07Logical Agents

June 16, 2017 | Autor: Md Khamruddin | Categoría: Logic
Share Embed


Descripción

Introduction to Artificial Intelligence Logical Agents (Logic, Deduction, Knowledge Representation)

Bernhard Beckert

U NIVERSITÄT KOBLENZ -L ANDAU

Winter Term 2004/2005 B. Beckert: KI für IM – p.1

Outline Knowledge-based agents Wumpus world Logic in general—models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem proving – forward chaining – backward chaining – resolution

B. Beckert: KI für IM – p.2

Knowledge bases

Inference engine

domain−independent algorithms

Knowledge base

domain−specific content

Knowledge base Set of sentences in a formal language

B. Beckert: KI für IM – p.3

Knowledge bases

Inference engine

domain−independent algorithms

Knowledge base

domain−specific content

Knowledge base Set of sentences in a formal language Declarative approach to building an agent Tell it what it needs to know Then it can ask itself what to do—answers follow from the knowledge base

B. Beckert: KI für IM – p.3

Wumpus World PEAS description Performance measure gold +1000, death -1000 -1 per step, -10 for using the arrow Environment Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square Actuators Left turn, Right turn, Forward, Grab, Release, Shoot Sensors Breeze, Glitter, Smell

4

Breeze

Stench

Breeze

3

Stench

PIT

PIT

Breeze

Gold

2

Breeze

Stench

Breeze

1

PIT

Breeze

START

1

2

3

4

B. Beckert: KI für IM – p.4

Wumpus World Characterization

Observable Deterministic Episodic Static Discrete Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic Episodic Static Discrete Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic

Yes – outcome of action exactly specified

Episodic Static Discrete Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic

Yes – outcome of action exactly specified

Episodic

No – sequential at the level of actions

Static Discrete Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic

Yes – outcome of action exactly specified

Episodic

No – sequential at the level of actions

Static

Yes – wumpus and pits do not move

Discrete Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic

Yes – outcome of action exactly specified

Episodic

No – sequential at the level of actions

Static

Yes – wumpus and pits do not move

Discrete

Yes

Single agent

B. Beckert: KI für IM – p.5

Wumpus World Characterization

Observable

No – only local perception

Deterministic

Yes – outcome of action exactly specified

Episodic

No – sequential at the level of actions

Static

Yes – wumpus and pits do not move

Discrete

Yes

Single agent

Yes – wumpus is essentially a natural feature

B. Beckert: KI für IM – p.5

Exploring a Wumpus World

OK

OK

OK A

B. Beckert: KI für IM – p.6

Exploring a Wumpus World

B

OK A

OK

OK

A

B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P?

B

OK

P?

OK

OK

A

A

B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P?

B

OK

P?

OK S

OK

A

A

A

B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P B

P?

OK

P? OK

OK S

OK

A

A

A

W B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P B

P?

OK A

A

OK S A

P? OK

OK A

W B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P B

P?

OK

OK

P? OK

A

A

OK S A

OK A

OK

W B. Beckert: KI für IM – p.6

Exploring a Wumpus World

P B

P?

OK A

OK

P? BGS OK OK A A

OK S A

OK A

W B. Beckert: KI für IM – p.6

Problematic Situations

Problem

P?

B

OK

P? P?

OK B

OK

A

A

A

Breeze in (1,2) and (2,1) ⇒ no safe actions

P?

B. Beckert: KI für IM – p.7

Problematic Situations

Problem

P?

B

P? P?

OK A

Possible solution OK B

A

Breeze in (1,2) and (2,1) ⇒ no safe actions

OK A

P?

