiago, F., 2004. Los roedores en el menu de los habitantes de Cerro Aguará (provincia de Santa Fe). Su análisis arqueofaunístico. Intersecc. Antropol. 5, 3e18. Stoessel, L., 2007. Análisis arqueofaunísticos de los sitios Loma Ruiz 1 y El Tigre (partidos de Villarino y Patagones, provincia de Buenos Aires): aportes para el conocimiento de la subsistencia en el valle inferior del río Colorado durante el Holoceno tardío. Intersecc. Antropol. 8, 235e251. Tonni, E., 2009. Los mamíferos del Cuaternario de la región pampeana de Buenos Aires, Argentina. In: Ribeiro, A.M., Girardi Bauermann, S., Saldanha Scherer, C. (Eds.), Quaternario do Rio Grande do Sul. Integrando Conhecimentos. Sociedade Brasileira de Paleontologia, Rio Grande do Sul, pp. 207e216. Tonni, E., Cione, A., Figini, A., 1999. Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocene. Paleogeogr. Paleoclim. Paleoecol. 147, 257e281. Tonni, E., Cione, A., Figini, A., 2001. Chronology of Holocene pedogenetic events in the Pampean area of Argentina. Curr. Res. Pleist. 18, 124e127. Torres, L.M., 1922. Arqueología de la península de San Blas (provincia de Buenos Aires). Rev. Mus. La Plata 26 (2), 473e532. Zapata Gollán, A., 1944. La fauna y la flora de Santa Fe en los primeros cronistas. Ministerio de Gobierno e Instrucción Pública, Santa Fe.

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.