Assuming pits uniformly distributed: (2,2) has pit with probability 0.86 (1,3) and (3,1) have pit with probab. 0.31

B. Beckert: KI für IM – p.7

Problematic Situations Problem Smell in (1,1) ⇒ no safe actions

S A

B. Beckert: KI für IM – p.8

Problematic Situations Problem Smell in (1,1) ⇒ no safe actions Possible solution Strategy of coercion: S A

shoot straight ahead wumpus was there ⇒ dead ⇒ safe wumpus wasn’t there ⇒ safe

B. Beckert: KI für IM – p.8

Logic in General Logics Formal languages for representing information, such that conclusions can be drawn Syntax Defines the sentences in the language Semantics Defines the “meaning” of sentences; i.e., defines truth of a sentence in a world

B. Beckert: KI für IM – p.9

Example: Language of Arithmetic Syntax

x + 2 ≥ y is a sentence x2 + y >

is not a sentence

B. Beckert: KI für IM – p.10

Example: Language of Arithmetic Syntax

x + 2 ≥ y is a sentence x2 + y >

is not a sentence

Semantics

x + 2 ≥ y is true

iff

the number x + 2 is no less than the number y

x + 2 ≥ y is true in a world where x = 7, y = 1 x + 2 ≥ y is false in a world where x = 0, y = 6

B. Beckert: KI für IM – p.10

Entailment Definition Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true Notation

KB |= α

B. Beckert: KI für IM – p.11

Entailment Definition Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true Notation

KB |= α Note Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

B. Beckert: KI für IM – p.11

Entailment Example The KB containing “the shirt is green” and “the shirt is striped” entails “the shirt is green or the shirt is striped” Example

x + y = 4 entails 4 = x + y

B. Beckert: KI für IM – p.12

Models Intuition Models are formally structured worlds, with respect to which truth can be evaluated

B. Beckert: KI für IM – p.13

Models Intuition Models are formally structured worlds, with respect to which truth can be evaluated Definition

m is a model of a sentence α if α is true in m M(α) is the set of all models of α Note

KB |= α if and only if M(KB) ⊆ M(α)

B. Beckert: KI für IM – p.13

Models: Example

x

M(

x

) x

x

x x

x xx

x x x

x

x x

x

x x

KB = The shirt is green and striped

x

x x

x

x

x

M(KB) x

x

x

x

x

x

x

x

x x x

x

x

x x

xx

x x

x x x

x

α = The shirt is green

B. Beckert: KI für IM – p.14

Entailment in the Wumpus World

Situation after detecting nothing in [1,1], moving right, breeze in [2,1] Consider possible models for “?”s (considering only pits) 3 Boolean choices 8 possible models

? ? B A

A

? B. Beckert: KI für IM – p.15

Wumpus Models

PIT

2 2

Breeze

1

Breeze

1

PIT 1

1

2

2

3

3

2

PIT

PIT

2

2

2

PIT

Breeze

1 1

Breeze

1

Breeze

1

1

2

3

3 1

2

3

2

PIT

PIT

PIT

2

Breeze

1

Breeze

1

PIT

2

PIT

PIT 1

1

2

2

3

3 Breeze

1

1

2

PIT 3

B. Beckert: KI für IM – p.16

Wumpus Models

PIT

2 2

Breeze

1

Breeze

1

PIT 1

KB

1

2

2

3

3

2

PIT

PIT

2

2

2

1

2

3

3 1

2

3

2

PIT

PIT

PIT

2

Breeze

1

Breeze

1

PIT

2

PIT

PIT 1

1

2

2

3

3 Breeze

1

1

KB

PIT

Breeze

1 1

Breeze

1

Breeze

1

2

PIT 3

= wumpus-world rules + observations B. Beckert: KI für IM – p.16

Wumpus Models

KB |= α1

PIT

2 2

Breeze

1

Breeze

1

PIT 1

KB

1

2

2

3

3

1 2

PIT

PIT

2

2

2

PIT

Breeze

1 1

Breeze

1

Breeze

1

1

2

3

3 1

2

3

2

PIT

PIT

PIT

2

Breeze

1

Breeze

1

PIT

2

PIT

PIT 1

1

2

2

3

3 Breeze

1

1

KB

= wumpus-world rules + observations

α1

= “[1,2] is safe”

2

PIT 3

B. Beckert: KI für IM – p.16

Wumpus Models

PIT

2 2

Breeze

1

Breeze

1

PIT 1

KB

1

2

2

3

3

2

PIT

PIT

2

2

2

1

2

3

3 1

2

3

2

PIT

PIT

PIT

2

Breeze

1

Breeze

1

PIT

2

PIT

PIT 1

1

2

2

3

3 Breeze

1

1

KB

PIT

Breeze

1 1

Breeze

1

Breeze

1

2

PIT 3

= wumpus-world rules + observations B. Beckert: KI für IM – p.16

Wumpus Models

KB 6|= α2

PIT

2 2

Breeze

1

Breeze

1

1

KB

1

2

PIT

2

2

3

3

2

PIT

PIT

2

2

2

PIT

Breeze

1 1

Breeze

1

Breeze

1

1

2

3

3 1

2

3

2

PIT

PIT

PIT

2

Breeze

1

Breeze

1

PIT

2

PIT

PIT 1

1

2

2

3

3 Breeze

1

1

KB

= wumpus-world rules + observations

α2

= “[2,2] is safe”

2

PIT 3

B. Beckert: KI für IM – p.16

Inference Definition

KB `i α means sentence α can be derived from KB by inference procedure i

B. Beckert: KI für IM – p.17

Inference Definition

KB `i α means sentence α can be derived from KB by inference procedure i

Soundness (of i) Whenever KB `i α, it is also true that KB |= α Completeness (of i) Whenever KB |= α, it is also true that KB `i α B. Beckert: KI für IM – p.17

Preview First-order Logic We will define a logic (first-order logic) that is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the KB.

B. Beckert: KI für IM – p.18

Propositional Logic: Syntax Definition Propositional symbols

A, B, P1 , P2 , ShirtIsGreen,

etc.

are (atomic) sentences If S, S1 , S2 are sentences, then

¬S S1 ∧ S 2 S1 ∨ S 2 S1 ⇒ S 2 S1 ⇔ S 2

(negation) (con junction) (dis junction) (implication) (equivalence)

are sentences B. Beckert: KI für IM – p.19

Propositional logic: Semantics Propositional Models Each model specifies true/false for each proposition symbol

B. Beckert: KI für IM – p.20

Propositional logic: Semantics Propositional Models Each model specifies true/false for each proposition symbol Example

A true

B true

C false

(For three symbols, there are 8 possible models)

B. Beckert: KI für IM – p.20

Propositional logic: Semantics Propositional Models Each model specifies true/false for each proposition symbol Example

A true

B true

C false

(For three symbols, there are 8 possible models)

Rules for evaluating truth with respect to a model

¬S

is true iff

S is false

S1 ∧ S 2

is true iff

S1 is true

and

S2 is true

S1 ∨ S 2

is true iff

S1 is true

or

S2 is true

S1 ⇒ S 2

is true iff

S1 is false

or

S2 is true

S1 ⇔ S 2

is true iff

S1 and S2 have the same truth value

B. Beckert: KI für IM – p.20

Truth Tables for Connectives

A

B

¬A

A∧B

A∨B

A⇒B

A⇔B

false

false

true

false

false

true

true

false

true

true

false

true

true

false

true

false

false

false

true

false

false

true

true

false

true

true

true

true

B. Beckert: KI für IM – p.21

Wumpus World Sentences Propositional symbols

Pi, j means: “there is a pit in [i, j]” Bi, j means: “there is a breeze in [i, j]” ¬P1,1

¬B1,1

B2,1

B. Beckert: KI für IM – p.22

Wumpus World Sentences Propositional symbols

Pi, j means: “there is a pit in [i, j]” Bi, j means: “there is a breeze in [i, j]” ¬P1,1

¬B1,1

B2,1

Sentences “Pits cause breezes in adjacent squares”

P1,2 ⇒ (B1,1 ∧ B1,3 ∧ B2,2 ) “A square is breezy if and only if there is an adjacent pit”

B1,1 ⇔ (P1,2 ∨ P2,1 ) B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1 ) B. Beckert: KI für IM – p.22

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C

B ∨ ¬C

KB

α

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C

KB

α

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C true false true true true false true true

KB

α

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C true false true true true false true true

KB false false false true true false true true

α

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C true false true true true false true true

KB false false false true true false true true

α false false true true true true true true

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C true false true true true false true true

KB false false false true true false true true

α false false true true true true true true

B. Beckert: KI für IM – p.23

Propositional Inference: Enumeration Method Example

α = A∨B

KB = (A ∨C) ∧ (B ∨ ¬C)

Checking that KB |= α

A false false false false true true true true

B false false true true false false true true

C false true false true false true false true

A ∨C false true false true true true true true

B ∨ ¬C true false true true true false true true

KB false false false true true false true true

α false false true true true true true true

Note Table has 2n rows for n symbols

B. Beckert: KI für IM – p.23

Logical Equivalence Definition Two sentences are logically equivalent, denoted by

α≡β iff they are true in the same models, i.e., iff:

α |= β and β |= α

B. Beckert: KI für IM – p.24

Logical Equivalence Definition Two sentences are logically equivalent, denoted by

α≡β iff they are true in the same models, i.e., iff:

α |= β and β |= α Example

(A ⇒ B)



(¬B ⇒ ¬A)

(contraposition)

B. Beckert: KI für IM – p.24

Logical Equivalence Theorem If – α≡β – γ is the result of replacing a subformula α of δ by β, then

γ≡δ

B. Beckert: KI für IM – p.25

Logical Equivalence Theorem If – α≡β – γ is the result of replacing a subformula α of δ by β,

γ≡δ

then Example

A∨B



B∨A

implies

(C ∧ (A ∨ B)) ⇒ D



(C ∧ (B ∨ A)) ⇒ D

B. Beckert: KI für IM – p.25

Important Equivalences (α ∧ β) ≡ (β ∧ α)

commutativity of ∧

(α ∨ β) ≡ (β ∨ α)

commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ))

associativity of ∧

((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ))

associativity of ∨

(α ∧ α) ≡ α

idempotence for ∧

(α ∨ α) ≡ α

idempotence for ∨

¬¬α ≡ α

double-negation elimination

(α ⇒ β) ≡ (¬β ⇒ ¬α)

contraposition

(α ⇒ β) ≡ (¬α ∨ β)

implication elimination

(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α))

equivalence elimination

¬(α ∧ β) ≡ (¬α ∨ ¬β)

de Morgan’s rules

¬(α ∨ β) ≡ (¬α ∧ ¬β)

de Morgan’s rules

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ))

distributivity of ∧ over ∨

(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ))

distributivity of ∨ over ∧ B. Beckert: KI für IM – p.26

The Logical Constants true and false Semantics

true evaluates to true in all models false evaluates to false in all models

B. Beckert: KI für IM – p.27

The Logical Constants true and false Semantics

true evaluates to true in all models false evaluates to false in all models

Important equivalences with true and false

(α ∧ ¬α) ≡ false (α ∨ ¬α) ≡ true

tertium non datur

(α ∧ true) ≡ α (α ∧ false) ≡ false (α ∨ true) ≡ true (α ∨ false) ≡ α B. Beckert: KI für IM – p.27

Validity Definition A sentence is valid if it is true in all models Examples

A ∨ ¬A,

A ⇒ A,

(A ∧ (A ⇒ B)) ⇒ B

B. Beckert: KI für IM – p.28

Validity Definition A sentence is valid if it is true in all models Examples

A ∨ ¬A,

Deduction Theorem

A ⇒ A,

(A ∧ (A ⇒ B)) ⇒ B

(connects inference and validity)

KB |= α

if and only if

KB ⇒ α is valid

B. Beckert: KI für IM – p.28

Satisfiability Definition A sentence is satisfiable if it is true in some model Examples

A ∨ B,

A,

A ∧ (A ⇒ B)

B. Beckert: KI für IM – p.29

Satisfiability Definition A sentence is satisfiable if it is true in some model Examples

A ∨ B,

A,

A ∧ (A ⇒ B)

Definition A sentence is unsatisfiable if it is true in no models, i.e., if it is not satisfiable Example

A ∧ ¬A B. Beckert: KI für IM – p.29

Satisfiability Theorem

(connects validity and unsatisfiability)

α is valid

if and only if

¬α is unsatisfiable

B. Beckert: KI für IM – p.30

Satisfiability Theorem

(connects validity and unsatisfiability)

α is valid

Theorem

if and only if

¬α is unsatisfiable

(connects inference and unsatisfiability)

KB |= α

if and only if

(KB ∧ ¬α) is unsatisfiable

B. Beckert: KI für IM – p.30

Satisfiability Theorem

(connects validity and unsatisfiability)

α is valid

Theorem

if and only if

¬α is unsatisfiable

(connects inference and unsatisfiability)

KB |= α

if and only if

(KB ∧ ¬α) is unsatisfiable

Note Validity and inference can be proved by reductio ad absurdum

B. Beckert: KI für IM – p.30

Two Kinds of Proof Methods 1.

Application of inference rules

Legitimate (sound) generation of new sentences from old Construction of / search for a proof (proof = sequence of inference rule applications)

B. Beckert: KI für IM – p.31

Two Kinds of Proof Methods 1.

Application of inference rules

Legitimate (sound) generation of new sentences from old Construction of / search for a proof (proof = sequence of inference rule applications) Properties Typically requires translation of sentences into a normal form

B. Beckert: KI für IM – p.31

Two Kinds of Proof Methods 1.

Application of inference rules

Legitimate (sound) generation of new sentences from old Construction of / search for a proof (proof = sequence of inference rule applications) Properties Typically requires translation of sentences into a normal form Different kinds Tableau calculus,

resolution,

forward/backward chaining,

...

B. Beckert: KI für IM – p.31

Two Kinds of Proof Methods 2.

Model checking

Construction of / search for a satisfying model

B. Beckert: KI für IM – p.32

Two Kinds of Proof Methods 2.

Model checking

Construction of / search for a satisfying model Different kinds Truth table enumeration (always exponential number of symbols) Improved backtracking search for models e.g.: Davis-Putnam-Logemann-Loveland Heuristic search in model space e.g.: hill-climbing algorithms

(sound but incomplete)

B. Beckert: KI für IM – p.32

Normal Forms Literal A literal is – an atomic sentence (propositional symbol), or – the negation of an atomic sentence

B. Beckert: KI für IM – p.33

Normal Forms Literal A literal is – an atomic sentence (propositional symbol), or – the negation of an atomic sentence Clause A disjunction of literals

B. Beckert: KI für IM – p.33

Normal Forms Literal A literal is – an atomic sentence (propositional symbol), or – the negation of an atomic sentence Clause A disjunction of literals Conjunctive Normal Form

(CNF)

A conjunction of disjunctions of literals, i.e., a conjunction of clauses Example

(A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D) B. Beckert: KI für IM – p.33

Resolution Inference rule

P1 ∨ · · · ∨ Pi−1 ∨ Q ∨ Pi+1 ∨ . . . ∨ Pk

R1 ∨ · · · ∨ R j−1 ∨ ¬Q ∨ R j+1 ∨ . . . ∨ Rn

P1 ∨ · · · ∨ Pi−1 ∨ Pi+1 ∨ . . . ∨ Pk ∨ R1 ∨ · · · ∨ R j−1 ∨ R j+1 ∨ . . . ∨ Rn

B. Beckert: KI für IM – p.34

Resolution Inference rule

P1 ∨ · · · ∨ Pi−1 ∨ Q ∨ Pi+1 ∨ . . . ∨ Pk

R1 ∨ · · · ∨ R j−1 ∨ ¬Q ∨ R j+1 ∨ . . . ∨ Rn

P1 ∨ · · · ∨ Pi−1 ∨ Pi+1 ∨ . . . ∨ Pk ∨ R1 ∨ · · · ∨ R j−1 ∨ R j+1 ∨ . . . ∨ Rn Example

P1,3 ∨ P2,2 P1,3

¬P2,2

P B

P?

OK A

A

OK S A

P? OK

OK A

W B. Beckert: KI für IM – p.34

Resolution Correctness theorem Resolution is sound and complete for propositional logic, i.e., given a formula α in CNF (conjunction of clauses):

α is unsatisfiable iff the empty clause can be derived from α with resolution

B. Beckert: KI für IM – p.35

Conversion to CNF 0. Given

B1,1 ⇔ (P1,2 ∨ P2,1 )

B. Beckert: KI für IM – p.36

Conversion to CNF 0. Given

B1,1 ⇔ (P1,2 ∨ P2,1 ) 1. Eliminate ⇔, replacing α ≡ β with (α ⇒ β) ∧ (β ⇒ α)

(B1,1 ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 )

B. Beckert: KI für IM – p.36

Conversion to CNF 0. Given

B1,1 ⇔ (P1,2 ∨ P2,1 ) 1. Eliminate ⇔, replacing α ≡ β with (α ⇒ β) ∧ (β ⇒ α)

(B1,1 ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) 2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (¬(P1,2 ∨ P2,1 ) ∨ B1,1 )

B. Beckert: KI für IM – p.36

Conversion to CNF 0. Given

B1,1 ⇔ (P1,2 ∨ P2,1 ) 1. Eliminate ⇔, replacing α ≡ β with (α ⇒ β) ∧ (β ⇒ α)

(B1,1 ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) 2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (¬(P1,2 ∨ P2,1 ) ∨ B1,1 ) 3. Move ¬ inwards using de Morgan’s rules (and double-negation)

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ ((¬P1,2 ∧ ¬P2,1 ) ∨ B1,1 )

B. Beckert: KI für IM – p.36

Conversion to CNF 0. Given

B1,1 ⇔ (P1,2 ∨ P2,1 ) 1. Eliminate ⇔, replacing α ≡ β with (α ⇒ β) ∧ (β ⇒ α)

(B1,1 ⇒ (P1,2 ∨ P2,1 )) ∧ ((P1,2 ∨ P2,1 ) ⇒ B1,1 ) 2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (¬(P1,2 ∨ P2,1 ) ∨ B1,1 ) 3. Move ¬ inwards using de Morgan’s rules (and double-negation)

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ ((¬P1,2 ∧ ¬P2,1 ) ∨ B1,1 ) 4. Apply distributivity law (∨ over ∧) and flatten

(¬B1,1 ∨ P1,2 ∨ P2,1 ) ∧ (¬P1,2 ∨ B1,1 ) ∧ (¬P2,1 ∨ B1,1 )

B. Beckert: KI für IM – p.36

Resolution Example Given

KB = (B1,1 ⇔ (P1,2 ∨ P2,1 )) ∧ ¬B1,1 α = ¬P1,2

B. Beckert: KI für IM – p.37

Resolution Example Given

KB = (B1,1 ⇔ (P1,2 ∨ P2,1 )) ∧ ¬B1,1 α = ¬P1,2

Resolution proof for KB |= α Derive empty clause 2 from KB ∧ ¬α in CNF

B. Beckert: KI für IM – p.37

Resolution Example Given

KB = (B1,1 ⇔ (P1,2 ∨ P2,1 )) ∧ ¬B1,1 α = ¬P1,2

Resolution proof for KB |= α Derive empty clause 2 from KB ∧ ¬α in CNF

P2,1 B1,1 B1,1 P1,2 B1,1 P P 1,2 2,1

B1,1 P1,2 P2,1

P1,2

P1,2 B1,1

B1,1 P2,1 B1,1 P P 1,2 2,1

P2,1

B1,1

P2,1

P1,2

P1,2

B. Beckert: KI für IM – p.37

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions

B. Beckert: KI für IM – p.38

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic – – – – – –

syntax: formal structure of sentences semantics: truth of sentences w.r.t. models entailment: necessary truth of one sentence given another inference: deriving sentences from other sentences soundess: derivations produce only entailed sentences completeness: derivations can produce all entailed sentences

B. Beckert: KI für IM – p.38

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic – – – – – –

syntax: formal structure of sentences semantics: truth of sentences w.r.t. models entailment: necessary truth of one sentence given another inference: deriving sentences from other sentences soundess: derivations produce only entailed sentences completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

B. Beckert: KI für IM – p.38

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic – – – – – –

syntax: formal structure of sentences semantics: truth of sentences w.r.t. models entailment: necessary truth of one sentence given another inference: deriving sentences from other sentences soundess: derivations produce only entailed sentences completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc. Resolution is sound and complete for propositional logic

B. Beckert: KI für IM – p.38

Summary Logical agents apply inference to a knowledge base to derive new information and make decisions Basic concepts of logic – – – – – –

syntax: formal structure of sentences semantics: truth of sentences w.r.t. models entailment: necessary truth of one sentence given another inference: deriving sentences from other sentences soundess: derivations produce only entailed sentences completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc. Resolution is sound and complete for propositional logic Propositional logic lacks expressive power B. Beckert: KI für IM – p.38

Lihat lebih banyak...

Comentarios

Copyright © 2017 DATOSPDF Inc.